Mon Apr 14 09:59:24 2025 knapsack_brute_test(): python version: 3.10.12 numpy version: 1.26.4 Test knapsack_brute() subset_next_test(): Test subset_next() Generate in order subsets of size 5 [0. 0. 0. 0. 0.] [0. 0. 0. 0. 1.] [0. 0. 0. 1. 0.] [0. 0. 0. 1. 1.] [0. 0. 1. 0. 0.] [0. 0. 1. 0. 1.] [0. 0. 1. 1. 0.] [0. 0. 1. 1. 1.] [0. 1. 0. 0. 0.] [0. 1. 0. 0. 1.] [0. 1. 0. 1. 0.] [0. 1. 0. 1. 1.] [0. 1. 1. 0. 0.] [0. 1. 1. 0. 1.] [0. 1. 1. 1. 0.] [0. 1. 1. 1. 1.] [1. 0. 0. 0. 0.] [1. 0. 0. 0. 1.] [1. 0. 0. 1. 0.] [1. 0. 0. 1. 1.] [1. 0. 1. 0. 0.] [1. 0. 1. 0. 1.] [1. 0. 1. 1. 0.] [1. 0. 1. 1. 1.] [1. 1. 0. 0. 0.] [1. 1. 0. 0. 1.] [1. 1. 0. 1. 0.] [1. 1. 0. 1. 1.] [1. 1. 1. 0. 0.] [1. 1. 1. 0. 1.] [1. 1. 1. 1. 0.] [1. 1. 1. 1. 1.] knapsack_brute_test01(): knapsack_brute() uses a brute force approach. Maximize profit without exceeding weight limit. Problem 6 Weight limit is 170 Number of subsets is 128 Item 0/1 Value Weight Value/Weight 0 0 442 41 10.78 1 1 525 50 10.50 2 0 511 49 10.43 3 1 593 59 10.05 4 0 546 55 9.93 5 0 564 57 9.89 6 1 617 60 10.28 Taken 3 1735 169 10.27 knapsack_brute_test(): Normal end of execution. Mon Apr 14 09:59:24 2025