#! /usr/bin/env python3
#
def humps_solve_bvp ( ):

#*****************************************************************************80
#
## humps_solve_bvp() solves a boundary value problem.
#
#  Discussion:
#
#    The problem is posed on the interval [0,2].
#    The exact solution is the humps function.
#    The software requires reformulating the second order BVP as a 
#    pair of first order equations.
#
  from humps import humps_fun
  from scipy.integrate import solve_bvp
  import matplotlib.pyplot as plt
  import numpy as np

  print ( '' )
  print ( 'humps_bvp2():' )
  print ( '  Solve a BVP using scipy.integrate.solve_bvp().' )

  xa = 0.0
  xb = 2.0
  n = 21
  x = np.linspace ( xa, xb, n )
  m = 2
  y = np.zeros ( [ m, n ] )

  sol = solve_bvp ( humps_bvp_rhs, humps_bc, x, y )

  x = sol.x
  y = sol.y
#
#  Plot the computed data points, and the exact solution curve.
#
  plt.plot ( x, y[0,:], 'ro' )
  x2 = np.linspace ( xa, xb, 101 )
  y2 = humps_fun ( x2 )
  plt.plot ( x2, y2, 'b-' )
  plt.grid ( True )
  filename = 'humps_solve_bvp.png'
  plt.savefig ( filename )
  print ( '  Graphics saved as "' + filename + '"' )
  plt.show ( )
  return
 
def humps_bc ( ya, yb ):

#*****************************************************************************80
#
## humps_bc() returns the boundary condition residual.
#
#  Licensing:
#
#    This code is distributed under the MIT license.
#
#  Modified:
#
#    18 March 2025
#
#  Author:
#
#    John Burkardt
#
#  Input:
#
#    real ya, yb: the current estimates for the solution at the
#    left and right endpoints.
#
#  Output:
#
#    real resid[2]: the residual in the boundary conditions.
#
  from humps import humps_fun
  import numpy as np
  xa = 0.0
  xb = 2.0
  resid = np.array ( [ ya[0] - humps_fun(xa), yb[0] - humps_fun(xb) ] )
  return resid

def humps_bvp_rhs ( x, y ):

#*****************************************************************************80
#
## humps_bvp_rhs() evaluates the right hand side of the humps bvp.
#
#  Discussion:
#
#    scipy.integrate.solve_bvp() requires us to transform a second order BVP 
#      y""=f(x,y)
#    into a pair of first order equations:
#      y0' = y1
#      y1' = f(x,y)
#
#    y(x) = 1.0 / ( ( x - 0.3 )**2 + 0.01 ) \
#         + 1.0 / ( ( x - 0.9 )**2 + 0.04 ) \
#         - 6.0
#
#    f(x,y) = - 2.0 * ( x - 0.3 ) / ( ( x - 0.3 )**2 + 0.01 )**2 \
#             - 2.0 * ( x - 0.9 ) / ( ( x - 0.9 )**2 + 0.04 )**2
#
#  Licensing:
#
#    This code is distributed under the MIT license.
#
#  Modified:
#
#    18 March 2025
#
#  Author:
#
#    John Burkardt
#
#  Input:
#
#    real x(n): the arguments.
#
#  Output:
#
#    real ypp(2,n): the value of the right hand side functions.
#
  import numpy as np

  u1 = - 2.0 * ( x - 0.3 )
  v1 = ( ( x - 0.3 )**2 + 0.01 )**2
  u2 = - 2.0 * ( x - 0.9 )
  v2 = ( ( x - 0.9 )**2 + 0.04 )**2

  u1p = - 2.0
  v1p = 2.0 * ( ( x - 0.3 )**2 + 0.01 ) * 2.0 * ( x - 0.3 ) 
  u2p = - 2.0
  v2p = 2.0 * ( ( x - 0.9 )**2 + 0.04 ) * 2.0 * ( x - 0.9 )

  n = len ( x )

  rhs = np.zeros ( [ 2, n ] )
  rhs[0] = y[1]
  rhs[1] = ( u1p * v1 - u1 * v1p ) / v1**2 \
         + ( u2p * v2 - u2 * v2p ) / v2**2

  return rhs

if ( __name__ == "__main__" ):
  humps_solve_bvp ( )