#! /usr/bin/env python3 # def humps_derivative ( ): #*****************************************************************************80 # ## humps_derivative() estimates the derivative of humps_antideriv() # # Discussion: # # The scipy() library used to have a derivative estimator. Since it is # gone now, we just use a simple centered difference estimate stored # as the function "derivative(f,x,dx)". # from humps import humps_fun, humps_deriv, humps_antideriv import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'humps_derivative():' ) print ( ' Estimate the derivative of the humps_antideriv function' ) print ( ' Use user-written "derivative()" estimator.' ) x = np.linspace ( 0.0, 2.0, 11 ) # # Reduce dx for better results! # dx = 1.0E-00 y = derivative ( humps_antideriv, x, dx ) # # Evaluate humps_fun() for comparison. # x2 = np.linspace ( 0.0, 2.0, 201 ) y2 = humps_fun ( x2 ) # # Plot estimated derivative and exact derivative. # plt.plot ( x, y, 'ro' ) plt.plot ( x2, y2, 'b-' ) plt.grid ( True ) plt.title ( 'Finite difference derivative with dx =' + str ( dx ) ) plt.legend ( [ 'Estimate', 'Exact' ] ) filename = 'humps_derivative.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.show ( ) return def derivative ( f, x, dx ): #*****************************************************************************80 # ## derivative() estimates the derivative of f() at x, with step dx. # dfdx = ( f(x+dx) - f(x-dx) ) / 2.0 / dx return dfdx if ( __name__ == "__main__" ): humps_derivative ( )