
Advanced hump analysis with scipy()

Mathematical Programming with Python
MATH 2604: Advanced Scientific Computing 4

Spring 2025
Monday/Wednesday/Friday, 1:00-1:50pm

https://people.sc.fsu.edu/∼jburkardt/classes/python 2025/humps2/humps2.pdf

Today we will demonstrate some more advanced scipy functions by working on a test examples made famous
by MATLAB, known as humps(x). This function is defined mathematically as:

y(x) =
1

(x− 0.3)2 + 0.01
+

1

(x− 0.9)2 + 0.04
− 6

1

The humps(x) function for 0 ≤ x ≤ 2.

We will generally focus on this function over the interval 0 ≤ x ≤ 2.

We will try to use scipy to investigate properties of this function. From a plot, we can see that the function
seems to have a zero near x = 1.25, a local minimum near x = 0.6370, and two local maximum values near
x = 0.3 and x = 0.9. The function values at the endpoints are y(0) = 5.1764... and y(2) = −4.8551.... The
integral of the function over [0, 2] is approximately 29.3262... We will now look at how, instead of guessing
from a plot, we could determine this information by calling the appropriate scipy functions.

The file humps.py will contain functions we will find useful during this work:

• humps antideriv(x): antiderivative function;
• humps deriv(x): first derivative;
• humps deriv2(x): second derivative;
• humps fun(x): evaluates humps(x);
• humps ode(x,y): like humps deriv(), but includes y as second argument.

1 Where does humps(x) have a root?

The scipy.optimize library includes several functions which seek a root of a function f(x), that is, a value
such that f(x) = 0. A cautious coder might want to include the derivative value f ′(x) for a Newton method,

2

and the careless coder might not specify a change of sign interval, inside of which a root is guaranteed. We
will take the semi-cautious approach. We know that f(0) = 5.1764... and f(2) = −4.8551... and so (assuming
continuity!) there must be a value within this interval at which the value of zero is reached.

We can use the function brentq() to seek this value:

def humps zero () :
from humps import humps fun
from s c ipy . opt imize import brentq
import numpy as np

x = brentq (humps fun , 0 . 0 , 2 . 0)

print (’ Root found at x = ’ , x)
print (’ f (x) = ’ , humps fun (x))
return

2 Estimate the integral I =
∫ 2

0 humps(x)dx

The scipy.integrate library can estimate the integral over some interval [a, b] or rectangular domain, of a
function f(x) given as a formula. It can also estimate integrals when the function is only available as sample
data values. Special cases can handle integration over rectangular regions in 2D and 3D.

The integrator quad() is recommended for the most common case, in which a function f(x) is to be integrated
over an interval. Here is a sample code:

def humps quad () :
from humps import humps fun
from s c ipy . i n t e g r a t e import quad
r e su l t , e r r = quad (humps fun , 0 . 0 , 2 . 0)
print (’ I n t e g r a l e s t imate i s ’ , r e s u l t)
print (’ Error e s t imate i s ’ , e r r)
return

Notice that we are passing the absolute minimum information to quad(), and that we get an estimated error
for the integral that is returned.

Other functions are available for which the user can request a specific error tolerance, require that a certain
Gauss quadrature rule be used, or in other ways modify the procedure by which an integral is estimated.

3 Numerically estimate dhumps(x)
dx

If we have a formula for a function f(x), scipy used to offer a function derivative() to estimates the value
of f ′(x) at one or more points x. This function is no longer available. However, we can easily make a simple
version ourselves, which uses a central difference estimate, with a stepsize dx.

def d e r i v a t i v e (f , x , dx) :
dfdx = (f (x+dx) − f (x−dx)) / 2 .0 / dx
return dfdx

For our experiment, we want the humps(x) function to be the value of f ′(x), so we need to start with f(x)
equal to the antiderivative of the humps function:

f(x) = 10 arctan(10 (x− 0.3)) + 5 arctan(5 (x− 0.9))− 6x

Here is a function to do this:

3

def humps der ivat ive () :
from humps import humps fun , humps ant ider iv
import matp lo t l i b . pyplot as p l t
import numpy as np

x1 = np . l i n s p a c e (0 . 0 , 2 . 0 , 11)
dx = 1 .0E−01
y1 = de r i v a t i v e (humps antider iv , x1 , dx)
x2 = np . l i n s p a c e (0 . 0 , 2 . 0 , 51)
y2 = humps fun (x2)

p l t . p l o t (x1 , y1 , ’ ro ’)
p l t . p l o t (x2 , y2 , ’b− ’)
p l t . show ()
return

4 Solve an ODE whose solution is humps(x)

In an earlier class, we already encountered the function solve ivp() for solving one or several ordinary
differential equations. We also just saw a formula for the derivative of the humps() function. That means
we can pretend we have to solve an ODE of the form:

dy

dy
=

dhumps(x)

dx

with initial condition y(0) = humps(0), to be solved over the interval 0 ≤ x ≤ 2.

Here is how we might use solve ivp() and plot the resulting solution:

def humps ode () :
from humps import humps fun , humps ode
from s c ipy . i n t e g r a t e import s o l v e i v p
import matp lo t l i b . pyplot as p l t
import numpy as np

xmin = 0 .0
xmax = 2 .0
y0 = np . array ([humps fun (xmin)])
s o l = s o l v e i v p (humps ode , [xmin , xmax] , y0)

p l t . p l o t (s o l . t , s o l . y [0])
p l t . show ()
return

The solve ivp() function requires a derivative function which has two arguments. So we have to invoke
humps ode(), which has arguments x, y, rather than the simpler humps deriv(). We can plot the individual
ODE results versus a plot of the continuous formula. We will see a close match.

5 Solve a BVP whose solution is humps(x)

A boundary value problem (BVP) asks for the computation of a function y(x) over an interval [a, b] for which
the values ya = y(a) and yb = y(b) are known, as well as a formula for the second derivative y”(x).

One way to solve this is to define a linear system Ay = rhs which is

y[0] = ya

(y[0] - 2 y[1] + y[2]) / dx^2 = y"(x[1])

4

(y[1] - 2 y[2] + y[3]) / dx^2 = y"(x[2])

...

(y[n-3] - 2 y[n-2] + y[n-1]) / dx^2 = y"(x[n-2])

y[n-1] = yb

and then solve the resulting linear system.

Here is a code to do this:

def humps bvp () :
from humps import humps fun , humps deriv2
import matp lo t l i b . pyplot as p l t
import numpy as np
xa = 0 .0
xb = 2 .0
n = 41
x = np . l i n s p a c e (xa , xb , n)
rhs = humps deriv2 (x)
rhs [0] = humps fun (xa)
rhs [n−1] = humps fun (xb)

dx = (xb − xa) / (n − 1)
A = d i f 2 mat r i x (n) # t r i d i a g ona l −1,+2,−1
A = − A / dx∗∗2 # t r i d i a g ona l (+1,−2,+1)/dxˆ2
A[0 , 0] = 1 .0
A[0 , 1] = 0 .0
A[n−1,n−2] = 0 .0
A[n−1,n−1] = 1 .0

y = np . l i n a l g . s o l v e (A, rhs)

p l t . p l o t (x , y , ’ ro ’)
x2 = np . l i n s p a c e (xa , xb , 101)
y2 = humps fun (x2)
p l t . p l o t (x , y , ’ ro− ’ , l i n ew id th = 3 , l a b e l = ’Computed ’)
p l t . show ()

6 Use scipy to solve a humps(x) BVP

The scipy library also offers a function for solving boundary value problems, called solve bvp(). To use
it, however, we have to reformulate our problem, and supply some extra code.

First we have to rewrite the second order equation as a pair of first order equations, where y0 represents the
unknown, and y1 the derivative:

y′0 = y1

y′1 = humps deriv2(x, y)

Second, we have to create a function which returns the new form of the right hand side:

def humps bvp rhs (x , y) :

import numpy as np

u1 = − 2 .0 ∗ (x − 0 .3)
v1 = ((x − 0 .3) ∗∗2 + 0.01) ∗∗2
u2 = − 2 .0 ∗ (x − 0 .9)
v2 = ((x − 0 .9) ∗∗2 + 0.04) ∗∗2

u1p = − 2 .0

5

v1p = 2 .0 ∗ ((x − 0 .3) ∗∗2 + 0.01) ∗ 2 .0 ∗ (x − 0 .3)
u2p = − 2 .0
v2p = 2 .0 ∗ ((x − 0 .9) ∗∗2 + 0.04) ∗ 2 .0 ∗ (x − 0 .9)

n = len (x)

rhs = np . z e r o s ([2 , n])
rhs [0] = y [1]
rhs [1] = (u1p ∗ v1 − u1 ∗ v1p) / v1∗∗2 \

+ (u2p ∗ v2 − u2 ∗ v2p) / v2∗∗2

return rhs

Third, we have to create a function that evaluates the boundary conditions, that is, it simply reports the
error in the requirements on (the first component of) y at the left and right endpoints.

def humps bc (ya , yb) :
from humps import humps fun
import numpy as np
xa = 0 .0
xb = 2 .0
r e s i d = np . array ([ya [0] − humps fun (xa) , yb [0] − humps fun (xb)])
return r e s i d

Here is how the main program looks now:

def humps solve bvp () :

from humps import humps fun
from s c ipy . i n t e g r a t e import so lve bvp
import matp lo t l i b . pyplot as p l t
import numpy as np

xa = 0 .0
xb = 2 .0
n = 21
x = np . l i n s p a c e (xa , xb , n) # i n i t i a l cho ice f o r mesh nodes
m = 2 # two components , y0 and y1
y = np . z e r o s ([m, n]) # i n i t i a l guess f o r y va lue s

s o l = so lve bvp (humps bvp rhs , humps bc , x , y)

x = s o l . x
y = s o l . y [0]

p l t . p l o t (x , y)
p l t . show ()
return

6

