# Graph theory #studying big problems using adjacency list/ matrix G = { 'Boston' : [ 'Providence', 'New York' ], 'Providence' : [ 'Boston', 'New York' ], 'New York' : [ 'Chicago' ], 'Chicago ' : [ 'Denver ' , 'Phoenix ' ] , 'Denver' : [ 'Phoenix', 'New York' ], 'Phoenix' : [], 'Los Angeles' : [ 'Boston' ] } #working with dictionary : ''' G[key] = [value] G[key].append(value) ''' def toolsTest(): from graph_tools import digraph_example1 G = digraph_example1() print(listNodes(G)) # prints all the nodes print('---------------------------------') print(listEdges(G)) # prints the node, destination pairs digraphPlot(G) deadends=digraphDeadends(G) print ( deadends ) return def listNodes(G): nodes = list(G.keys()) return nodes def listEdges(G): # edges are the pairs or (nodes, destination) edges = [] for node in G.keys(): for dest in G[node]: edges.append([node,dest]) return edges def digraphPlot(G): from graphviz import Digraph nodes = listNodes(G) edges = listEdges(G) dot = Digraph( format = 'png') for n in nodes: dot.node(n) for e in edges: dot.edge(e[0],e[1]) dot.render('digraph.dot',view=True) return def digraphDeadends(G): deadends = [] for n in G.keys(): if (not G[n] ) : deadends.append(n) return deadends toolsTest()