#! /usr/bin/env python3 # def voronoi_test ( ): from scipy.spatial import Delaunay from scipy.spatial import Voronoi from scipy.spatial import voronoi_plot_2d import matplotlib.pyplot as plt import numpy as np points = np.loadtxt ( 'i18.txt' ) # # Display just the points. # plt.clf ( ) plt.plot ( points[:,0], points[:,1], 'o' ) for i in range ( 0, 18 ): s = str(i) plt.text ( points[i,0]+0.15, points[i,1]+0.15, s ) plt.grid ( 'True' ) plt.axis ( 'equal' ) filename = 'i18_points_labeled.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.show ( ) plt.close ( ) # # Compute the diagram. # diagram = Voronoi ( points ) # # Plot the diagram. # voronoi_plot_2d ( diagram, line_width = 2, point_size = 20 ) plt.grid ( True ) filename = 'i18_voronoi.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( ) plt.close ( ) # # Plot the diagram on a larger scale. # voronoi_plot_2d ( diagram, line_width = 2, point_size = 10 ) plt.grid ( True ) plt.axis ( 'equal' ) filename = 'i18_voronoi_infinity.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( ) plt.close ( ) # # Plot the diagram and the Delaunay triangulation. # tri = Delaunay ( points ) voronoi_plot_2d ( diagram, line_width = 2, point_size = 20 ) plt.triplot ( points[:,0], points[:,1], tri.simplices ) plt.grid ( True ) filename = 'i18_voronoi_delaunay.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( ) plt.close ( ) return if ( __name__ == "__main__" ): voronoi_test ( )