#! /usr/bin/env python3 # def triangle_contains_point ( T, p ): #*****************************************************************************80 # ## triangle_contains_point() finds if a point is inside a triangle in 2D. # # Discussion: # # The routine assumes that the vertices are given in counter-clockwise # order. If the triangle vertices are actually given in clockwise # order, this routine will behave as though the triangle contains # no points whatsoever! # # The routine determines if a point P is "to the right of" each of the lines # that bound the triangle. It does this by computing the cross product # of vectors from a vertex to its next vertex, and to P. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 23 October 2015 # # Author: # # John Burkardt # # Input: # # real T(2,3), the triangle vertices. # The vertices should be given in counter clockwise order. # # real P(2,1), the point to be checked. # # Output: # # logical INSIDE, is TRUE if the point is inside # the triangle or on its boundary. # inside = True im1 = 2 for i in range ( 0, 3 ): if ( 0.0 < ( p[0] - T[im1,0] ) * ( T[i,1] - T[im1,1] ) \ - ( p[1] - T[im1,1] ) * ( T[i,0] - T[im1,0] ) ): inside = False im1 = i return inside def triangle_contains_point_test ( ): #*****************************************************************************80 # ## triangle_contains_point_test() tests triangle_contains_point(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 June 2006 # # Author: # # John Burkardt # import matplotlib.pyplot as plt import numpy as np import platform print ( '' ) print ( 'triangle_contains_point_test():' ) print ( ' triangle_contains_point() reports if a point' ) print ( ' is inside a triangle' ) T = np.array ( [ \ [ 0.10, 0.20 ], [ 0.85, 0.35 ], [ 0.25, 0.90 ] ] ) print ( '' ) print ( ' Triangle vertices:' ) print ( T ) plt.clf ( ) plt.plot ( T[0:3,0], T[0:3,1], 'k-', linewidth = 3 ) plt.plot ( [ T[2,0], T[0,0] ], [ T[2,1], T[0,1] ],'k-', linewidth = 3 ) for j in range ( 0, 100 ): p = np.random.rand ( 2 ) if triangle_contains_point ( T, p ): plt.plot ( p[0], p[1], 'bo' ) else: plt.plot ( p[0], p[1], 'ro' ) plt.axis ( 'equal' ) plt.grid ( True ) plt.title ( 'Blue points inside, red outside' ) filename = 'triangle_contains_point.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.show ( ) return if ( __name__ == "__main__" ): triangle_contains_point_test ( )