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1 A Forest Fire

Let’s consider a simple forest fire model.

We imagine a forest of trees laid out on a regular m × n grid. We imagine the trees have heights of 1, 2, 3
or 4 meters. The height of a tree will determine how long it can burn. To avoid having to worry about the
boundaries of the region, we will assume the usual torus or video game or modular arithmetic conditions.
So every tree has four neighbors, to the north, south, east and west.

We suppose that the fire is started by a single tree, and we will also assume this tree is tall (that is, has a
heighf of 4 meters) so that it will burn for 4 time steps. Now we want to see if the fire spreads.

We will imagine that the probability that an unburnt tree catches fire is related to the number of burning
neighbors. If there are 0 such neighbors, the tree will not ignite on this step. If just 1 neighbor is burning,
there is a 25% chance that this tree will start to burn, and in general, if s neighbors are burning, there is a
s ∗ 25% chance. In particular, if all 4 neighbors are on fire, this tree must now ignite as well.

To keep track of the status of every tree, we create an array forest[i,j]. This array is randomly initialized
with integer values between 1 and 4, representing the varying heights of the trees.

2 An outline of the simulation

To run the simulation, we start by picking at rando the location (i, j) where the fire will start. We set
forest[i,j]=-4, that is, it’s a tall tree (of height 4) and it’s burning, because of the negative sign. We force
it to be a tall tree so that it has 4 chances to catch its neighbors on fire.

Now we repeatedly advance one time step.
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• Every tree that was burning now reduces its height by 1. In particular, the tree that started the fire
goes down to -3, then -2, then -1, then 0. A tree that reaches height 0 is, of course, completely gone
and no longer plays any role.

• Every tree that has neighbors that were burning now has to risk catching on fire, based on the number
of such neighbors.

• Unburnt trees with no burning neighbors are left alone.

Here is a plot suggesting the initial situation in the forest. The darkest green spots are the tallest trees, and
the red spot is where the fire starts, namely location [3,1].

3 Updating the status

Here is how we might implement the status of the forest over one step.

def f o r e s t upda t e ( f o r e s t ) :

import numpy as np

m, n = f o r e s t . shape

new fo r e s t = f o r e s t . copy ( )

for i in range ( 0 , m ) :
for j in range ( 0 , n ) :

#
# A nega t i v e va lue means the t r e e i s burning .
# Increase i t by 1 , so i t burns towards 0 .
#

i f ( f o r e s t [ i , j ] < 0 ) :

n ew fo r e s t [ i , j ] = f o r e s t [ i , j ] + 1
#
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# A po s i t i v e va lue means the t r e e i s untouched .
# Count the burning ne ighbors to see whether the t r e e shou ld i g n i t e .
# This i s done by making i t s index nega t i v e .
#

e l i f ( 0 < f o r e s t [ i , j ] ) :
#
# Here , we l o c a t e the neighbors , but use modular a r i t hme t i c
# so the g r i d wraps around at the edges .
#

im1 = ( i − 1 ) % m
ip1 = ( i + 1 ) % m
jm1 = ( j − 1 ) % n
jp1 = ( j + 1 ) % n

#
# Count the number o f ne ighbor ing t r e e s t ha t are burning .
#

s = ( f o r e s t [ im1 , j ] < 0 ) + ( f o r e s t [ ip1 , j ] < 0 ) \
+ ( f o r e s t [ i , jm1 ] < 0 ) + ( f o r e s t [ i , jp1 ] < 0 )

i g n i t e = np . random . random ( )

i f ( i g n i t e < 0 .25 ∗ s ) :
n ew fo r e s t [ i , j ] = − new fo r e s t [ i , j ]

f o r e s t = new fo r e s t . copy ( )

return f o r e s t

If we keep following the updating rules, then the fire will eventually die out. We can ask questions such as
how many trees are likely to survive, and what would happen if the direction of the wind influenced the fire
spread.

4 Graphics considerations

Here is what the forest might look like after 10 steps of burning:
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It’s worth spending some time figuring out how to plot the forest fire.

Notice an interesting problem in geometry, the difference between array coordinates and Cartesian coordi-
nates. We imagine the [0,0] entry of our array to be in the upper left; but if we are thinking in terms of
(x, y) Cartesian coordinates, we would be tempted to imagine that tree is in the lower left corner instead.
Either convention would work; we will choose to insist that the (0,0) tree is in the upper left, which means
that when we do plotting, we will have to be careful to rearrange some data so that the plotting software
gets things right!

Our plot can be thought of as an m × n visual array of boxes. Each box could be filled with a color to
suggest the status of the tree there. Greens could be untouched trees, red shades suggest fire, and a gray
box would represent a 0 value, where a tree has burnt to the ground. We can use a pair of for() loops to
identify each box to be drawn. We can use a pair of fill() and plot() commands to fill a box with color,
and then draw the outline of its boundary. For the fill() command, we want more choices than the simple
one letter color codes. To get what we want, we will instead use the RGB color scheme.

i f ( f o r e s t [ i , j ] == 0 ) :
rgb = [ 0 . 7 5 , 0 . 7 5 , 0 . 7 5 ] # l i g h t gray

e l i f ( f o r e s t [ i , j ] == 1 ) :
rgb = [ 0 . 8 , 1 . 0 , 0 . 8 ] # l i g h t green

e l i f ( f o r e s t [ i , j ] == 2 ) :
rgb = [ 0 . 7 , 1 . 0 , 0 . 7 ] # medium green

e l i f ( f o r e s t [ i , j ] == 3 ) :
rgb = [ 0 . 5 , 1 . 0 , 0 . 5 ] # strong green

e l i f ( f o r e s t [ i , j ] == 4 ) :
rgb = [ 0 . 3 , 1 . 0 , 0 . 3 ] # dark green

e l i f ( f o r e s t [ i , j ] == −1 ) :
rgb = [ 1 . 0 , 0 . 9 , 0 . 9 ] # l i g h t red

e l i f ( f o r e s t [ i , j ] == −2 ) :
rgb = [ 1 . 0 , 0 . 7 , 0 . 7 ] # medium red

e l i f ( f o r e s t [ i , j ] == −3 ) :
rgb = [ 1 . 0 , 0 . 5 , 0 . 5 ] # strong red

e l i f ( f o r e s t [ i , j ] == −4 ) :
rgb = [ 1 . 0 , 0 . 3 , 0 . 3 ] # dark red

4



Once we have chosen the color for our box, we get the coordinates of its corners, fill the interior with color,
and draw the outline:

x = [ j , j , j +1, j +1, j ]
i r = m − 1 − i
y = [ i r , i r +1, i r +1, i r , i r ]
p l t . f i l l ( x , y , c o l o r = rgb )
p l t . p l o t ( x , y , ’ k− ’ )

After this, we can save the plot to a file, and display it using plt.show().

5 Animation

Now let’s consider the possibility of an animation. We already know that the plt.show() command will
display the forest status at each time step. However, it would be much more dramatic to be able to watch
the individual frames as a movie, without us having to close each frame in order to see the next one.

We may talk later about how to create an animation directly inside a Python program, using a peculiar
feature known as FuncAnimation(). However, I find that feature awkward to use, and it involves some
object-oriented coding I am uncomfortable with. As an alternative, since we have saved every frame as a
png file, we can string them together as a movie, using one of several external programs.

On my system, I can use the ImageMagick convert function to take a collection of still frames and make a
GIF animation. On my system, the movie can be created by

convert −delay 100 −loop 1 f o r e s t f i r e ∗ . png f o r e s t f i r e . g i f

where the delay option specifies the time delay between showing each frame, and the loop option specifies
how many times the frames should be repeated.

The resulting GIF animation is available from the web page.
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