
Fermat Factorization in the Wild

Hanno Böck

January 8, 2023

Abstract

We are applying Fermat’s factorization algorithm to sets of public
RSA keys. Fermat’s factorization allows efficiently calculating the prime
factors of a composite number if the difference between the two primes
is small. Knowledge of the prime factors of an RSA public key allows
efficiently calculating the private key. A flawed RSA key generation func-
tion that produces close primes can therefore be attacked with Fermat’s
factorization.

We discovered a small number of vulnerable devices that generate
such flawed RSA keys in the wild. These affect devices from two printer
vendors - Canon and Fuji Xerox. Both use an underlying cryptographic
module by Rambus.

1 Background

1.1 RSA and factoring

We will not give a full description of the RSA algorithm, but we will describe
what is necessary to understand the attack.

RSA public keys consist of two values, usually called N and e. N is the
modulus and is the product of two large primes, usually called p and q. If
someone knows p, q and e then calculating all other values of the private key is
trivial.

Therefore, the security of RSA relies on the difficulty of factoring N. It is
generally believed that if N is large (2048 bit is the most commonly used value
today) and p and q have been independently and randomly generated, then
factoring N is not practically feasible with today’s technology.

1.2 Fermat’s factorization method

Fermat’s factorization method is a factorization algorithm that works efficiently
on composite numbers composed of two primes where the difference between

1

the primes is small. It has originally been described by Pierre de Fermat in
1643 in a letter 1.

Let’s assume a composite number that is composed of two large primes.
Given that all primes larger than 2 are odd numbers, there always exists an
integer number in the middle of the two primes. We will call that number a.
We will call the distance between a and the primes b (the distance is also an
integer and identical for both primes, as we have defined a as the middle).

It follows that the smaller prime is a-b and the larger prime is a+b. There-
fore, our composite number, which we will call N, can be calculated as:

N = (a + b)(a− b)

We can rearrange this formula to:

N = a2 − b2

a2 = N + b2

b2 = a2 −N

If the primes are close then we can assume that a is close to the square root
of N. We also know that a is larger or equal to the square root of N (it is equal
in the special case that the two primes are identical, however this would be an
invalid/unusable RSA key).

The factorization works as follows: We will make guesses for a, starting with
the integer ceil of the square root of N, and increasing the guess by one in each
step. We can check each guess by calculating

b2

with the formula above. If the result is a square, we know that we guessed a
correct.

This algorithm will always succeed eventually, but it will only be efficient
if both primes are close. For this paper, we ran the algorithm for 100 rounds.
This is an arbitrary value, larger values lead to more successful factorizations.
However, in practice we learned that most vulnerable keys we found in the wild
could be factored with one or two rounds, thus we found 100 rounds to be a very
conservative choice. The runtime of the algorithm for this value is negligible on
a modern PC.

1.3 Breaking RSA with Fermat’s factorization method

We learned that the security of RSA relies on the fact that N, a value that is part
of the public key, is composed of two large primes, and it is infeasible to calculate
these primes for an attacker. We also learned that Fermat’s factorization method
allows efficiently factoring a composite number composed of two close primes.

1A transcript of the letter can be found in the book Oeuvres de Fermat, page 256, an online
copy is available at https://archive.org/details/oeuvresdefermat02ferm/

2

https://archive.org/details/oeuvresdefermat02ferm/

The likelihood that two independently, randomly generated large primes are
close is negligible. However, it is possible that mistakes in implementing the
RSA key generation may create keys with close primes.

A possible scenario is the following: An RSA key generation function creates
a large random number. It then searches for the next prime after that random
number and uses this as p. It then searches for the next prime after p and uses
that as q.

Thus, we end up with two neighboring primes. With common RSA key sizes,
neighboring primes will have a difference in the range of thousands, which is
easily factorable by Fermat’s factorization method.

Other scenarios are also imaginable, e.g. an RSA key generation function
could search for the next and previous prime of a random number or it could be
based on a flawed random number generator that will output identical numbers
for all the higher bits and only create differences in the lower bits.

We would like to stress that Fermat’s factorization method is no risk for
correct RSA implementations, however a flawed RSA key generation could be
vulnerable.

2 Methods

Listing 1: Fermat Factorization in Python

de f fermat (n) :
t r i e s = 100

a = gmpy2 . i s q r t (n)

c = 0
whi le not gmpy2 . i s s q u a r e (a∗∗2 − n) :

a += 1
c += 1
i f c > t r i e s :

r e turn Fal se
bsq = a∗∗2 − n
b = gmpy2 . i s q r t (bsq)
p = a + b
q = a − b
return [p , q]

We implemented Fermat’s factorization method in Python with the gmpy2
library. This is possible in very few lines of code and runs fast enough that we
can easily test large numbers of keys. A Python code example is in Listing 1.
We implemented a check as part of the badkeys tool and webpage 2 that we

2https://badkeys.info/

3

https://badkeys.info/

published under an open source license. The badkeys webpage can calculate
private keys for a given vulnerable public key.

We extracted RSA moduli from multiple sets of public keys that were either
publicly available or accessible to us. We then applied our attack algorithm and
looked for vulnerable keys.

3 Findings

We applied our factorization method to various sets of public RSA keys that we
could access.

In a dataset of TLS keys provided by Rapid 7 downloaded in September 2021
we found 97 self-signed certificates with vulnerable public keys. We repeated
this with a later data set by Rapid 7 downloaded in December 2021 and found
137 self-signed certificates with vulnerable public keys. Due to overlap overall we
found 155 vulnerable certificates in the Rapid 7 datasets. With three exceptions,
these certificates were found on the default HTTPS port (443). The three other
certificates were on ports 4443, 10443 and 11443.

With three exceptions, all of these certificates had a subject with a common
name of the form ”FF-1C7D22XXXXXX” or ”FX-1C7D22XXXXXX” (with
hex digits instead of XX). It is plausible to assume that all certificates with
these common names were generated by the same device type.

By using the Censys search engine, we manually checked the IPs belonging to
some of these certificates and accessed their web interface. The web interfaces
indicated that they belonged to printers of the Fuji Xerox ApeosPort series.
(The company has since been renamed to Fujifilm.)

We reported the issue to Fujifilm’s security team. We learned that a third-
party cryptographic module developed by Rambus was responsible for this vul-
nerability. Rambus informed us that the vulnerable module is the SafeZone
Basic Crypto Module, non-FIPS certified version.[1] Fujifilm has provided a
firmware update for the affected printers. Their public advisory contains a full
list of affected devices [2]. Rambus has fixed the vulnerability in their library
and provided their customers with an update. Based on our communication with
Rambus we learned that other vendors were using that library, but Rambus did
not share the names of the affected vendors.

Furthermore, we applied our attack on RSA keys from certificates logged in
the Certificate Transparency system. Certificate Transparency is a mechanism
where certificate issuers need to submit publicly trusted certificates to logs that
are public and can be audited by anyone.

Scraping the Certificate Transparency logs is challenging due to their size.
Sectigo operates a certificate search engine named crt.sh that offers a public
API to access their database. Rob Stradling from Sectigo allowed us to use
the database access to extract all RSA moduli from crt.sh. Overall, crt.sh has
logged over 6 billion certificates (however not all of them use the RSA algorithm
and many share public keys, particularly as the logs often contain both the pre-
certificate and the final certificate).

4

We found 35 affected certificates in this dataset. These certificates contained
17 unique vulnerable keys. Some keys were used on multiple certificates, and
for all recent certificates it is common that a pre-certificate gets logged which
contains the same public key as the final certificate. All affected certificates
were created in 2020 or 2021.

We tried to reach out to the owners of these certificates. In one case, we
learned that the certificates were manually created for testing purposes. In two
cases, we learned that these certificates belonged to printers from the vendor
Canon.

We reported two certificates that were still valid when we found them to the
certificate authority that issued them and asked for revocation. It is common
practice in the Web PKI ecosystem that certificate authorities revoke certificates
within 24 hours if the keys are compromised. In both cases, the certificate
authorities revoked the certificates quickly.

The Canon printers, as we learned, offer a feature to generate a certificate
signing request (CSR) that includes a vulnerable public key. Certificate sign-
ing requests are a common mechanism to deliver a public key to a certificate
authority.

We informed Canon about our findings. Canon has informed us that they
are preparing a firmware update that will fix this vulnerability.[3]

We also shared our preliminary findings with certificate authorities. Some
certificate authorities implemented checks in their issuance process that prevents
vulnerable certificates from being issued.3 The zlint tool that is widely used by
certificate authorities to detect malformed certificates has implemented a check
in version 3.4.0.4

3.1 Negative findings

We applied our factorization method to various other public key collections.
That included a collection of SSH host keys from a scan in 2014,[4] multiple
collections of GitHub SSH public keys[5], a collection of TLS certificates from
the Censys project from 2017, the EEF SSL Observatory collection of TLS
certificates from 2010[6] and a dump from an SKS PGP key server.

In the PGP key dataset, we found three vulnerable public keys and one defect
key. Two keys had user IDs implying testing (”user 123@test.com”, ”Test”).
One key contained a user id ”UserID 3” and an XSS payload as the second user
id. The defect key contained no user id and the modulus was a square number
(meaning both primes were identical). Such a key is unusable, and it was not
possible to import it into GnuPG.

Thus, none of the PGP keys found looked like a ”proper” key, the user ids
indicate that these keys were created for testing purposes. We therefore believe
that these keys were not created by vulnerable software implementations. They

3See e.g. Let’s Encrypt’s check code at https://github.com/letsencrypt/boulder/pull/
5853

4zlint 3.4.0 release notes https://github.com/zmap/zlint/releases/tag/v3.4.0 and pull
request https://github.com/zmap/zlint/pull/674

5

https://github.com/letsencrypt/boulder/pull/5853
https://github.com/letsencrypt/boulder/pull/5853
https://github.com/zmap/zlint/releases/tag/v3.4.0
https://github.com/zmap/zlint/pull/674

may have been manually crafted by people aware of the Fermat factorization
method to deliberately create vulnerable keys.

In all other key sets, we did not find any keys vulnerable to our attack.
We can draw a few conclusions from our findings. All vulnerable TLS certifi-

cates we found were of relatively recent origin, and we did not find vulnerable
keys in older TLS scan datasets. We did not find any vulnerable SSH keys
(neither host nor user keys) and the vulnerable PGP keys we found looked like
they were created for testing purposes.

We therefore conclude that vulnerable implementations in the SSH and PGP
ecosystems are either very rare or do not exist. We also conclude that all
vulnerable TLS implementations are either rarely used or have been created
within the past couple of years.

3.2 Checking whether found primes are neighbors

A plausible scenario in which an RSA key generation function would create
vulnerable keys is an algorithm that will create neighboring primes p and q.
However, other vulnerable implementations are possible, for example ones that
fix all the upper bits of a prime up to a certain point and only randomize the
lower bits.

We found that all vulnerable keys we found in TLS certificates had neigh-
boring primes, meaning that there was no other prime number between p and
q.

Two of the three PGP keys had neighboring primes, one (”user 123@test.com”)
had two primes between p and q.

This confirms that using neighboring primes is the most likely way an RSA
implementation might be vulnerable to Fermat’s factorization.

4 Related Work

In 1996 the Austrian terrorist Franz Fuchs sent an encrypted message with a
deliberately breakable PGP key to media outlets. According to media reports,
the key used primes of similar size, allowing to break the key with Fermat
factorization.[7] This likely was not due to a vulnerable implementation, but
due to a key deliberately created to be breakable.

We have not found any previous reports of RSA key generation implemen-
tations vulnerable to Fermat factorization in the scientific literature.

Flawed RSA key generation algorithms have been found multiple times be-
fore. In 2008 Luciano Bello discovered that Debian’s OpenSSL package used a
flawed random number generator,[8] which limited the number of possible keys.

In 2012 two independent teams discovered that TLS and SSH keys often had
shared prime factors,[9][10] allowing to efficiently factor them with the great-
est common denominator algorithm. The analysis by Heninger et al indicates
that most of these keys were created due to early boot time entropy issues on
embedded devices.

6

In 2017 Nemec, Sys, Svenda, Klinec and Matyas [11] discovered a vulnera-
bility in widely used Infineon hardware chips that created keys with a specific
structure that allowed applying a modified version of Coopersmith’s attack. The
keys were generated with an ”optimized” RSA key generation routine that was
used in a wrong way. They named this vulnerability ”Return of Coopersmith’s
Attack” or ROCA.

In 2021, it was reported that the keypair JavaScript library had a flaw in
the random number generator, making certain keys more likely to appear.[12]
It affected SSH keys created by the GitKraken software, which is often used to
access code hosting platforms like GitHub.

Most of the previous RSA key generation issues were directly related to the
random number generator, which is not directly related to our finding. The
major exception is the ROCA vulnerability. The similarity between our finding
and ROCA is that in both cases, it looks like implementors tried to be ”clever”
and optimize the RSA key generation.

Several more modern factoring algorithms like the quadratic sieve or the
number field sieve use the ideas from Fermat as their basis. The number field
sieve has been used to factor keys with short key sizes.

5 Summary and Conclusion

Fermat’s factorization method allows efficiently calculating private RSA keys
from public keys if the primes are close. We were able to show that there are
vulnerable implementations used in the wild that create such keys for TLS cer-
tificates. However, we also learned that these vulnerabilities are not widespread,
as we only found a small number of affected public keys and devices.

We did not find evidence of vulnerable devices in SSH keys, and only found
a very small number of PGP keys that we believe were created for testing
purposes.

We implemented a check for Fermat’s factorization method in Python that
we shared as part of the badkeys tool5 that we provide under the MIT open
source license. Furthermore, we also provide badkeys as a web service for check-
ing keys for a variety of vulnerabilities.

Checking for Fermat’s factorization method is computationally very cheap.
We therefore recommend that entities that process public keys that were gener-
ated outside of their control to implement checks for this vulnerability. Typical
entities that might want to implement such checks are certificate authorities or
services that implement user authentication with public keys and support RSA
(e.g. code hosting services using Git over SSH). Security audits of cryptographic
systems and software implementing RSA should consider this vulnerability.

5https://github.com/badkeys/badkeys/

7

https://github.com/badkeys/badkeys/

6 Misc

We have created a web page with information about this vulnerability at https:
//fermatattack.secvuln.info/.

This work was funded in part by Industriens Fond through the CIDI project
(Cybersecure IOT in Danish Industry) and in part by the Center for Information
Security and Trust (CISAT) at the IT University of Copenhagen, Denmark.

References

[1] Rambus. Rambus Security Vulnerability Disclosure: SafeZone Basic Crypto
Module, non-FIPS certified version. https://safezoneswupdate.com/,
2022.

[2] Fujifilm. Notification about the vulnerability for RSA key in
our multi-function printers and single-function printers. https:

//www.fujifilm.com/fbglobal/eng/company/news/notice/2022/

0302_rsakey_announce.html, 2022.

[3] Canon. Notice of potential vulnerability in RSA
key generation. https://canoncanada.custhelp.

com/app/answers/answer_view/a_id/1039057/~/

notice-of-potential-vulnerability-in-rsa-key-generation-,
2022.

[4] Oliver Gasser, Ralph Holz, and Georg Carle. A deeper understanding of
SSH: Results from Internet-wide scans. In 2014 IEEE Network Operations
and Management Symposium (NOMS), pages 1–9, 2014.

[5] Ben Cox. Auditing GitHub users’ SSH key quality. https://blog.

benjojo.co.uk/post/auditing-github-users-keys, 2015.

[6] Electronic Frontier Foundation. The EFF SSL Observatory. https://www.
eff.org/de/observatory, 2010.

[7] Markus Sulzbacher. Briefbombenterror: Als das Bun-
desheer der NSA zuvorkam. Der Standard, 2018.
https://www.derstandard.at/story/2000080835367/

briefbombenterror-als-das-bundesheer-der-nsa-zuvorkam.

[8] Debian Security Advisory. DSA-1571-1 openssl – predictable random
number generator. https://www.debian.org/security/2008/dsa-1571,
2008.

[9] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
Mining your ps and qs: Detection of widespread weak keys in network de-
vices. In 21st USENIX Security Symposium (USENIX Security 12), pages
205–220, Bellevue, WA, August 2012. USENIX Association.

8

https://fermatattack.secvuln.info/
https://fermatattack.secvuln.info/
https://safezoneswupdate.com/
https://www.fujifilm.com/fbglobal/eng/company/news/notice/2022/0302_rsakey_announce.html
https://www.fujifilm.com/fbglobal/eng/company/news/notice/2022/0302_rsakey_announce.html
https://www.fujifilm.com/fbglobal/eng/company/news/notice/2022/0302_rsakey_announce.html
https://canoncanada.custhelp.com/app/answers/answer_view/a_id/1039057/~/notice-of-potential-vulnerability-in-rsa-key-generation-
https://canoncanada.custhelp.com/app/answers/answer_view/a_id/1039057/~/notice-of-potential-vulnerability-in-rsa-key-generation-
https://canoncanada.custhelp.com/app/answers/answer_view/a_id/1039057/~/notice-of-potential-vulnerability-in-rsa-key-generation-
https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://www.eff.org/de/observatory
https://www.eff.org/de/observatory
https://www.derstandard.at/story/2000080835367/briefbombenterror-als-das-bundesheer-der-nsa-zuvorkam
https://www.derstandard.at/story/2000080835367/briefbombenterror-als-das-bundesheer-der-nsa-zuvorkam
https://www.debian.org/security/2008/dsa-1571

[10] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos,
Thorsten Kleinjung, and Christophe Wachter. Public keys. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO
2012, pages 626–642, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[11] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek Matyas.
The Return of Coppersmith’s Attack: Practical Factorization of Widely
Used RSA Moduli. In 24th ACM Conference on Computer and Communi-
cations Security (CCS’2017), pages 1631–1648. ACM, 2017.

[12] Github Security Lab. GHSL-2021-1012: Poor random number genera-
tion in keypair - CVE-2021-41117. https://securitylab.github.com/

advisories/GHSL-2021-1012-keypair/, 2011.

9

https://securitylab.github.com/advisories/GHSL-2021-1012-keypair/
https://securitylab.github.com/advisories/GHSL-2021-1012-keypair/

	Background
	RSA and factoring
	Fermat's factorization method
	Breaking RSA with Fermat's factorization method

	Methods
	Findings
	Negative findings
	Checking whether found primes are neighbors

	Related Work
	Summary and Conclusion
	Misc

