#! /usr/bin/env python3 # def walk_1d_test ( ): import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'walk_1d_test():' ) print ( ' If a walker randomly takes steps of +1 and -1,' ) print ( ' how many steps will be taken on average to reach' ) print ( ' a distance of L?' ) print ( '' ) print ( ' To answer this question, consider each value of L' ) print ( ' from 0 to 10, take many random walks, and determine' ) print ( ' S, the average number of steps taken.' ) print ( '' ) print ( ' Theory says S = L^2' ) n = 10000 lvec = np.linspace ( 0, 10, 11 ) step_average = np.zeros ( 11 ) for l in range ( 0, 11 ): step_sum = 0 for i in range ( 0, n ): step_sum = step_sum + walk_1d ( l ) step_average[l] = step_sum / n # # Plot distance L versus steps S. # plt.clf ( ) plt.plot ( lvec, step_average, 'b-' ) plt.plot ( lvec, lvec**2, 'r.', markersize = 20 ) plt.grid ( True ) plt.xlabel ( '<-- Distance in steps-->' ) plt.ylabel ( '<-- Average steps taken -->' ) plt.legend ( [ 'Observed', 'Predicted' ] ) filename = 'walk_1d.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ) return def walk_1d ( l ): ## walk_1d() takes a random 1D walk until reaching a distance of L units. # # Discussion: # # Each step is of unit size. # # Input: # # integer l: the distance at which the walk will terminate. # # Output: # # integer steps: the number of steps taken to reach a distance of L. # import numpy as np directions = [ -1, +1 ] location = 0 steps = 0 while ( -l < location and location < l ): steps = steps + 1 location = location + np.random.choice ( directions ) return steps if ( __name__ == "__main__" ): walk_1d_test ( )