#! /usr/bin/env python3 # def scatter_1d ( ): #*****************************************************************************80 # ## scatter_1d() follows multiple Brownian particles in 1D. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2025 # # Author: # # John Burkardt # import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'scatter_1d():' ) print ( ' Display multiple Brownian particles in 1D.' ) p = 10000 n = 100 m = 1 d = 10.0 t = 1.0 x = scatter_simulation ( p, n, m, d, t ) dt = t / float ( n ) sigma = np.sqrt ( 2.0 * m * d * dt * n ) # # Display particles. # plt.clf ( ) plt.hist ( x, bins = 31, density = True ) x2 = np.linspace ( -15, +15, 101 ) y2 = 1.0 / np.sqrt ( 2.0 * np.pi * sigma**2 ) * np.exp ( - 0.5 * x2**2 / sigma**2 ) plt.plot ( x2, y2, 'r-', linewidth = 5 ) plt.legend ( [ 'Theory', 'Data' ] ) plt.grid ( True ) plt.xlabel ( '<--X-->' ) plt.ylabel ( '<--Frequency-->' ) plt.title ( 'P particles in 1 dimension after N steps' ) filename = 'scatter_1d.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.show ( ) plt.close ( ) return def scatter_simulation ( p, n, m, d, t ): #*****************************************************************************80 # ## scatter_simulation() lets P particles take N Brownian steps each. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2025 # # Author: # # John Burkardt # # Input: # # integer p: the number of particles. # # integer m: the spatial dimension. # # integer n: the number of time steps to take # # real d: the diffusion coefficient. # # real t: the total time. # # Output: # # real x(p,m): the locations of P particles in M dimensional space # after each has taken N steps. # import numpy as np # # Set the time step. # dt = t / n # # Make space for the data. # x = np.zeros ( [ p, m ] ) # # Compute the individual steps. # for j in range ( 0, n ): # # Choose directions at random. # u = np.random.standard_normal ( [ p, m ] ) norm_u = np.sqrt ( np.sum ( u ** 2, axis = 1 ) ) for i in range ( 0, m ): u[i] = u[i] / norm_u[i] # # Choose stepsizes at random. # s = np.sqrt ( 2.0 * m * d * dt ) * np.random.standard_normal ( p ) # # Increment the position. # for j in range ( 0, m ): x[:,j] = x[:,j] + s[:] * u[:,j] return x if ( __name__ == '__main__' ): scatter_1d ( )