#! /usr/bin/env python3 # def motion_1d ( ): #*****************************************************************************80 # ## motion_1d() simulates 1D Brownian motion # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 February 2025 # # Author: # # John Burkardt # import matplotlib import numpy as np print ( '' ) print ( 'motion_1d():' ) print ( ' Simulation 1D Brownian motion.' ) m = 1 n = 101 d = 10.0 t = 1.0 x = brownian_motion_simulation ( m, n, d, t ) motion_1d_display ( m, n, x ) return def brownian_motion_simulation ( m, n, d, t ): #*****************************************************************************80 # ## brownian_motion_simulation() simulates Brownian motion. # # Discussion: # # Thanks to Feifei Xu for pointing out a missing factor of 2 in the # stepsize calculation, 08 March 2016. # # Thanks to Joerg Peter Pfannmoeller for pointing out a missing factor # of M in the stepsize calculation, 23 April 2018. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 02 January 2024 # # Author: # # John Burkardt # # Input: # # integer M, the spatial dimension. # # integer N, the number of time steps to take, plus 1. # # real D, the diffusion coefficient. # # real T, the total time. # # Output: # # real X(N,M), N successive locations of a particle in M dimensional space. # import numpy as np # # Set the time step. # dt = t / float ( n - 1 ) # # Make space for the data. # x = np.zeros ( [ n, m ] ) # # Define the standard deviation. # sigma = np.sqrt ( 2.0 * m * d * dt ) # # Compute the individual steps. # for j in range ( 1, n ): # # S is the stepsize # s = np.random.standard_normal ( ) # # Direction is unit random vector. # u = np.random.standard_normal ( m ) u = u / np.linalg.norm ( u ) # # Each position is the sum of the previous steps. # x[j,0:m] = x[j-1,0:m] + s * u[0:m] return x def motion_1d_display ( m, n, x ): #*****************************************************************************80 # ## brownian_motion_display() displays successive Brownian motion positions. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 26 April 2018 # # Author: # # John Burkardt # # Input: # # integer M, the spatial dimension. # M should be 1, 2 or 3. # # integer N, the number of time steps. # # real X(N,M), the particle positions. # import matplotlib.pyplot as plt import numpy as np y = np.linspace ( 0, n - 1, n ) / float ( n - 1 ) plt.plot ( x[:,0], y[:], 'b', linewidth = 2 ) plt.plot ( x[0,0], y[0], 'g.', markersize = 35 ) plt.plot ( x[n-1,0], y[n-1], 'r.', markersize = 35 ) plt.grid ( True ) plt.xlabel ( '<--X-->' ) plt.ylabel ( '<--Time-->' ) plt.title ( 'Brownian motion simulation in 1D' ) filename = 'motion_1d.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.show ( ) plt.close ( ) return if ( __name__ == '__main__' ): motion_1d ( )