Beat the (Linpack) Benchmark!
Mathematical Programming with Python

MATH 2604: Advanced Scientific Computing 4
Spring 2025
Monday /Wednesday /Friday, 1:00-1:50pm

https://people.sc.fsu.edu/~jburkardt/classes/python_2025/benchmark /benchmark.pdf

1 Measuring Computer Performance

If you think of a computer as a number cruncher, then it makes sense to evaluate each computer on how fast
it can crunch those numbers. If a game machine is not powerful enough, then the player will be frustrated
by the stuttering animation. A biomathematician will be impatient if the analysis of a protein folding
problem seems to be taking hours or days. Computational scientists seek new methods that will shorten
the time required to solve certain problems. Computer vendors want to brag that their machine is the most
powerful. The National Science Foundation has funded supercomputing centers across the country, including
the Pittsburgh Supercomputing Center, to offer free access to the best computing facilities. What can be
“super” about a computer? What speed are we measuring?

We seek ways of estimating computing power, no matter what language or computer or operating system is
involved. This is difficult, since a given computer may handle certain types of problems well, but do poorly
on others. Things like the amount of memory, the ability to access memory quickly, the clock speed, and
the kind of CPU at the heart of the machine all play a role in producing a desired computational result.

A group of numerical analysts decided to create a benchmark, that is, a single problem that any computer
should be able to solve. The number of floating point operations, divided by time required to compute the
solution, gives a numeric processing rate, known as FLOPS (floating point operations per second), which
could be used as a reasonable rating for a certain class of numerical problems.

2 A program to solve a linear system

The benchmark problem chosen was the solution of a linear system of the form A xx = b. Here, the value n
represented the order, or number of variables. This meant that the unknown solution vector x and the right
hand side vector b would be vectors of length n, while the matrix A would be of dimensions n X n.

Actually, for technical reasons, partly relating to conventions of the Fortran programming language, the
matrix was assumed to be stored in a somewhat larger array, of dimensions lda x n, where typically lda =
n+ 1. Surprisingly, because of peculiarities of addressing computer memory, choosing this slightly larger row
dimension for A could sometimes produce a noticeable improvement in the speed of execution.

In order to construct a linear equation solver that could be employed on any computer, the decision was made
to employ the linpack() library, written in the Fortran77 language. A compiler for Fortran77 was available
for most scientific computing systems, which meant that the same sequence of calculations, no matter where
the program was run. The solver was created primarily from a pair of subroutines:

e dgefa(): to compute the PLU factors of A;
e dgesl(): to solve Px L x U xx =y for z;

These two subroutines, in turn, called a small number of basic linear algebra subprograms (known as BLAS)
to carry out low-level tasks such as vector scaling, row swapping, and finding the maximum entry in a vector.

To save on storage, the memory for the A matrix was overwritten by the LU factors, which the permutation
matrix P was stored in an integer vector of length n. Moreover, the solution z overwrote the original right
hand side vector b. Thus, aside from scalar variables, the memory usage for this solver involved an lda x n
real matrix, and two vectors of length n, one real and one integer.

The heart of the computation looked something like this:

call matgen (A, lda, n, b, norma)

call cpu_time (t1)

call dgefa (A, lda, n, ipvt, info)
call cpu_time (t2)

time (1) = t2 — t1

call cpu_time (t1)

call dgesl (A, lda, n, ipvt, b, 0)
call cpu_time (t2)

time (2) = t2 — t1

cpu = time (1) + time(2)

3 Creating a performance rating

If we want to use the information from the benchmark program to determine a performance rating, we need
to compute the ratio of work accomplished divided by CPU time elapsed.

When the program executes, it automatically computes the quantity cpu for us, measuring the CPU time
required by the factor and solve functions that we called.

To compute the ratio, we need to evaluate the amount of work that had been done in the elapsed time. We
can imagine that each time we encounter an addition, multiplicaton, or division in the code, a person would
have to execute a command on a calculator. We ignore all other activities in the program, such as updating
the loop index, and simply count each floating point operation or FLOP. For the kind of Gauss elimination
and back solution employed by dgefa() and dges1() for an n x n matrix, a good estimate for op_count, the
number of operations is:

2
op_count = §n3 + 2n?

although it’s easier to remember the estimate %n?’.

Therefore, for a given run of the program that took cpu seconds, we can compute a computational rate,
known as FLOPS (floating point operations per CPU second):

FLOPS — op-count
cpu seconds

This number is a measure of the performance of the program. Of course, this number depends on the
problem n, the operating system, the Fortran77 compiler, the compiler options, the computer model, and
other factors that we may want to worry about later.

4 Supercomputers and the Linpack benchmark

In 1979, whe the Linpack benchmark was devised, a matrix of size n = 100 was considered a large problem,
and so this was the size used in benchmarking. Later, it was decided to go to a problem size of n = 1000,
and later the problem size was allowed to be even larger. Even in 1979, the FLOPS rating for computers
tended to be a large number. For example, a Pentium III chip had a clock speed of 750 MegaHertz, that is,
750 million clock ticks per second. Assuming that this chip could perform one floating point operation per
clock tick, that would suggest a theoretical top performance limit of

1 floati i lock tick
oating operation ., 3 og 2 1K _ 750 000,000 FLOPS.
clock tick second

To simplify reports, the term “MegaFLOPS” was devised. The Pentium IIT was said to operate at a the-
oretical maximum rate of 750 MegaFlOPS. In fact, the actual Linpack benchmark rating for the Pentium
IIT came out to about 138 MegaFLOPS. Around the same time, a computer from the Cray corporation
produced a Linpack rating of 549 MegaFLOPS, indicating that it was a much stronger performance for large
numerical problems.

As computer performance continued to improve, it was necessary to name even higher levels of performance,
in steps of 1,000:

Rate % First

FLOPS

KiloFLOPS 1,000 | IBM 704

MegaFLOPS | 1,000,000 | CDC 6600, 1964

GigaFLOPS 10° | Cray-2, 1985

TeraFLOPS 10'2 | ASCI Red, Sandia Lab, 1996
PetaFLOPS 10*® | Roadrunner, Los Alamos Lab, 2008
ExaFLOPS 10'® | Frontier, Oak Ridge Lab, 2022

The IBM, CDC and Cray machines were general purpose computers created by private companies, and
widely sold as commodities. The higher performance machines were custom built for national laboratories,
requiring enormous computer rooms, special air conditioning facitlies, and massive power generators. The
FLOPS ratings for all these machines were generated by versions of the Linpack benchmark, and were
a source of great pride. Because of changes in scientific computing, especially parallel programming and
memory management, the new versions of the Linpack benchmark, although they still perform the same
task of solving a big linear system, are completely different in their software details.

5 The Linpack benchmark in Python

Although the original benchmark program was written in Fortran77, it is not hard to translate it into other
languages. It’s natural to make some adjustments for the new language, but it’s important that in the new

language, the numerical computations occur in the same order, to the same quantities. It might be possible
to make a better linear equation solver than Linpack, but we would prefer to begin by simply trying to do
the exact same thing in our preferred language.

Here is how the main portion of the code looks in Python:

A = 2.0 % np.random.random ([n, n |) — 1.0
x_exact = np.ones (n)
b = np.matmul (A, x_exact)
#
Factor the matriz.
#
t = perf_counter ()
ALU, ipvt, info = dgefa (A, n)
cpu = perf_counter () — t
#
Solve the linear system.
#
t perf_counter ()
X dgesl (ALU, n, ipvt, b)
cpu = cpu + perf_counter () —

t

As far as possible, the dgefa() and dgesl() functions repeat what the Fortran77 codes did. However,
for convenience and clarity in programming, the input quantities A and b were not overwritten by results.
Instead, separate output values ALU and x were used.

6 Solving the benchmark with scipy()

The scipy.linalg() library also has a general solver for linear systems, called sp.linalg.solve(). We
can set up the Linpack problem, solve it with scipy() and compare the timing with our results from
linpack_bench(). Since the problem, problem size, operating system, programming language, and computer
processor will all be the same, we should just be comparing the performance of the software that the two
programs are running.

Ignoring all the extra arguments that are available, the basic calling sequence is:

x = solve (A, b))

where x, A and b are all numpy arrays.
To do the timings, we can relay again on the perf_counter () function from the time library.

It is interesting to note that the documentation indicates that when the matrix A is in general form, solve ()
calls dgesv (), the appropriate linear solver routine from LAPACK. This indicates that here we are really,
in part, benchmarking not just a Python code, but an underlying compiled Fortran package.

def linalg_solve_bench (n):

from scipy.linalg import solve
from time import perf_counter
import numpy as np

A= 2.0 * np.random.random ([n, n]) — 1.0
x_exact = np.ones (n)
b = np.matmul (A, x_exact)

t perf_counter ()
x solve (A, b))
cpu = perf_counter () — t

r = np.

a_norm
r_norm
xX_norm

matmul (A, x) — b

= np.linalg.

np.linalg.norm (A, np.inf)
np.linalg .norm (r, np.inf)

norm (x, np.inf)

ops = (2 *n*mnsx*n) / 3.0+ 2.0 «n *n

mflops = ops / (

print (
print (
print (

return

)

)

)

Residual norm

1000000 * cpu

Time in seconds

MegaFLOPS

~—

= ’, r_norm)
=, cpu)
= ’, mflops)

7 Behavior over a range of matrix sizes

When we run the benchmark programs, we have to pick a value for n, the problem size. It is reasonable to
choose a value n that seems typical for scientific work; you might think of » = 100 or n = 1000. We should
expect, however, that the FLOPS rating will depend on this value somewhat, especially when we go to very
low or high values. In the low case, the work we do on solving the system is so small that other low-level
activities will make the performance rating inaccurate. At high values of n, we may run into issues that arise
when trying to access a huge array, since computer memory can only keep a small set of values nearby, and

has to work harder to retrieve data.

Here are some results for a variety of values of n:

n | Linpack MFLOPS | Scipy MFLOPS

10 3.0 3.7
20 3.6 62.1
30 5.6 180.0
40 7.6 332.0
50 9.7 635.8
100 18.3 405.4
200 33.1 4,546.2
300 69.7 120.9
400 101.9 284.4
500 123.2 550.0
750 183.0 1,811.0
1000 220.5 4,263.9
1500 247.9 13,810.0
2000 249.3 24,509.2

linpack_bench() performance

250

200 A

150 4

<-- MFlops -->

100 +

50 1

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
<--N->

The results for the Linpack version of the benchmark look reasonable: as the value of n increases, the
performance rate is improving, although it seems to be leveling off at about 250 MegaFLOPS.

linalg_solve_bench() performance

25000

20000

15000 4

10000 +

<-- MFlops >

5000 A

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
<--N->=

There is something strange going on in the Scipy results: performance improves until we reach n = 100, then
it drops down, only to soar back up. Suppose we believe these results are meaningful, and even at n = 2000,
the performance rate is still rising. It could suggest that inside of the Scipy function there is a switch which
uses one algorithm up to around n = 100, then another afterwards. We might assume the second algorithm
is only efficient for large problems, and so that’s why we see the “stutter” in the performance rate. The
mystery is how the algorithm has reached 24 GigaFLOPS, and is still rising. We will see that in some sense,
if we keep our simple model of computer execution, this result is impossible.

8 Can you beat the clock?

CPU Clock Speed

~N
I
=3
© "
3 10° s,
% . @ 5
% e © s
ge] . * 3
© 4o ° P .
s L]
e® .
10°
1980 1985 1990 1995 2000 2005 2010

Around 2010, computer chip clock speeds hit an upper limit that cannot be exceeded.

One way that computers were speeded up was simply to upgrade the internal hardware so that it could
run at a faster clockspeed. The exact same calculations would occur, perhaps one per clock tick, but the
clock tick faster and the hardware could keep up. Around the year 2010, this kind of improvement stopped
entirely. For basic physical laws, it was not possible to make the clock tick any faster.

The upper limit of clock speed, is about 4 GigaHertz. We have so far assumed that a computer could produce
(at most!) one floating point result per clock tick. And that means that the best performance possible for
any such computer was 4 GigaFlops, that is, 4 billion floating point results per second. But we have already
seen for our linalg solve_bench() results what seems to be a performance of 24 GigaFLOPS...and rising.
How is that possible?

Developers had already begun alternative ways to speed up calculations. In earlier models, some operations,
such as division by a floating point number, actually took several clock ticks (including essentially a quick
call to Newton’s method). By anticipating that a division might be necessary, new hardware could anticipate
some of the calculation, so that the result was ready in one tick.

The CPU was divided up into smaller calculating sections which could independently request memory values,
add, multiply, invert, and do other chores, to keep things moving.

Because many calculations involved the same operation repeated on many items of data, a kind of vector-
ization was developed which allowed for extra fast movement of the memory into pipelines that churned out
results one per tick.

Perhaps the most powerful approach involved parallelism, that is, the rearrangement of a calculation into
parallel strands which could be independently computed on separate processors, and brought together late
in the procedure. This could happen inside a single chip, across several cooperating chips in one machine,
or across many servers in a single massive cluster.

If you go into a scientific computing center these days, you will see what looks like stacks and stacks of
laptops, with wires and fans everywhere. At any time, some or all of these laptops are talking to each

other, working together on a single problem. These new computing monsters are the devices by which the
computing performance ratings are still rising into what is known as the “exascale”, such as the Frontier
computer at Oak Ridge.

The Frontier computer at Oak Ridge National Laboratory.

