#! /usr/bin/env python3 # def arenstorf_dydt ( t, xy ): #*****************************************************************************80 # ## arenstorf_dydt() evaluates the right hand side of the Arenstorf ODE. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 November 2024 # # Author: # # John Burkardt # import numpy as np global mu1, mu2 x = xy[0] y = xy[1] xp = xy[2] yp = xy[3] d1 = np.sqrt ( ( ( x + mu1 )**2 + y**2 )**3 ) d2 = np.sqrt ( ( ( x - mu2 )**2 + y**2 )**3 ) dxdt = xp dydt = yp dxpdt = x + 2.0 * yp - mu2 * ( x + mu1 ) / d1 - mu1 * ( x - mu2 ) / d2 dypdt = y - 2.0 * xp - mu2 * y / d1 - mu1 * y / d2 dxydt = np.array ( [ dxdt, dydt, dxpdt, dypdt ] ) return dxydt def arenstorf_solve_ivp ( ): #*****************************************************************************80 # ## arenstorf_solve_ivp() uses solve_ivp() to solve the Arenstorf ODE. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 November 2024 # # Author: # # John Burkardt # from scipy.integrate import solve_ivp import matplotlib.pyplot as plt import numpy as np global mu1, mu2 mu1 = 0.012277471 mu2 = 1.0 - mu1 tmin = 0.0 tmax = 17.0652165601579625588917206249 n = 71 tspan = np.array ( [ tmin, tmax ] ) t = np.linspace ( tmin, tmax, n ) y0 = np.array ( [ 0.994, 0.0, 0.0, -2.00158510637908252240537862224 ] ) sol = solve_ivp ( arenstorf_dydt, tspan, y0, t_eval = t ) # # Set the moon's location. # theta = np.linspace ( 0.0, 2.0 * np.pi, n ) moon_x = np.cos ( theta ) moon_y = np.sin ( theta ) # # Plot the orbit as a sequence of frames. # for i in range ( 0, n ): # # Plot earth. # plt.plot ( 0.0, 0.0, 'bo', markersize = 25 ) # # Plot moon. # plt.plot ( moon_x[0:i+1], moon_y[0:i+1], 'go', markersize = 15 ) # # Plot satellite. # plt.plot ( sol.y[0,0:i+1], sol.y[1,0:i+1], 'ro', markersize = 10 ) # # Finish the plot. # plt.grid ( True ) plt.axis ( 'Equal' ) plt.xlabel ( '<--- x --->' ) plt.ylabel ( '<--- y --->' ) plt.title ( 'Arenstorf orbit' ) filename = 'arenstorf_solve_ivp_phase.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( ) plt.close ( ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) arenstorf_solve_ivp ( ) timestamp ( )