
Python #12
Characters, Strings, Text

Location: https://people.sc.fsu.edu/∼jburkardt/classes/python 2022/python12/python12.pdf

Freely adapted from the Python lessons at https://software-carpentry.org/

Text

• String data is a standard Python data type;
• Strings are somewhat similar to an array of characters;
• The print() function has many useful options;
• A program can read and respond to interactive user input;

1 Strings

In Python, any text delimited by single or double quotes is a string. By text, we usually mean a sequence of
characters. And by character, we think of alphabetic letters, numbers, punctuation marks, blanks, symbols
and some more obscure items. Here are some examples of characters:

’A’

’7’

’&’

’"’

"’" a single quote has to be delimited by double quotes!

’\t’ a TAB

’\n’ a new line

’\r’ a carriage return

’\\’ a backslash

A string is a sequence of characters, and has the type <class ’str’>. A string is similar to (but not the
same as an array or list of characters. Thus, if we define a string s = ’A flock of seagulls’ then we
can examine any substring we like by the usual indexing:

’A flock of seagulls’

0123456789012345678

1

s[0:4] is ’A fl’

s[6:16:2] is ’ko_eg’

s[-1] is ’s’

2 Character ↔ Integer Conversion

The ASCII character set contains 256 characters, indexed from 0 to 255. The most common characters are
in the first half of the table, which is given below:

Python offers two functions, ord() and chr(), which can convert between the ASCII index of a single
character and the character itself. For example:

ord(’ ’) = 32 chr(32) = ’ ’

ord(’0’) = 48 chr(48) = ’0’

ord(’1’) = 49 chr(49) = ’1’

ord(’A’) = 65 chr(65) = ’A’

ord(’Z’) = 90 chr(90) = ’Z’

ord(’a’) = 97 chr(97) = ’a’

This is only a mapping between the ASCII indices and the ASCII characters. It will not convert the integer
1234 into the string ’1234’. For that, we will need to learn about the str() function, coming shortly.

As an example of using the ord() function, we can print the index value for each character in a string:

2

for c in ’Monty Python ’ :
print (’ ord (’ + c + ’) = ’ , ord (c))

end{ l s t l i s t i n g }

\ s e c t i o n {Concatenation }

We can make a new s t r i n g us ing the {\ bf{+}} operator to paste s e v e r a l s t r i n g s toge the r .
\begin { l s t l i s t i n g } [numbers=none]

rng = np . random . d e f au l t r n g ()
for i in range (0 , 6) :

day = rng . cho i c e ([’Monday ’ , ’Wednesday ’ , ’ Friday ’])
time = rng . cho i c e ([’ 10 :00am ’ , ’ noon ’ , ’ 2 :00pm ’ , ’ 4 :00pm ’])
appointment = time + ’ ’ + day
print (appointment)

3 Number to string

We often need to create a string that combines character and numeric data. This might be for a plot title, a
filename, a date or time. The str() function can do this conversion, and, in the case of real numbers, tries
to make an intelligent decision about how many digits to use.

Suppose we wished to stored data in a sequence of files, with titles like ’journal 1900.txt’, ’journal 1901.txt’
and so on. We can generate the years with a for loop, and then combine them with the character data, as
follows:

for date in range (1900 , 1906) :
s = ’ j o u r n a l ’ + str (date) + ’ . txt ’
print (’ ” ’ + s + ’ ” was publ i shed in ’ , date)

If, instead, we are generating plots of some iteration involving the real parameter theta, we may want to
generate a corresponding name for each plot. Again, we can use str():

for theta in [0 . 0 , 0 . 25 , 0 . 50 , 0 . 75 , 1 .00] :
s = ’ the ta ’ + str (theta) + ’ . jpg ’
print (’ ” ’ + s + ’ ” i s an image o f data f o r theta = ’ , theta)

Recall that in one of our earlier exercises, we had to deal with a set of files ranging from inflammation-01.csv
to inflammation-12.csv. Clearly, simply using str() will give us some wrong names. In particular, we will
generate the name inflammation-1.csv. And if, instead, we specify a leading ’0’ in the string, we will instead
generate some wrong file names like inflammation-012.csv.

What we want, in this case, is to tell str() to convert an integer to a string, but to make sure that that
string is 2 characters in width. If it would be less than that, then an initial ’0’ should be inserted to fill it
out. The somewhat cumbersome function str().zfill() will do that, if we specify the number to convert
as the first argument, and the width of the output string as the second argument:

for i in range (5 , 15) :
f i l ename = ’ inf lammation− ’ + str (i) . z f i l l (2) + ’ . csv ’
print (’ f i l e #’ , i , ’ i s ” ’ + f i l ename + ’ ” ’)

If we had used a second argument of 3, then our first filename would be inflammation-001.csv and our last
would be inflammation-012.csv. The important reason for doing this is that then an alphabetical list of the
files will correspond to their numerical order.

3

4 Upper case, lower case, title case

The alphabetic characters come in two flavors, uppercase and lowercase. Sometimes it is desirable to force
an alphabetic character or string to have a specific case. This can be done with the functions lower() and
upper. For example,

s1 = ’ My name i s Elmer ! ’
s2 = s1 . lower ()
s3 = s1 . upper ()
s4 = s1 . t i t l e ()

Here, the title() method capitalizes each word.

5 Removing or replacing blank characters

We might want to remove all initial and trailing blanks from a string. In that case, we use the .strip()

method. If we only want to remove blanks on the left (initial blanks) or right (final blanks) we use .lstrip()
or .rstrip() respectively.

s1 = ’ My name i s Elmer ! ’
s5 = s1 . s t r i p ()
s6 = s1 . r s t r i p ()
s7 = s1 . l s t r i p ()

We might want to remove all blanks from a string. In that case, the .replace() method can be called,
listing the string to be removed, and its replacement. In this case, we want to replace space, ’ ’, with an
empty character ”. The .replace() method is actually much more general, and can replace any given
character by another.

s1 = ’ My name i s Elmer ! ’
s8 = s1 . r ep l a c e (’ ’ , ’ ’)
s8 = s1 . r ep l a c e (’ ’ , ’ ’)
s10 = s1 . r ep l a c e (’ e ’ , ’Z ’)

6 How strings are not like arrays

In most ways, a string can be regarded as an array or list. In particular, we can use indexing to identify a
particular character or a consecutive sequence of characters in the string.
One of the common operations in a string is to directly modify an entry. For instance, we might have an
array like

prime = np . array ([2 , 3 , 5 , 7 , 11 , 15 , 17])

and realize that we made a mistake. To correct it, we write

prime [5] = 13

Similarly, we might have written

c i t y = ’ Pittzburgh ’

in which case we’d be tempted to try to correct this by

c i t y [4] = ’ s ’ # Warning ! This won ’ t work !

Such a statement will result in a warning from Python that strings are immutable. For our purposes, that
just means that to change a string, we have to create a new one

4

c i t y 2 = c i t y [0 : 4] + ’ s ’ + c i t y [5 :]

or simply redefine it correctly

c i t y = ’ Pit t sburgh ’

To add the state, however, we can simply concatenate:

c i t y = c i t y + ’ , Pennsylvania ’

which is legal because it does not use indexing to try to change the string.

7 Comparison

Alphabetical order means that we can say that one alphabetic character is less than, equal to, or greater
than another. (In fact, this is true for any characters, not just alphabetic ones.) This ordering depends on
the ASCII table, so if the ASCII index of character c1 is lower than that of character c2, then it is true that
c1 < c2. This means, in particular, that

’A ’ < ’B ’
’A ’ < ’ a ’
’B ’ < ’ a ’
’ 0 ’ < ’A ’
’& ’ < ’ 5 ’

Our primary interest in this fact is that, if we are given a set of characters or strings, we can use this
alphabetic ordering to sort them. Given a bunch of file names, we can place them in alphabetic order, by
comparing individual characters one by one.

From what we have said, we only know how to compare characters c1 and c2. Suppose we are given, instead,
two strings, possibly of different lengths. How do we determine if s1 < s2, or s1 == s2, or s1 > s2?
You should be able to write a short function that takes as input two strings and returns the result of this
comparison!

8 Printing a value with a label

The Python command print() can display information about almost any Python object. We are used to
printing variables, vectors, arrays, and strings, and seeing their values:

x = np . array ([[1 , 2] ; [3 , 4]])
print (x)

We can also print the value of an expression. Here we create a vector of values:

print ([x∗5 for x in range (0 , 4)])

or information about a built-in function

print (print)

However, we need to know a little more about the print() command in order to create neat, informative
reports. A common task is to print the value of something, along with a descriptive label. For instance, we
may wish to print out the square root of 10 along with a label. There are several ways to do this:

print (’The square root o f 10 =’ , np . s q r t (10))
print (’The square root o f 10 = %f ’ % (np . sq r t (10)))
print (’The square root o f 10 = %4.2 f ’ % (np . s q r t (10)))
s = ”The square root o f { value : d} i s { root : . 2 f } to two decimal p l a c e s . ”

5

print (s . format (va lue = 10 , root = np . sq r t (10)))
s = ”The square root o f 10 = ” + str (np . s q r t (10))
print (s)

9 Printing a table neatly

Suppose we want to print a table of the powers of the first 10 integers, something like this:

n n^2 n^3 n^4

1 1 1 1

2 4 8 16

3 9 27 81

...

10 100 1000 10000

Generating the data is no problem, but printing it in a neatly lined up format is harder. Let’s start with
this first try:

print (’n nˆ2 nˆ3 nˆ4 ’)
for n in range (1 , 11) :

print (n , n∗∗2 , n∗∗3 , n∗∗4)

The table does indeed get printed out, but instead of seeing neat columns we see ragged lists of values that
don’t line up. We know that column 1 needs at most 2 spaces, while columns 2, 3 and 4 need 3, 4, and
5 spaces at most. We can use the symbolic print statement in which the place of each numeric value is
indicated by a format string beginning with a percent sign, then an indicator of the number of places to be
used, followed by a d to indicate that these are integers. Remember that, in such a print out, the symbolic
string is followed by a percent sign, and then a list of values to be printed, enclosed in a separate set of
parentheses. Setting this up is a little more troublesome, but we get a table that is readable, rather than
ugly:

print (’ n nˆ2 nˆ3 nˆ4 ’)
for n in range (1 , 11) :

print (’%2d %3d %4d %5d ’ % (n , n∗∗2 , n∗∗3 , n∗∗4))

10 More about format strings

As we saw above, one way to control how a variable is printed is to use a format.

The simplest format for an integer is %d which simply indicates that an integer is to be printed. If the
corresponding value is real, then it will be rounded when printed.

Especially when you want data to appear in columns, you want each value to occupy a specify number of
spaces. The format %4d indicates that the corresponding integer value is to be printed using four spaces. If
the integer is less than 1000, then one or more blanks will be printed initially.

In some contexts, instead of leading blanks, you want leading 0’s. The format %03d, by starting with a ’0’,
indicates that integer values should occupy 3 spaces, and be padded with initial zeros, if necessary.

1 print (’ I have %d brothe r s and %d cat s ’ % (3 , 12))
2 print (’A c i r c l e o f r ad iu s 10 has area roughly %d ’ % (10 ∗ np . p i))
3 for i in range (1 , 5) :
4 print (’%d %2d %4d ’ % (i , i ∗∗2 , i ∗∗4))
5 for i in range (1 , 5) :
6 print (’%01d %02d %04d ’ % (i , i ∗∗2 , i ∗∗4))

6

Real or decimal numbers can be printed in exponential format, floating format or general format. Exponential
format is allowed to print the value in scientific notation; floating format prints all the whole digits of the
value, and may include some decimal values; the general format makes the better choice between exponential
format (for very large and small values) and floating format (for values not too small or large).

A real number format will involve the symbol ’e’, ’f’, or ’g’, possibly preceded by a value of the form s.d

where s is the total number of spaces to be used to print this number, and d is the number of spaces reserved
for the decimal part. If there is no s.d value, then the number is printed with default values. If d is omitted,
then a default number of decimals will be used.

Typical formats might be %12.4e, %16.2f, or %15g. Consider the results of the following:

print (’ The value o f p i i s ’ , np . p i)
print (’ The value o f p i i s %g ’ % (np . p i))
print (’ The value o f p i i s %5.3g ’ % (np . p i))
print (’ The value o f p i i s %5.3 f ’ % (np . p i))
print (’ The value o f 5ˆ10 i s %e ’ % (5∗∗4))
print (’ The value o f 5ˆ10 i s %f ’ % (5∗∗4))
print (’ The value o f 5ˆ10 i s %g ’ % (5∗∗4))

Strings have a very simple format symbol of s. If a specific number of spaces are to be allocated to the
string, then this value precedes the s. By default, the string will be printed so that it terminates at the
rightmost. If the string is shorter than the number of spaces, the remainder will be blank. If it is longer,
then the whole string will be printed, but will extend further than expected.

print (’ F i r s t Last name Age ’)
print (’ −−−−−−−− −−−−−−−−−− −−− ’)
print (’ %8s %10s %d ’ % (’ Viktor ’ , ’ Frankenste in ’ , 35))
print (’ %8s %10s %d ’ % (’Andy ’ , ’Warhola ’ , 45))
print (’ %8s %10s %d ’ % (’ Enge lbert ’ , ’ Humperdinck ’ , 55))

If you prefer strings to be “left justified”, that is, to start at the first space that is allocated, simply precede
the number of spaces by a minus sign:

print (’ F i r s t Last name Age ’)
print (’ −−−−−−−− −−−−−−−−−− −−− ’)
print (’ %−8s %−10s %d ’ % (’ Viktor ’ , ’ Frankenste in ’ , 35))
print (’ %−8s %−10s %d ’ % (’Andy ’ , ’Warhola ’ , 45))
print (’ %−8s %−10s %d ’ % (’ Enge lbert ’ , ’ Humperdinck ’ , 55))

It is often advisable to print a string with quotes, to delimit it from other text. This is especially useful
when a filename or plot title is displayed:

print (’ Graphics saved as ” ’ + f i l ename + ’ ” ’)

11 Combining several print statements on one line

Normally, the output of each print statement shows up on a new line. This is because each print statement
automatically includes a new line character at the end. Sometimes, you actually want several print statements
to appear on a single line. To do this, you can suppress the new line character with the argument end = ’’.
If three print statements should appear on one line, then the first two will need to suppress the new line,
but the last print statement should have the usual form:

print (’The square root o f 10 =’ , end = ’ ’)
print (’%4.2 f ’ % (np . sq r t (10)) , end = ’ ’)
print (’ to two decimal p l a c e s . ’)

7

12 Using tab and newline characters

There are several characters which don’t appear on your keyboard, but which can be useful in dealing with
text. Two of the most useful are

’\n’ newline shifts output to the next line

’\t’ tab shifts output to the next column

Using the newline character, it is possible for a single print statement to generate several lines of output:

print (’ Po lon ius : What do you read , my lo rd ?\nHamlet : Words , words , words ! ’)

If we include some tab characters, we can get the texts to line up:

print (’ Po lon ius : \tWhat do you read , my lo rd ?\nHamlet : \tWords , words , words ! ’)

Note that if you actually want to print strings like \n and \t, you have to use two backslashes (\\) to describe
them.

print (’ ’)
print (’ To a c tua l l y p r i n t s t r i n g s l i k e \\n and \\ t , use TWO backs l a she s (\\) . ’)

Similarly, to print a single quote in a string that is delimited by single quotes, precede it by a backslash:

print (’ ’)
print (’ That quote i s from Hamlet \ ’ s meeting with Polon ius . ’)

You can make simple tables using tab characters, but unless you know how to change the tab settings, you
may find that some long text stretches over multiple columns, and so makes the columns no longer line up:

print (’ ’)
print (’ Characters in Hamlet : ’)
print (’ Gertrude : \tThe queen \ t (poisoned) ’)
print (’ Horat io : \ tHamlet \ ’ s f r i e nd \ t (a l i v e at end) ’)
print (’ Ophel ia : \ tHamlet \ ’ s f i a n c e e \ t (drowned) ’)
print (’ Po lon ius : \tA c ou r t i e r \ t (stabbed) ’)

13 Interactive user input

An interactive Python function allows the user to specify certain quantities while it is running. These
quanties are usually simple numbers or ’Yes/No’ choices or string to be used for file names or titles. In order
for the user to know when to respond, the function usually first prints out a request for the data, called a
prompt, and the user then types a response.
For instance, when the user runs an interactive program to compute the body mass index (BMI), the process
might appear like this:

python3

>>> bmi

This program computes your body mass index.

Enter your height in inches: 70

Enter your weight in pounds: 145

Your BMI is 20.8

We have already seen a program to compute the BMI, but in that case, the height and weight came as inputs
to the function. Now, instead, we need to ask the user to supply this information. This is done with the
command input(prompt). The BMI program might look like this:

8

print (’ This program computes your body mass index . ’)
he ight = input (’ Enter your he ight in inche s : ’)
weight = input (’ Enter your weight in pounds : ’)
bmi = 703 ∗ weight / he ight ∗∗2
print (’Your BMI i s ’ , bmi)

14 A program challenge

The cartoon suggests a way to generate names for health foods by selecting one word from each column.
Thus, one new name would be COSMIC FARMS PATTIES.

Write a Python program that produces all the possible names suggested by this process. Your output should
be a table of 125 names. The three words in the name should be separated by blanks. It might be nice if
only the first letter of the first word was capitalized Cosmic farms patties.

You should be able to write a 4 line program that does this!

9

