
4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 1/15

 Overview

At this point, we’ve written code to draw some interesting features in our inflammation data, loop over all our data files to quickly draw
these plots for each of them, and have Python make decisions based on what it sees in our data. But, our code is getting pretty long and
complicated; what if we had thousands of datasets, and didn’t want to generate a figure for every single one? Commenting out the
figure-drawing code is a nuisance. Also, what if we want to use that code again, on a different dataset or at a different point in our
program? Cutting and pasting it is going to make our code get very long and very repetitive, very quickly. We’d like a way to package our
code so that it is easier to reuse, and Python provides for this by letting us define things called ‘functions’ — a shorthand way of re-
executing longer pieces of code. Let’s start by defining a function fahr_to_celsius that converts temperatures from Fahrenheit to
Celsius:

Python

def fahr_to_celsius(temp):
 return ((temp - 32) * (5/9))

def fahr_to_celsius(temp):

 return ((temp - 32) * (5/9))

def statement name parameter names

body

return statement return value

The function definition opens with the keyword def followed by the name of the function (fahr_to_celsius) and a parenthesized list
of parameter names (temp). The body (../reference.html#body) of the function — the statements that are executed when it runs — is
indented below the definition line. The body concludes with a return keyword followed by the return value.

(/python-
novice-
inflammation/07-
cond/index.html)

 Programming with Python (/python-novice-inflammation/)
(/pytho
novice
inflam
errors

Creating Functions

Teaching: 30 min
Exercises: 0 min
Questions

How can I define new functions?

What’s the difference between defining and calling a function?

What happens when I call a function?
Objectives

Define a function that takes parameters.

Return a value from a function.

Test and debug a function.

Set default values for function parameters.

Explain why we should divide programs into small, single-purpose functions.

https://swcarpentry.github.io/python-novice-inflammation/reference.html#body
https://swcarpentry.github.io/python-novice-inflammation/07-cond/index.html
https://swcarpentry.github.io/python-novice-inflammation/
https://swcarpentry.github.io/python-novice-inflammation/09-errors/index.html

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 2/15

When we call the function, the values we pass to it are assigned to those variables so that we can use them inside the function. Inside
the function, we use a return statement (../reference.html#return-statement) to send a result back to whoever asked for it.

Let’s try running our function.

Python

fahr_to_celsius(32)

This command should call our function, using “32” as the input and return the function value.

In fact, calling our own function is no different from calling any other function:

Python

print('freezing point of water:', fahr_to_celsius(32), 'C')
print('boiling point of water:', fahr_to_celsius(212), 'C')

Output

freezing point of water: 0.0 C
boiling point of water: 100.0 C

We’ve successfully called the function that we defined, and we have access to the value that we returned.

Composing Functions
Now that we’ve seen how to turn Fahrenheit into Celsius, we can also write the function to turn Celsius into Kelvin:

Python

def celsius_to_kelvin(temp_c):
 return temp_c + 273.15

print('freezing point of water in Kelvin:', celsius_to_kelvin(0.))

Output

freezing point of water in Kelvin: 273.15

What about converting Fahrenheit to Kelvin? We could write out the formula, but we don’t need to. Instead, we can compose
(../reference.html#compose) the two functions we have already created:

Python

def fahr_to_kelvin(temp_f):
 temp_c = fahr_to_celsius(temp_f)
 temp_k = celsius_to_kelvin(temp_c)
 return temp_k

print('boiling point of water in Kelvin:', fahr_to_kelvin(212.0))

Output

boiling point of water in Kelvin: 373.15

https://swcarpentry.github.io/python-novice-inflammation/reference.html#return-statement
https://swcarpentry.github.io/python-novice-inflammation/reference.html#compose

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 3/15

This is our first taste of how larger programs are built: we define basic operations, then combine them in ever-larger chunks to get the
effect we want. Real-life functions will usually be larger than the ones shown here — typically half a dozen to a few dozen lines — but
they shouldn’t ever be much longer than that, or the next person who reads it won’t be able to understand what’s going on.

Variable Scope
In composing our temperature conversion functions, we created variables inside of those functions, temp , temp_c , temp_f , and
temp_k . We refer to these variables as local variables (../reference.html#local-variable) because they no longer exist once the function

is done executing. If we try to access their values outside of the function, we will encounter an error:

Python

print('Again, temperature in Kelvin was:', temp_k)

Error

NameError Traceback (most recent call last)
<ipython-input-1-eed2471d229b> in <module>
----> 1 print('Again, temperature in Kelvin was:', temp_k)

NameError: name 'temp_k' is not defined

If you want to reuse the temperature in Kelvin after you have calculated it with fahr_to_kelvin , you can store the result of the function
call in a variable:

Python

temp_kelvin = fahr_to_kelvin(212.0)
print('temperature in Kelvin was:', temp_kelvin)

Output

temperature in Kelvin was: 373.15

The variable temp_kelvin , being defined outside any function, is said to be global (../reference.html#global-variable).

Inside a function, one can read the value of such global variables:

Python

def print_temperatures():
 print('temperature in Fahrenheit was:', temp_fahr)
 print('temperature in Kelvin was:', temp_kelvin)

temp_fahr = 212.0
temp_kelvin = fahr_to_kelvin(temp_fahr)

print_temperatures()

Output

temperature in Fahrenheit was: 212.0
temperature in Kelvin was: 373.15

https://swcarpentry.github.io/python-novice-inflammation/reference.html#local-variable
https://swcarpentry.github.io/python-novice-inflammation/reference.html#global-variable

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 4/15

Tidying up
Now that we know how to wrap bits of code up in functions, we can make our inflammation analysis easier to read and easier to reuse.
First, let’s make a visualize function that generates our plots:

Python

def visualize(filename):

 data = numpy.loadtxt(fname=filename, delimiter=',')

 fig = matplotlib.pyplot.figure(figsize=(10.0, 3.0))

 axes1 = fig.add_subplot(1, 3, 1)
 axes2 = fig.add_subplot(1, 3, 2)
 axes3 = fig.add_subplot(1, 3, 3)

 axes1.set_ylabel('average')
 axes1.plot(numpy.mean(data, axis=0))

 axes2.set_ylabel('max')
 axes2.plot(numpy.max(data, axis=0))

 axes3.set_ylabel('min')
 axes3.plot(numpy.min(data, axis=0))

 fig.tight_layout()
 matplotlib.pyplot.show()

and another function called detect_problems that checks for those systematics we noticed:

Python

def detect_problems(filename):

 data = numpy.loadtxt(fname=filename, delimiter=',')

 if numpy.max(data, axis=0)[0] == 0 and numpy.max(data, axis=0)[20] == 20:
 print('Suspicious looking maxima!')
 elif numpy.sum(numpy.min(data, axis=0)) == 0:
 print('Minima add up to zero!')
 else:
 print('Seems OK!')

Wait! Didn’t we forget to specify what both of these functions should return? Well, we didn’t. In Python, functions are not required to
include a return statement and can be used for the sole purpose of grouping together pieces of code that conceptually do one thing.
In such cases, function names usually describe what they do, e.g. visualize , detect_problems .

Notice that rather than jumbling this code together in one giant for loop, we can now read and reuse both ideas separately. We can
reproduce the previous analysis with a much simpler for loop:

Python

filenames = sorted(glob.glob('inflammation*.csv'))

for filename in filenames[:3]:
 print(filename)
 visualize(filename)
 detect_problems(filename)

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 5/15

By giving our functions human-readable names, we can more easily read and understand what is happening in the for loop. Even
better, if at some later date we want to use either of those pieces of code again, we can do so in a single line.

Testing and Documenting
Once we start putting things in functions so that we can re-use them, we need to start testing that those functions are working correctly.
To see how to do this, let’s write a function to offset a dataset so that it’s mean value shifts to a user-defined value:

Python

def offset_mean(data, target_mean_value):
 return (data - numpy.mean(data)) + target_mean_value

We could test this on our actual data, but since we don’t know what the values ought to be, it will be hard to tell if the result was correct.
Instead, let’s use NumPy to create a matrix of 0’s and then offset its values to have a mean value of 3:

Python

z = numpy.zeros((2,2))
print(offset_mean(z, 3))

Output

[[3. 3.]
 [3. 3.]]

That looks right, so let’s try offset_mean on our real data:

Python

data = numpy.loadtxt(fname='inflammation-01.csv', delimiter=',')
print(offset_mean(data, 0))

Output

[[-6.14875 -6.14875 -5.14875 ... -3.14875 -6.14875 -6.14875]
 [-6.14875 -5.14875 -4.14875 ... -5.14875 -6.14875 -5.14875]
 [-6.14875 -5.14875 -5.14875 ... -4.14875 -5.14875 -5.14875]
 ...
 [-6.14875 -5.14875 -5.14875 ... -5.14875 -5.14875 -5.14875]
 [-6.14875 -6.14875 -6.14875 ... -6.14875 -4.14875 -6.14875]
 [-6.14875 -6.14875 -5.14875 ... -5.14875 -5.14875 -6.14875]]

It’s hard to tell from the default output whether the result is correct, but there are a few tests that we can run to reassure us:

Python

print('original min, mean, and max are:', numpy.min(data), numpy.mean(data), numpy.max(data))
offset_data = offset_mean(data, 0)
print('min, mean, and max of offset data are:',
 numpy.min(offset_data),
 numpy.mean(offset_data),
 numpy.max(offset_data))

Output

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 6/15

original min, mean, and max are: 0.0 6.14875 20.0
min, mean, and and max of offset data are: -6.14875 2.84217094304e-16 13.85125

That seems almost right: the original mean was about 6.1, so the lower bound from zero is now about -6.1. The mean of the offset data
isn’t quite zero — we’ll explore why not in the challenges — but it’s pretty close. We can even go further and check that the standard
deviation hasn’t changed:

Python

print('std dev before and after:', numpy.std(data), numpy.std(offset_data))

Output

std dev before and after: 4.61383319712 4.61383319712

Those values look the same, but we probably wouldn’t notice if they were different in the sixth decimal place. Let’s do this instead:

Python

print('difference in standard deviations before and after:',
 numpy.std(data) - numpy.std(offset_data))

Output

difference in standard deviations before and after: -3.5527136788e-15

Again, the difference is very small. It’s still possible that our function is wrong, but it seems unlikely enough that we should probably get
back to doing our analysis. We have one more task first, though: we should write some documentation
(../reference.html#documentation) for our function to remind ourselves later what it’s for and how to use it.

The usual way to put documentation in software is to add comments (../reference.html#comment) like this:

Python

offset_mean(data, target_mean_value):
return a new array containing the original data with its mean offset to match the desired value.
def offset_mean(data, target_mean_value):
 return (data - numpy.mean(data)) + target_mean_value

There’s a better way, though. If the first thing in a function is a string that isn’t assigned to a variable, that string is attached to the
function as its documentation:

Python

def offset_mean(data, target_mean_value):
 """Return a new array containing the original data
 with its mean offset to match the desired value."""
 return (data - numpy.mean(data)) + target_mean_value

This is better because we can now ask Python’s built-in help system to show us the documentation for the function:

Python

help(offset_mean)

Output

https://swcarpentry.github.io/python-novice-inflammation/reference.html#documentation
https://swcarpentry.github.io/python-novice-inflammation/reference.html#comment

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 7/15

Help on function offset_mean in module __main__:

offset_mean(data, target_mean_value)
 Return a new array containing the original data with its mean offset to match the desired value.

A string like this is called a docstring (../reference.html#docstring). We don’t need to use triple quotes when we write one, but if we do,
we can break the string across multiple lines:

Python

def offset_mean(data, target_mean_value):
 """Return a new array containing the original data
 with its mean offset to match the desired value.

 Examples

 >>> offset_mean([1, 2, 3], 0)
 array([-1., 0., 1.])
 """
 return (data - numpy.mean(data)) + target_mean_value

help(offset_mean)

Output

Help on function offset_mean in module __main__:

offset_mean(data, target_mean_value)
 Return a new array containing the original data
 with its mean offset to match the desired value.

 Examples

 >>> offset_mean([1, 2, 3], 0)
 array([-1., 0., 1.])

Defining Defaults
We have passed parameters to functions in two ways: directly, as in type(data) , and by name, as in
numpy.loadtxt(fname='something.csv', delimiter=',') . In fact, we can pass the filename to loadtxt without the fname= :

Python

numpy.loadtxt('inflammation-01.csv', delimiter=',')

Output

array([[0., 0., 1., ..., 3., 0., 0.],
 [0., 1., 2., ..., 1., 0., 1.],
 [0., 1., 1., ..., 2., 1., 1.],
 ...,
 [0., 1., 1., ..., 1., 1., 1.],
 [0., 0., 0., ..., 0., 2., 0.],
 [0., 0., 1., ..., 1., 1., 0.]])

but we still need to say delimiter= :

https://swcarpentry.github.io/python-novice-inflammation/reference.html#docstring

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 8/15

Python

numpy.loadtxt('inflammation-01.csv', ',')

Error

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Users/username/anaconda3/lib/python3.6/site-packages/numpy/lib/npyio.py", line 1041, in loa
dtxt
 dtype = np.dtype(dtype)
 File "/Users/username/anaconda3/lib/python3.6/site-packages/numpy/core/_internal.py", line 199, in
_commastring
 newitem = (dtype, eval(repeats))
 File "<string>", line 1
 ,
 ^
SyntaxError: unexpected EOF while parsing

To understand what’s going on, and make our own functions easier to use, let’s re-define our offset_mean function like this:

Python

def offset_mean(data, target_mean_value=0.0):
 """Return a new array containing the original data
 with its mean offset to match the desired value, (0 by default).

 Examples

 >>> offset_mean([1, 2, 3])
 array([-1., 0., 1.])
 """
 return (data - numpy.mean(data)) + target_mean_value

The key change is that the second parameter is now written target_mean_value=0.0 instead of just target_mean_value . If we call
the function with two arguments, it works as it did before:

Python

test_data = numpy.zeros((2, 2))
print(offset_mean(test_data, 3))

Output

[[3. 3.]
 [3. 3.]]

But we can also now call it with just one parameter, in which case target_mean_value is automatically assigned the default value
(../reference.html#default-value) of 0.0:

Python

more_data = 5 + numpy.zeros((2, 2))
print('data before mean offset:')
print(more_data)
print('offset data:')
print(offset_mean(more_data))

Output

https://swcarpentry.github.io/python-novice-inflammation/reference.html#default-value

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 9/15

data before mean offset:
[[5. 5.]
 [5. 5.]]
offset data:
[[0. 0.]
 [0. 0.]]

This is handy: if we usually want a function to work one way, but occasionally need it to do something else, we can allow people to pass
a parameter when they need to but provide a default to make the normal case easier. The example below shows how Python matches
values to parameters:

Python

def display(a=1, b=2, c=3):
 print('a:', a, 'b:', b, 'c:', c)

print('no parameters:')
display()
print('one parameter:')
display(55)
print('two parameters:')
display(55, 66)

Output

no parameters:
a: 1 b: 2 c: 3
one parameter:
a: 55 b: 2 c: 3
two parameters:
a: 55 b: 66 c: 3

As this example shows, parameters are matched up from left to right, and any that haven’t been given a value explicitly get their default
value. We can override this behavior by naming the value as we pass it in:

Python

print('only setting the value of c')
display(c=77)

Output

only setting the value of c
a: 1 b: 2 c: 77

With that in hand, let’s look at the help for numpy.loadtxt :

Python

help(numpy.loadtxt)

Output

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 10/15

Help on function loadtxt in module numpy.lib.npyio:

loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, use
cols=None, unpack=False, ndmin=0, encoding='bytes')
 Load data from a text file.

 Each row in the text file must have the same number of values.

 Parameters

...

There’s a lot of information here, but the most important part is the first couple of lines:

Output

loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, use
cols=None, unpack=False, ndmin=0, encoding='bytes')

This tells us that loadtxt has one parameter called fname that doesn’t have a default value, and eight others that do. If we call the
function like this:

Python

numpy.loadtxt('inflammation-01.csv', ',')

then the filename is assigned to fname (which is what we want), but the delimiter string ',' is assigned to dtype rather than
delimiter , because dtype is the second parameter in the list. However ',' isn’t a known dtype so our code produced an error

message when we tried to run it. When we call loadtxt we don’t have to provide fname= for the filename because it’s the first item in
the list, but if we want the ',' to be assigned to the variable delimiter , we do have to provide delimiter= for the second
parameter since delimiter is not the second parameter in the list.

Readable functions
Consider these two functions:

Python

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 11/15

✏

def s(p):
 a = 0
 for v in p:
 a += v
 m = a / len(p)
 d = 0
 for v in p:
 d += (v - m) * (v - m)
 return numpy.sqrt(d / (len(p) - 1))

def std_dev(sample):
 sample_sum = 0
 for value in sample:
 sample_sum += value

 sample_mean = sample_sum / len(sample)

 sum_squared_devs = 0
 for value in sample:
 sum_squared_devs += (value - sample_mean) * (value - sample_mean)

 return numpy.sqrt(sum_squared_devs / (len(sample) - 1))

The functions s and std_dev are computationally equivalent (they both calculate the sample standard deviation), but to a human
reader, they look very different. You probably found std_dev much easier to read and understand than s .

As this example illustrates, both documentation and a programmer’s coding style combine to determine how easy it is for others to read
and understand the programmer’s code. Choosing meaningful variable names and using blank spaces to break the code into logical
“chunks” are helpful techniques for producing readable code. This is useful not only for sharing code with others, but also for the original
programmer. If you need to revisit code that you wrote months ago and haven’t thought about since then, you will appreciate the value of
readable code!

Combining Strings

“Adding” two strings produces their concatenation: 'a' + 'b' is 'ab' . Write a function called fence that takes two parameters
called original and wrapper and returns a new string that has the wrapper character at the beginning and end of the original. A
call to your function should look like this:

Python

print(fence('name', '*'))

Output

name

Solution

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 12/15

✏

✏

✏

Return versus print

Note that return and print are not interchangeable. print is a Python function that prints data to the screen. It enables us,
users, see the data. return statement, on the other hand, makes data visible to the program. Let’s have a look at the following
function:

Python

def add(a, b):
 print(a + b)

Question: What will we see if we execute the following commands?

Python

A = add(7, 3)
print(A)

Solution

Selecting Characters From Strings

If the variable s refers to a string, then s[0] is the string’s first character and s[-1] is its last. Write a function called outer
that returns a string made up of just the first and last characters of its input. A call to your function should look like this:

Python

print(outer('helium'))

Output

hm

Solution

Rescaling an Array

Write a function rescale that takes an array as input and returns a corresponding array of values scaled to lie in the range 0.0 to
1.0. (Hint: If L and H are the lowest and highest values in the original array, then the replacement for a value v should be
(v-L) / (H-L) .)

Solution

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 13/15

✏

✏

✏

Testing and Documenting Your Function

Run the commands help(numpy.arange) and help(numpy.linspace) to see how to use these functions to generate regularly-
spaced values, then use those values to test your rescale function. Once you’ve successfully tested your function, add a docstring
that explains what it does.

Solution

Defining Defaults

Rewrite the rescale function so that it scales data to lie between 0.0 and 1.0 by default, but will allow the caller to specify
lower and upper bounds if they want. Compare your implementation to your neighbor’s: do the two functions always behave the
same way?

Solution

Variables Inside and Outside Functions

What does the following piece of code display when run — and why?

Python

f = 0
k = 0

def f2k(f):
 k = ((f - 32) * (5.0 / 9.0)) + 273.15
 return k

print(f2k(8))
print(f2k(41))
print(f2k(32))

print(k)

Solution

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 14/15

✏

✏

Mixing Default and Non-Default Parameters

Given the following code:

Python

def numbers(one, two=2, three, four=4):
 n = str(one) + str(two) + str(three) + str(four)
 return n

print(numbers(1, three=3))

what do you expect will be printed? What is actually printed? What rule do you think Python is following?

1. 1234
2. one2three4
3. 1239
4. SyntaxError

Given that, what does the following piece of code display when run?

Python

def func(a, b=3, c=6):
 print('a: ', a, 'b: ', b, 'c:', c)

func(-1, 2)

1. a: b: 3 c: 6
2. a: -1 b: 3 c: 6
3. a: -1 b: 2 c: 6
4. a: b: -1 c: 2

Solution

Readable Code

Revise a function you wrote for one of the previous exercises to try to make the code more readable. Then, collaborate with one of
your neighbors to critique each other’s functions and discuss how your function implementations could be further improved to make
them more readable.

4/13/22, 10:09 AM Creating Functions – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html 15/15

 Key Points

Define a function using def function_name(parameter) .

The body of a function must be indented.

Call a function using function_name(value) .

Numbers are stored as integers or floating-point numbers.

Variables defined within a function can only be seen and used within the body of the function.

Variables created outside of any function are called global variables.

Within a function, we can access global variables.

Variables created within a function override global variables if their names match.

Use help(thing) to view help for something.

Put docstrings in functions to provide help for that function.

Specify default values for parameters when defining a function using name=value in the parameter list.

Parameters can be passed by matching based on name, by position, or by omitting them (in which case the default value is
used).

Put code whose parameters change frequently in a function, then call it with different parameter values to customize its behavior.

(/python-
novice-
inflammation/07-
cond/index.html)

(/pytho
novice
inflam
errors

Licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/) 2018–2022 by The Carpentries (https://carpentries.org/)
Licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/) 2016–2018 by Software Carpentry Foundation
(https://software-carpentry.org)

Edit on GitHub (https://github.com/swcarpentry/python-novice-inflammation/edit/gh-pages/_episodes/08-func.md) / Contributing
(https://github.com/swcarpentry/python-novice-inflammation/blob/gh-pages/CONTRIBUTING.md) / Source

(https://github.com/swcarpentry/python-novice-inflammation/) / Cite (https://github.com/swcarpentry/python-novice-
inflammation/blob/gh-pages/CITATION) / Contact (mailto:team@carpentries.org)

Using The Carpentries style (https://github.com/carpentries/styles/) version 9.5.3
(https://github.com/carpentries/styles/releases/tag/v9.5.3).

https://swcarpentry.github.io/python-novice-inflammation/07-cond/index.html
https://swcarpentry.github.io/python-novice-inflammation/09-errors/index.html
https://creativecommons.org/licenses/by/4.0/
https://carpentries.org/
https://creativecommons.org/licenses/by/4.0/
https://software-carpentry.org/
https://github.com/swcarpentry/python-novice-inflammation/edit/gh-pages/_episodes/08-func.md
https://github.com/swcarpentry/python-novice-inflammation/blob/gh-pages/CONTRIBUTING.md
https://github.com/swcarpentry/python-novice-inflammation/
https://github.com/swcarpentry/python-novice-inflammation/blob/gh-pages/CITATION
mailto:team@carpentries.org
https://github.com/carpentries/styles/
https://github.com/carpentries/styles/releases/tag/v9.5.3

