
Python #6
Processing data from multiple files

Location: https://people.sc.fsu.edu/∼jburkardt/classes/python 2022/python06/python06.pdf

Freely adapted from the Python lessons at https://software-carpentry.org/

Multiple File Processing

• Our medical study data is stored in several separate files;
• We want to compute statistics over all this data;
• We need to initialize some variables and then update them one file at a time;
• We will need to use a for() loop to get all the files;
• The for() loop will need a list of the file names;

1 How the medical data is stored

In a previous Python exercise, we wrote code to plot values of interest from a file containing medical data,
inflammation-01.csv. In fact, the researcher has supplied us with 12 such sets of data, and there may be
more on the way. To save work, we’d like to be able to process all the data with a single statement. In order
to do that, we need to learn about Python loops, which allow us to repeat a given action on multiple sets of
data.

2 Practice on one small file

Before we tackle the medical study, let’s consider a smaller problem. Although we want to work with multiple
files, we will start with a single data file involves m = 18 rows and n = 10 columns, stored in maxi.csv.

If you do not have a copy of this file, it can be downloaded from the class website. Another way to get it is
to go to

https://people.sc.fsu.edu/∼jburkardt/classes/python 2022/python 2022.html

then choose datasets, which will give you a menu that includes the file we are interested in.

Let’s recall, from our earlier work, how to read this file into a variable, and compute its statistics.

1

data = np . l oadtx t (fname = ’maxi . csv ’ , d e l im i t e r = ’ , ’)
maxval = np .max (data)
minval = np .min (data)
average = np .mean (data)
stdev = np . std (data)

Be sure to make a record of these statistical values for later comparison.

3 Merge little data arrays, compute statistics

Now in our medical study, we will soon be dealing with data spread across 12 files. To practice for this
case, let’s suppose that our data from the previous problem has been split among the 3 files mini1.csv,

mini2.csv, mini3.csv, each have m = 6 rows and n = 10 columns.

If you do not have a copy of these files, they can be downloaded from the class website. Another way to get
it is to go to

https://people.sc.fsu.edu/∼jburkardt/classes/python 2022/python 2022.html

then choose datasets, which will give you a menu that includes the file we are interested in.

Now we want to read the data from all three files and compute a set of statistics, as though the numbers
had been in a single file.

One fairly crude way is to create three arrays, data1, data2, data3 by reading each file, and then use the
appropriate numpy stack function to recreate the data array, after which we can easily compute our statistics.

data1 = np . l oadtx t (fname = ’ mini1 . csv ’ , d e l im i t e r = ’ , ’)
data2 = np . l oadtx t (fname = ’ mini2 . csv ’ , d e l im i t e r = ’ , ’)
data3 = np . l oadtx t (fname = ’ mini3 . csv ’ , d e l im i t e r = ’ , ’)
data = np . vstack ([data1 , data2 , data3])

Compute the statistics you get from this approach, and make sure they match the orginal results.

What’s wrong with this approach? It’s not very flexible, you have to have access to all the data files at the
same time. And, if the data arrays are large, then we are using up a lot of memory storing the data chunks
and the merged data as well. This is not an issue for our small examples, but in a real-life situation, it may
be unwise or even impossible to load all the data at once. We will try to work towards an approach that
avoids this issue.

4 Compute statistics on little arrays, then merge

So suppose that we are only allowed to have one mini-dataset at a time in the program, and we still want
to compute the maximum, mean, and minimum values of the full set of data. How would this be possible?
Let’s start with the maximum. We know how to compute the maximum of each dataset, and the maximum
of the whole dataset is simply the maximum of these three numbers. So isn’t that easy? Well yes, but there
are a couple of things we have to think about first:

• We are not allowed to create three variables, max1, max2, max3;
• We have to have a single variable, called maxval, which we update as we process the data.
• We have to initialize maxval before the loop begins, with a value that is so small that it is immediately

replaced by np.max(data1)

• While np.max() computes the maximum of a numpy array, we need to use plain old max() to compute
the maximum of two numbers.

2

Similar remarks apply for computing minval.

It might seem that average will be simpler to handle. However if average is the average of n things, and
mini average is the average of mini n things, then we need a way to update to the average of n + mini n

things.

If you think about the definition of the average of n things, you can see that it is the sum of n values, divided
by their number. If we multiply that average by n, we get back the original sum. Thus, if average1 is the
average of n1 things and average2 is the average of n2 things, then the average of n1 +n2 things is found by
recovering the two sums, adding them, and then dividing by the total number of things in the combination:

average12 =
n1 ∗ average1 + n2 ∗ average2

n1 + n2

So look closely at how this computation works. First we initialize the statistical quantities. Then we read
each mini dataset, compute the mini statistics, and update the full set of statistics. We never have the full
array data in the computer at one time. If we had to process a thousand, or a million files containing partial
data, we could do it this way too:

n = 0 # Star t out with no data
maxval = − np . i n f # I n i t i a l va lue i s sma l l e s t p o s s i b l e
minval = np . i n f # I n i t i a l va lue i s l a r g e s t p o s s i b l e
average = 0 .0

f i l e s = [’ mini1 . csv ’ , ’ mini2 . csv ’ , ’ mini3 . csv ’]

for f i l ename in f i l e s :
mini data = np . l oadtx t (fname = f i lename , d e l im i t e r = ’ , ’)
mini n = mini data . shape [0]
mini maxval = np .max (mini data)
mini minval = np .min (mini data)
min i average = np .mean (mini data)

#
Have to use ”max” , not ”np .max” , when computing maximum of two numbers . . .
#

maxval = max (maxval , mini maxval)
minval = min (minval , mini minval)

#
Here i s how we merge two average va lue s :
#

average = (n ∗ average + mini n ∗ mini average) / (n + mini n)
n = n + mini n

Verify that the statistical quantities come out to be the same as when we worked directly on the full dataset.

Chicken statement: For this example, we have stopped working with the standard deviation. That’s because,
while there is a formula to compute the standard deviation in pieces, it is much more complicated than we
would like to see. If you know the definition of the standard deviation, it is a worthwhile exercise to figure
out the standard deviation of a vector v = v1 + v2, given the size, average, and standard deviations of the
separate vectors v1 and v2. As yet another complication to be aware of, in the usual definition of the standard
deviation of n quantities, we divide by n − 1, not n, for technical reasons. This makes the update formula
ever so slightly more complicated! Rather than spend too much time on this side issue, I will chicken out!

5 Create filenames one at a time

Although we say that our previous code could handle data that is stored in any number of files, it does
require a way to access the name of each one of those files. When there are only three files, this is a simple

3

matter of typing in the names. But who wants to type in hundreds of filenames? We need to understand
that our solution really can extend to bigger problems, by figuring out a way past this bottleneck.

The key is that in a typical case like this, the many filenames are likely to have a simple pattern, in which
the name involves an index that increases by 1 each time. That means that we should think of our list of
three files in the previous example in the symbolic form filename = ’mini’ + index number + ’.csv’.
In fact, if we could just figure out how to fill in the index number in a way that lets us create the filename,
we will have a solution.

There is a handy Python function str() that turns a number into a string. If the number is an integer, then
this is almost equivalent to wrapping the value with quote marks, that is, for instance, 123 →′ 123′. So if
the variable i is set to 1, 2 or 3, then the corresponding formula filename = ’mini’ + str(i) + ’.csv’

will exactly create the desired file name, starting with ’mini1.csv’.

To make this happen, we need to modify our for statement so that it involves an index i which runs from 1
to 3 (careful! How exactly do we go from 1 to 3 with a for statement?), and then inside the loop immediately
uses i to create the filename.

Here’s what that part of the revised code would look like:

. . .
average = 0 .0

for i in range (1 , 4) :
f i l ename = ’ mini ’ + str (i) + ’ . csv ’
mini data = np . l oadtx t (fname = f i lename , d e l im i t e r = ’ , ’)
. . .

Can you revise the previous code to use this approach? Can you see why this new version could easily handle
hundreds of files if necessary?

6 Create filenames using glob

Assuming our set of files has a simple pattern, there is another way to get that list. Python has a library
called glob which can return all the filenames that match a given pattern. The pattern allows a description
in which special characters ? and * can be inserted to represent the pattern.

The question mark symbol must be replaced by exactly one (arbitrary) character in order for a match to be
declared. Thus ’file?.txt’ will match ’file0.txt’, ’filer.txt’, ’filem.txt’, but NOT ’file.txt’, ’file12.txt’.

The star symbol must be replaced by any number, including zero, of characters in order for a match to be
declared. Thusfile*.txt will match all the patterns above, but NOT ’tile0.txt’, ’file1.jpg’ or ’fille2.txt’.

In our example, the filenames follow either pattern ’mini?.csv or ’mini*.csv. The second pattern might be
safer, since it would allow matching names like ’mini12.csv’ if our set of data was later to be increased with
more files.

So, as an alternative to constructing each filename ourselves, we can generate the necessary list as follows:

import glob # need to import the l i b r a r y

f i l enames = glob . g lob (’ mini ∗ . csv ’)
f i l enames = sorted (f i l enames) # Optional . Sor t s the names in the l i s t .
print (’ g lob found the f o l l ow i n g f i l e s : ’)
print (f i l enames)

. . . # Usual i n i t i a l i z a t i o n o f the s t a t i s t i c a l v a r i a b l e s .

4

for f i l ename in f i l enames :
. . . # The proces s ing i s the same as be f o re .

7 Compute statistics of the full medical study data

Now we have all the tools we need in order to compute statistics for the medical study, which was split into
12 data files named ‘inflammation-01.csv’ through ‘inflammation-12.csv’.

If you do not have a copy of these files, they can be downloaded from the class website. Another way to get
it is to go to

https://people.sc.fsu.edu/∼jburkardt/classes/python 2022/python 2022.html

then choose datasets, which will give you a menu that includes the file we are interested in.

A new problem arises because the files 1 though 9 use indices 01 through 09. The way we wrote the code to
convert the loop index into a character string was

f i l ename = ’ inf lammation− ’ + str (i) + ’ . csv ’

but this will incorrectly generate the file name ‘inflammation-1.csv’ when we need to generate ‘inflammation-
01.csv’. As long as we are aware that all the numeric indices use two digits, so that small indices must be
padded with zero, we can easily fix our problem by

f i l ename = ’ inf lammation− ’ + str (i) . z f i l l (2) + ’ . csv ’

If we had hundreds of filenames to generate, starting with ‘inflammation-001.csv’, what would we do?

Instead of generating the filenames ourselves, we could ask glob to generate them from the pattern of either
‘inflammation-??.csv’ or ‘inflammation-*.csv’.

f i l enames = glob . g lob (’ inf lammation −∗. csv ’)

Once we have managed to generate the list of filenames, our program should be easy to construct. The actual
reading of each file, computation of statistics for each partial dataset, and combination of the statistics for
the full data, will be the same as for our small example.

8 Plot max, mean, min for each medical dataset

Now, instead of computing statistics for the data, we’d like to generate a plot, for each dataset, of the
maximum, mean, and minimum values over all the patients in that dataset. After we plot the data for file
‘inflammation-01.csv’ we want to save the plot in the file ‘inflammation-01.png’, and so on for each of our
12 files. Here is an outline of what you must do:

For each o f the 12 va lues o f i
Generate the data f i l enames us ing str (i) . z f i l l (2)
read the data
compute the max, mean , and min vec t o r s over a l l rows (ax i s = 0)
p l o t the max, mean , and min vector s , combined in a s i n g l e p l o t
generate the p l o t f i l enames us ing str (i) . z f i l l (2)
save the p l o t f i l e us ing p l t . s a v e f i g (f i l ename)

If you compare the plots, you may see some data is very different from others, and some data is ... extremely
the same. This suggests that the data for this experiment is fake.

5

