
4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 1/10

 Overview

In the previous episode, we analyzed a single file of clinical trial inflammation data. However, after finding some peculiar and potentially
suspicious trends in the trial data we ask Dr. Maverick if they have performed any other clinical trials. Surprisingly, they say that they
have and provide us with 11 more CSV files for a further 11 clinical trials they have undertaken since the initial trial.

Our goal now is to process all the inflammation data we have, which means that we still have eleven more files to go!

The natural first step is to collect the names of all the files that we have to process. In Python, a list is a way to store multiple values
together. In this episode, we will learn how to store multiple values in a list as well as how to work with lists.

Python lists
Unlike NumPy arrays, lists are built into the language so we do not have to load a library to use them. We create a list by putting values
inside square brackets and separating the values with commas:

Python

odds = [1, 3, 5, 7]
print('odds are:', odds)

Output

odds are: [1, 3, 5, 7]

We can access elements of a list using indices – numbered positions of elements in the list. These positions are numbered starting at
0, so the first element has an index of 0.

(/python-
novice-
inflammation/03-
matplotlib/index.html)

 Programming with Python (/python-novice-inflammation/)
(/pytho
novice
inflam
loop/in

Storing Multiple Values in Lists

Teaching: 30 min
Exercises: 15 min
Questions

How can I store many values together?
Objectives

Explain what a list is.

Create and index lists of simple values.

Change the values of individual elements

Append values to an existing list

Reorder and slice list elements

Create and manipulate nested lists

https://swcarpentry.github.io/python-novice-inflammation/03-matplotlib/index.html
https://swcarpentry.github.io/python-novice-inflammation/
https://swcarpentry.github.io/python-novice-inflammation/05-loop/index.html

4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 2/10

Python

print('first element:', odds[0])
print('last element:', odds[3])
print('"-1" element:', odds[-1])

Output

first element: 1
last element: 7
"-1" element: 7

Yes, we can use negative numbers as indices in Python. When we do so, the index -1 gives us the last element in the list, -2 the
second to last, and so on. Because of this, odds[3] and odds[-1] point to the same element here.

There is one important difference between lists and strings: we can change the values in a list, but we cannot change individual
characters in a string. For example:

Python

names = ['Curie', 'Darwing', 'Turing'] # typo in Darwin's name
print('names is originally:', names)
names[1] = 'Darwin' # correct the name
print('final value of names:', names)

Output

names is originally: ['Curie', 'Darwing', 'Turing']
final value of names: ['Curie', 'Darwin', 'Turing']

works, but:

Python

name = 'Darwin'
name[0] = 'd'

Error

TypeError Traceback (most recent call last)
<ipython-input-8-220df48aeb2e> in <module>()
 1 name = 'Darwin'
----> 2 name[0] = 'd'

TypeError: 'str' object does not support item assignment

does not.

4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 3/10

 Ch-Ch-Ch-Ch-Changes

Data which can be modified in place is called mutable (../reference.html#mutable), while data which cannot be modified is called
immutable (../reference.html#immutable). Strings and numbers are immutable. This does not mean that variables with string or
number values are constants, but when we want to change the value of a string or number variable, we can only replace the old
value with a completely new value.

Lists and arrays, on the other hand, are mutable: we can modify them after they have been created. We can change individual
elements, append new elements, or reorder the whole list. For some operations, like sorting, we can choose whether to use a
function that modifies the data in-place or a function that returns a modified copy and leaves the original unchanged.

Be careful when modifying data in-place. If two variables refer to the same list, and you modify the list value, it will change for both
variables!

Python

salsa = ['peppers', 'onions', 'cilantro', 'tomatoes']
my_salsa = salsa # <-- my_salsa and salsa point to the *same* list data in memory
salsa[0] = 'hot peppers'
print('Ingredients in my salsa:', my_salsa)

Output

Ingredients in my salsa: ['hot peppers', 'onions', 'cilantro', 'tomatoes']

If you want variables with mutable values to be independent, you must make a copy of the value when you assign it.

Python

salsa = ['peppers', 'onions', 'cilantro', 'tomatoes']
my_salsa = list(salsa) # <-- makes a *copy* of the list
salsa[0] = 'hot peppers'
print('Ingredients in my salsa:', my_salsa)

Output

Ingredients in my salsa: ['peppers', 'onions', 'cilantro', 'tomatoes']

Because of pitfalls like this, code which modifies data in place can be more difficult to understand. However, it is often far more
efficient to modify a large data structure in place than to create a modified copy for every small change. You should consider both of
these aspects when writing your code.

https://swcarpentry.github.io/python-novice-inflammation/reference.html#mutable
https://swcarpentry.github.io/python-novice-inflammation/reference.html#immutable

4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 4/10

 Nested Lists

Since a list can contain any Python variables, it can even contain other lists.

For example, we could represent the products in the shelves of a small grocery shop:

Python

x = [['pepper', 'zucchini', 'onion'],
 ['cabbage', 'lettuce', 'garlic'],
 ['apple', 'pear', 'banana']]

Here is a visual example of how indexing a list of lists x works:

(https://twitter.com/hadleywickham/status/643381054758363136)

Using the previously declared list x , these would be the results of the index operations shown in the image:

Python

print([x[0]])

Output

[['pepper', 'zucchini', 'onion']]

Python

print(x[0])

Output

['pepper', 'zucchini', 'onion']

Python

https://twitter.com/hadleywickham/status/643381054758363136

4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 5/10

print(x[0][0])

Output

'pepper'

Thanks to Hadley Wickham (https://twitter.com/hadleywickham/status/643381054758363136) for the image above.

Heterogeneous Lists

Lists in Python can contain elements of different types. Example:

Python

sample_ages = [10, 12.5, 'Unknown']

There are many ways to change the contents of lists besides assigning new values to individual elements:

Python

odds.append(11)
print('odds after adding a value:', odds)

Output

odds after adding a value: [1, 3, 5, 7, 11]

Python

removed_element = odds.pop(0)
print('odds after removing the first element:', odds)
print('removed_element:', removed_element)

Output

odds after removing the first element: [3, 5, 7, 11]
removed_element: 1

Python

odds.reverse()
print('odds after reversing:', odds)

Output

odds after reversing: [11, 7, 5, 3]

While modifying in place, it is useful to remember that Python treats lists in a slightly counter-intuitive way.

As we saw earlier, when we modified the salsa list item in-place, if we make a list, (attempt to) copy it and then modify this list, we
can cause all sorts of trouble. This also applies to modifying the list using the above functions:

Python

https://twitter.com/hadleywickham/status/643381054758363136

4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 6/10

odds = [1, 3, 5, 7]
primes = odds
primes.append(2)
print('primes:', primes)
print('odds:', odds)

Output

primes: [1, 3, 5, 7, 2]
odds: [1, 3, 5, 7, 2]

This is because Python stores a list in memory, and then can use multiple names to refer to the same list. If all we want to do is copy a
(simple) list, we can again use the list function, so we do not modify a list we did not mean to:

Python

odds = [1, 3, 5, 7]
primes = list(odds)
primes.append(2)
print('primes:', primes)
print('odds:', odds)

Output

primes: [1, 3, 5, 7, 2]
odds: [1, 3, 5, 7]

Subsets of lists and strings can be accessed by specifying ranges of values in brackets, similar to how we accessed ranges of
positions in a NumPy array. This is commonly referred to as “slicing” the list/string.

Python

binomial_name = 'Drosophila melanogaster'
group = binomial_name[0:10]
print('group:', group)

species = binomial_name[11:23]
print('species:', species)

chromosomes = ['X', 'Y', '2', '3', '4']
autosomes = chromosomes[2:5]
print('autosomes:', autosomes)

last = chromosomes[-1]
print('last:', last)

Output

group: Drosophila
species: melanogaster
autosomes: ['2', '3', '4']
last: 4

4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 7/10

✏

Slicing From the End

Use slicing to access only the last four characters of a string or entries of a list.

Python

string_for_slicing = 'Observation date: 02-Feb-2013'
list_for_slicing = [['fluorine', 'F'],
 ['chlorine', 'Cl'],
 ['bromine', 'Br'],
 ['iodine', 'I'],
 ['astatine', 'At']]

Output

'2013'
[['chlorine', 'Cl'], ['bromine', 'Br'], ['iodine', 'I'], ['astatine', 'At']]

Would your solution work regardless of whether you knew beforehand the length of the string or list (e.g. if you wanted to apply the
solution to a set of lists of different lengths)? If not, try to change your approach to make it more robust.

Hint: Remember that indices can be negative as well as positive

Solution

4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 8/10

✏

Non-Continuous Slices

So far we’ve seen how to use slicing to take single blocks of successive entries from a sequence. But what if we want to take a
subset of entries that aren’t next to each other in the sequence?

You can achieve this by providing a third argument to the range within the brackets, called the step size. The example below shows
how you can take every third entry in a list:

Python

primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
subset = primes[0:12:3]
print('subset', subset)

Output

subset [2, 7, 17, 29]

Notice that the slice taken begins with the first entry in the range, followed by entries taken at equally-spaced intervals (the steps)
thereafter. If you wanted to begin the subset with the third entry, you would need to specify that as the starting point of the sliced
range:

Python

primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
subset = primes[2:12:3]
print('subset', subset)

Output

subset [5, 13, 23, 37]

Use the step size argument to create a new string that contains only every other character in the string “In an octopus’s garden in
the shade”. Start with creating a variable to hold the string:

Python

beatles = "In an octopus's garden in the shade"

What slice of beatles will produce the following output (i.e., the first character, third character, and every other character through
the end of the string)?

Output

I notpssgre ntesae

Solution

If you want to take a slice from the beginning of a sequence, you can omit the first index in the range:

Python

4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 9/10

✏

date = 'Monday 4 January 2016'
day = date[0:6]
print('Using 0 to begin range:', day)
day = date[:6]
print('Omitting beginning index:', day)

Output

Using 0 to begin range: Monday
Omitting beginning index: Monday

And similarly, you can omit the ending index in the range to take a slice to the very end of the sequence:

Python

months = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec']
sond = months[8:12]
print('With known last position:', sond)
sond = months[8:len(months)]
print('Using len() to get last entry:', sond)
sond = months[8:]
print('Omitting ending index:', sond)

Output

With known last position: ['sep', 'oct', 'nov', 'dec']
Using len() to get last entry: ['sep', 'oct', 'nov', 'dec']
Omitting ending index: ['sep', 'oct', 'nov', 'dec']

Overloading

+ usually means addition, but when used on strings or lists, it means “concatenate”. Given that, what do you think the
multiplication operator * does on lists? In particular, what will be the output of the following code?

Python

counts = [2, 4, 6, 8, 10]
repeats = counts * 2
print(repeats)

1. [2, 4, 6, 8, 10, 2, 4, 6, 8, 10]
2. [4, 8, 12, 16, 20]
3. [[2, 4, 6, 8, 10],[2, 4, 6, 8, 10]]
4. [2, 4, 6, 8, 10, 4, 8, 12, 16, 20]

The technical term for this is operator overloading: a single operator, like + or * , can do different things depending on what it’s
applied to.

Solution

4/13/22, 10:07 AM Storing Multiple Values in Lists – Programming with Python

https://swcarpentry.github.io/python-novice-inflammation/04-lists/index.html 10/10

 Key Points

[value1, value2, value3, ...] creates a list.

Lists can contain any Python object, including lists (i.e., list of lists).

Lists are indexed and sliced with square brackets (e.g., list[0] and list[2:9]), in the same way as strings and arrays.

Lists are mutable (i.e., their values can be changed in place).

Strings are immutable (i.e., the characters in them cannot be changed).

(/python-
novice-
inflammation/03-
matplotlib/index.html)

(/pytho
novice
inflam
loop/in

Licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/) 2018–2022 by The Carpentries (https://carpentries.org/)
Licensed under CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/) 2016–2018 by Software Carpentry Foundation
(https://software-carpentry.org)

Edit on GitHub (https://github.com/swcarpentry/python-novice-inflammation/edit/gh-pages/_episodes/04-lists.md) / Contributing
(https://github.com/swcarpentry/python-novice-inflammation/blob/gh-pages/CONTRIBUTING.md) / Source

(https://github.com/swcarpentry/python-novice-inflammation/) / Cite (https://github.com/swcarpentry/python-novice-
inflammation/blob/gh-pages/CITATION) / Contact (mailto:team@carpentries.org)

Using The Carpentries style (https://github.com/carpentries/styles/) version 9.5.3
(https://github.com/carpentries/styles/releases/tag/v9.5.3).

https://swcarpentry.github.io/python-novice-inflammation/03-matplotlib/index.html
https://swcarpentry.github.io/python-novice-inflammation/05-loop/index.html
https://creativecommons.org/licenses/by/4.0/
https://carpentries.org/
https://creativecommons.org/licenses/by/4.0/
https://software-carpentry.org/
https://github.com/swcarpentry/python-novice-inflammation/edit/gh-pages/_episodes/04-lists.md
https://github.com/swcarpentry/python-novice-inflammation/blob/gh-pages/CONTRIBUTING.md
https://github.com/swcarpentry/python-novice-inflammation/
https://github.com/swcarpentry/python-novice-inflammation/blob/gh-pages/CITATION
mailto:team@carpentries.org
https://github.com/carpentries/styles/
https://github.com/carpentries/styles/releases/tag/v9.5.3

