python02(): Exercises for python02 lab. numpy.sqrt ( 20.0 ) = 4.47213595499958 Data read from file: [[0. 0. 1. ... 3. 0. 0.] [0. 1. 2. ... 1. 0. 1.] [0. 1. 1. ... 2. 1. 1.] ... [0. 1. 1. ... 1. 1. 1.] [0. 0. 0. ... 0. 2. 0.] [0. 0. 1. ... 1. 1. 0.]] type(data) = data.dtype = float64 data.shape = (60, 40) First entry is 0.0 Middle entry is 10.0 Last entry is 0.0 data[0,0] = 0.0 x = data[0,0] - 2.0 * data[0,1] + data[0,2] = 1.0 data[0,0] = 1.0 [ 0. 0. 0. 1. 2. 1. 4. 3. 6. 7. 4. 2. 12. 6. 12. 4. 14. 7. 8. 14. 13. 19. 6. 9. 12. 6. 4. 13. 6. 7. 2. 3. 6. 5. 4. 2. 3. 0. 1. 0.] [ 7. 7. 12. 15. 9. 3. 3. 10. 14. 7. 14. 5. 7. 4. 4. 11. 13. 6. 4. 9. 12. 12. 9. 14. 15. 11. 12. 5. 7. 13. 7. 8. 5. 15. 4. 3. 6. 4. 5. 10. 12. 12. 3. 9. 12. 7. 11. 7. 8. 4. 4. 6. 7. 12. 12. 9. 14. 10. 9. 11.] [[2. 3. 0. 0.] [1. 1. 0. 1.] [2. 2. 1. 1.]] Statistics for entire table: maximum = 20.0 minimum = 0.0 average = 6.14875 stdev = 4.613833197118566 Statistics for row i = 17 maximum = 19.0 minimum = 0.0 average = 5.7 stdev = 4.696807426326951 Statistics for row j = 25 maximum = 15.0 minimum = 3.0 average = 8.666666666666666 stdev = 3.6086316273931622 meanrows = np.mean ( data, axis = 1 ) meanrows = [5.45 5.425 6.1 5.9 5.55 6.225 5.975 6.65 6.625 6.525 6.775 5.8 6.225 5.75 5.225 6.3 6.55 5.7 5.85 6.55 5.775 5.825 6.175 6.1 5.8 6.425 6.05 6.025 6.175 6.55 6.175 6.35 6.725 6.125 7.075 5.725 5.925 6.15 6.075 5.75 5.975 5.725 6.3 5.9 6.75 5.925 7.225 6.15 5.95 6.275 5.7 6.1 6.825 5.975 6.725 5.7 6.25 6.4 7.05 5.9 ] meanrows.shape = (60,) meanrows[25] = 6.425 maxcols = np.max ( data, axis = 0 ) maxcols = [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 19. 18. 17. 16. 15. 14. 13. 12. 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. 1.] maxcols.shape = (40,) maxcols[17] = 17.0 s1 = breakfast s1[0] = b s1[0:0] = s1[0:2] = br s1 = breakfast s2 = lunch s2[1:] = unch s1[:2] + s2[1:] = brunch s1[5:-1] = fas s[ -3 : -1 ] = al s[ -3 : -1 ] = aa s[ -3 : -1 ] = m s = buffalo s[3:3] = data[3:3,4:4].shape = (0, 0) data[3:3,;].shape = (0, 40) rowvec = [0 1 2] table = [[ 0 1 2] [10 11 12] [20 21 22]] colvec = [[ 0] [10] [20]] A = [[1 2 3] [4 5 6] [7 8 9]] np.hstack( [A,A] ) = [[1 2 3 1 2 3] [4 5 6 4 5 6] [7 8 9 7 8 9]] np.vstack( [A,A] ) = [[1 2 3] [4 5 6] [7 8 9] [1 2 3] [4 5 6] [7 8 9]] sample = [ 4. 2. 12. 6. 12.] np.diff ( sample ) = [-2. 10. -6. 6.] np.diff(data) = [[ 0. 1. 2. ... 1. -3. 0.] [ 1. 1. -1. ... 0. -1. 1.] [ 1. 0. 2. ... 0. -1. 0.] ... [ 1. 0. 0. ... -1. 0. 0.] [ 0. 0. 1. ... -2. 2. -2.] [ 0. 1. -1. ... -2. 0. -1.]]