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Preface

“It is the mark of an educated mind to rest satis-
fied with the degree of precision that the nature of the
subject permits and not to seek exactness when only
an approximation is possible.”

- Aristotle (384 BCE)

This book presents numerical linear algebra for students from
a diverse audience of senior level undergraduates and beginning
graduate students in mathematics, science and engineering. Typi-
cal courses it serves include:

A one term, senior level class on Numerical Linear Al-
gebra. Typically, some students in the class will be good pro-
grammers but have never taken a theoretical linear algebra course;
some may have had many courses in theoretical linear algebra but
cannot find the on/off switch on a computer; some have been using
methods of numerical linear algebra for a while but have never seen
any of its background and want to understand why methods fail
sometimes and work sometimes.

Part of a graduate “gateway” course on numerical meth-
ods. This course gives an overview in two terms of useful methods
in computational mathematics and includes a computer lab teach-
ing programming and visualization connected to the methods.
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vi PREFACE

Part of a one term course on the theory of iterative
methods. This class is normally taken by students in mathemat-
ics who want to study numerical analysis further or to see deeper
aspects of multivariable advanced calculus, linear algebra and ma-
trix theory as they meet applications.

This wide but highly motivated audience presents an interesting
challenge. In response, the material is developed as follows: Every
topic in numerical linear algebra can be presented algorithmically
and theoretically and both views of it are important. The early
sections of each chapter present the background material needed
for that chapter, an essential step since backgrounds are diverse.
Next methods are developed algorithmically with examples. Con-
vergence theory is developed and the parts of the proofs that pro-
vide immediate insight into why a method works or how it might
fail are given in detail. A few longer and more technically intricate
proofs are either referenced or postponed to a later section of the
chapter.

Our first and central idea about learning is “to begin with the
end in mind”. In this book the end is to provide a modern under-
standing of useful tools. The choice of topics is thus made based
on utility rather than beauty or completeness. The theory of al-
gorithms that have proven to be robust and reliable receives less
coverage than ones for which knowing something about the method
can make a difference between solving a problem and not solving
one. Thus, iterative methods are treated in more detail than direct
methods for both linear systems and eigenvalue problems. Among
iterative methods, the beautiful theory of SOR is abbreviated be-
cause conjugate gradient methods are a (currently at least) method
of choice for solving sparse SPD linear systems. Algorithms are
given in pseudocode based on the widely used MATLAB language.
The pseudocode transparently presents algorithmic steps and, at
the same time, serves as a framework for computer implementation
of the algorithm.

The material in this book is constantly evolving. Welcome!



Introduction

There is no such thing as the Scientific Revolution,
and this is a book about it.

- Steven Shapin, The Scientific Revolution.

This book presents numerical linear algebra. The presentation
is intended for the first exposure to the subject for students from
mathematics, computer science, engineering. Numerical linear al-
gebra studies several problems:

Linear Systems: Ax = b : Solve the N ×N linear system.

Eigenvalue Problems: Aφ = λφ : Find all the eigenvalues
and eigenvectors or a selected subset.

Ill-posed problems and least squares: Find a unique useful
solution (that is as accurate as possible given the data errors) of
a linear system that is undetermined, overdetermined or nearly
singular with noisy data.

We focus on the first, treat the second lightly and omit the
third. This choice reflects the order the algorithms and theory are
built, not the importance of the three. Broadly, there are two types
of subproblems: small to medium scale and large scale. “large” in
large scale problems can be defined as follows: a problem is large if
memory management and turnaround time are central challenges.
Thus, a problem is not large if one can simply call a canned lin-
ear algebra routine and solve the problem reliably within time and

vii



viii INTRODUCTION

resource constraints with no special expertise. Small to medium
scale problems can also be very challenging when the systems are
very sensitive to data and roundoff errors and data errors are sig-
nificant. The latter is typical when the coefficients and RHS come
from experimental data, which always come with noise. It also oc-
curs when the coefficients depend on physical constants which may
be known to only one significant digit.

The origin of numerical linear algebra lies in a 1947 paper of
von Neumann and Goldstine [VNG47]. Its table of contents, given
below, is quite modern in all respects except for the omission of
iterative methods:
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Sources of Arithmetical Error

Errors using inadequate data are much less than those
using no data at all.

– Babbage, Charles (1792-1871)
On two occasions I have been asked [by members of Par-
liament], ’Pray, Mr. Babbage, if you put into the ma-
chine wrong figures, will the right answers come out?’ I
am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

- Babbage, Charles (1792-1871)

Numerical linear algebra is strongly influenced by the experi-
ence of solving a linear system by Gaussian elimination and getting
an answer that is absurd. One early description was in von Neu-
mann and Goldstine [VNG47]. They gave 4 sources of errors of
types A,B,C,D and a model for computer arithmetic that could be
used to track the sources and propagation of roundoff error, the
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Table 1: Common precisions for real numbers.

Common name Bits Decimal digits Max exponent
Single precision 32 ' 8 38
Double precision 64 ' 16 308

Quadruple precision 128 ' 34 4931

error of type D. In order to understand this type of error, it is
necessary to have some understanding of how numbers are repre-
sented in computers and the fact that computer arithmetic is only
a close approximation to exact arithmetic. Integers, for example,
are typically represented in a computer in binary form, with a finite
number of binary digits (bits), most commonly 32 or 64 bits, with
one bit reserved for the sign of the integer. Exceeding the maxi-
mum number of digits can result in anomalies such as the sum of
two large positive integers being a negative integer.

Real numbers are typically stored in computers in essentially
scientific notation, base 2. As with integers, real numbers are lim-
ited in precision by the necessity of storing them with a limited
number of bits. Typical precisions are listed in Table 1. In For-
tran, single precision numbers are called “real,” double precision
numbers are called “double precision,” and quadruple and other
precisions are specified without special names. In C and related
languages, single precision numbers are called “float,” double preci-
sion numbers are called “double,” and quadruple precision numbers
are called “long double.” In Matlab, numbers are double precision
by default; other precisions are also available when required.

Machine epsilon. The finite precision of computer numbers
means that almost all computer operations with numbers introduce
additional numerical errors. For example, there are numbers that
are so small that adding them to the number 1.0 will not change
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its value! The largest of these is often called “machine epsilon”
and satisfies the property that

1 + ε = 1

in computer arithmetic1. This error and other consequences of
the finite length of computer numbers are called “roundoff errors.”
Generation and propagation of these roundoff errors contains some
unpleasant surprises. Everyone who writes computer programs
should be aware of the possibilities of roundoff errors as well as
other numerical errors.

Common sources of numerical errors. The following five
types of error are among the most common sources of numerical
errors in computer programs.

1. Input errors.
One of the most common source of errors in input errors.
Typically, you are faced with a program written using dou-
ble precision numbers but, no matter how hard you try to
increase accuracy, only 2 significant digits of accuracy come
out. In this case, one likely culprit is an error early in the
program where the various constants are defined.

Example 1 Somewhere you might find a statement like:

pi = 3.1416
pi = 22.0/7.0

WRONG!

To preserve the program’s accuracy π must be input to the
full sixteen digit accuracy2 of a double precision number.

pi = 3.1415926535897932
1The precise definition of machine epsilon varies slightly among sources.

Some include a factor of 2 so machine epsilon represents the smallest number
that changes 1 when added to it instead of the largest which doesn’t change
the value of 1.

2In C, numbers are assumed to be double precision, but in Fortran, numbers
must have their precision specified in order to be sure of their precision.
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A sneaky way around this is:

pi = 4.0 ∗ atan(1.0)

2. Mixed mode arithmetic

It is generally true that computer arithmetic between two
integers will yield an integer, computer arithmetic between
single precision numbers will yield a single precision number,
etc. This convention gives rise to the surprising result that
5/2=2 in computer integer arithmetic! It also introduces the
question of how to interpret an expression containing two or
more different types of numbers (called “mixed-mode” arith-
metic).

Example 2 Suppose that the variable X is a single preci-
sion variable and the variable Y is a double precision vari-
able. Forming the sum (X + Y) requires first a “promotion”
of X temporarily to a double precision value and then adding
this value to Y. The promotion does not really add precision
because the additional decimal places are arbitrary. For ex-
ample, the single precision value 3.1415927 might be pro-
moted to the double precision value 3.1415927000000000.
Care must be taken when writing programs using mixed mode
arithmetic.

Another error can arise when performing integer arithmetic
and, especially, when mixing integer and real arithmetic. The
following Fortran example program seems to be intended to
print the value 0.5, but it will print the value 0.0 instead.
Analogous programs written in C, C++ and Java would be-
have in the same way. An analogous Matlab program will
print the value 0.5.



xvi INTRODUCTION

As an example of mixed mode arithmetic, consider this For-
tran program.

Example 3

integer j,k

real x

j=1

k=2

x=j/k

print *,x

end

This program will first perform the quotient 1/2, which is
chopped to zero because integer division results in an integer.
Then it will set x=0, so it will print the value 0.0 even though
the programmer probably expected it to print the value 0.5.

A good way to cause this example program to print the
value 0.5 would be to replace the line x=j/k with the line
x=real(j)/real(k) to convert the integers to single preci-
sion values before performing the division. Analogous pro-
grams written in C, C++ and Java can be modified in an
analogous way.

3. Subtracting nearly equal numbers
This is a frequent cause of roundoff error since subtraction
causes a loss of significant digits. This source arises in many
applications, such as numerical differentiation.

Example 4 For example, in a 4-digit mantissa base 10 com-
puter, suppose we do

1.234× 101 − 1.233× 101 = 1.000× 10−3.



SOURCES OF ARITHMETICAL ERROR xvii

We go from four significant digits to one. Suppose that the
first term is replaced with 1.235×101, a difference of approx-
imately 0.1%. This gives

1.235× 101 − 1.233× 101 = 2.000× 10−3.

Thus, a 0.1% error in 1.234 × 101 can become a 100% error
in the answer!

4. Adding a large number to a small one
This causes the effect of the small number to be completely
lost. This can have profound effects when summing a series
of applying a method like the trapezoid rule to evaluate an
integral numerically.

Example 5 For example, suppose that in our 4-digit com-
puter we perform

X = .1234 ∗ 103 + .1200 ∗ 10−2

This is done by making the exponents alike and adding the
mantissas:

.1234 ∗ 103

\ CHOP to 4 digits

+ .0000/01200 ∗ 103

\ OR ROUND to 4 digits

= 0 .1234 ∗ 103.

Thus the effect of the small addend is lost on the calculated
value of the sum.
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5. Dividing by a small number

This has the effect of magnifying errors: a small percent error
can become a large percent error when divided by a small
number.

Example 6 Suppose we compute, using four significant dig-
its, the following:

x = A−B/C,

where

A = 0.1102× 109,

B = 0.1000× 106,

C = 0.9000× 10−3.

We obtain B/C = .1111× 109 and x = 0.9000× 106.

Suppose instead that there is a 0.01% error in calculating C,
namely

C = 0.9001× 10−3.

Then we calculated instead

B/C = 0.1110× 109 so x = 0.1000× 107.

Thus we have an 11% error in the result!

Testing before division. When writing a computer pro-
gram, in cases where a denominator value can possibly be
unrealistically smaller than the numerator, it should be tested
before doing the division. For example, by choosing a tiny
value appropriate to the quotient at hand, possibly a small
multiple of machine epsilon, and testing in the following man-
ner:
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tiny=10 * machine epsilon
if |denominator | < tiny * |numerator |
error(’Division by zero.’)

else

x=numerator/denominator
end

Measuring Errors: The trademarked quantities

Mathematics is not a careful march down a well-
cleared highway, but a journey into a strange wilder-
ness, where the explorers often get lost. Rigor should
be a signal to the historian that the maps have been
made, and the real explorers have gone elsewhere.

– Anglin, W.S. in: “Mathematics and History”, Math-
ematical Intelligencer, v. 4, no. 4.

Since every arithmetic operation induces roundoff error it is
useful to come to grips with it on a quantitative basis. Suppose
a quantity is calculated by some approximate process. The re-
sult, xcomputed, is seldom the exact or true result, xtrue. Thus, we
measure errors by the following convenient standards. These are
“trademarked” terms.

Definition 7 Let || · || denote a norm. Then

−→e = the error :=
→
x TRUE −

→
x COMPUTED,

eABSOLUTE = ‖→x TRUE −
→
x COMPUTED‖,

eRELATIVE = ‖→x TRUE −
→
x COMPUTED‖/‖

→
x TRUE‖,

ePERCENT =
→
e RELATIVE ∗ 100.

We generally have:
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• Error: essential but unknowable. Indeed, if we know the
error and the approximate value, adding then gives the true
value. If the true value were knowable, then we wouldn’t be
approximating to start with. If x is a vector with 100,000
components then the error has 100,000 numbers and is also
thus beyond understanding in most cases.

• Absolute error: This replaces many numbers with one num-
ber: the magnitude of the error vector. If the absolute error
is reduced from 1.0 to .001, then we know for sure that the
approximation is improved. This is why we mostly look at
error magnitudes and not errors.

• Relative error: An absolute error of 0.2 might be very bad
or very good depending on how big the true solution is. The
relative error calibrates the error against the true solution.
If the relative error is 10−5 then the approximation has 5
significant digits of accuracy.

• Percent error: This gives another way to think of relative
errors for those comfortable with percentages.

Of course, we seldom know the true solution so it is useful to
get a “ballpark”estimate of error sizes. Here are some universally
standard ways to estimate roundoff errors:

1. (Experimental roundoff errors test) repeat the calcula-
tion in higher precision. The digit where the two results differ
represents the place where roundoff error has influenced the
lower precision calculation. This also gives an estimate of how
many digits are lost in the lower precision calculation. From
that one estimates how many are lost in higher precision and
thus how many to believe are correct.

2. (Estimating model errors in the arithmetic model)
Solve the problem at hand twice-once with a given model and
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second with a more “refined” or accurate arithmetic model.
the difference between the two can be taken as a ballpark
measure for the error in the less accurate discrete model.

3. (Interval Arithmetic for estimating roundoff and other
errors) As a calculation proceeds, we track not only the
arithmetic result but also a “confidence interval” is predicted
via a worse case type of calculation at every step. Unfortu-
nately, for long calculations, interval arithmetic often gives
a worst case confidence interval so wide that it is not very
useful.

4. (Significant Digit Arithmetic) Similarly to Interval Arith-
metic, the number of significant digits is tracked through each
computation.

5. (Backward error analysis for studying sensitivity of
problem to roundoff error) For many types of computa-
tions, it has been shown rigorously that “the solution com-
puted using finite precision is precisely the exact solution in
exact arithmetic to a perturbation of the original problem”.
Thus the sensitivity of a calculation to roundoff error can
be examined by studying the sensitivity of the continuous
problem to perturbations in its data.

Exercise 8 What are the 5 main causes of serious roundoff error?
Give an example of each.

Exercise 9 Consider approximating the derivative f ′(a) by

f ′(a) ≈ [f(a+ h)− f(a)]/h,

for h small. How can this introduce serious roundoff error?





Linear systems and finite
precision arithmetic

“Can you do addition?” the White Queen asked.
“What’s one and one and one and one and one and one
and one and one and one and one?” “I don’t know,”
said Alice. “I lost count.”

- Lewis Carroll, Through the Looking Glass.

Vectors and Matrices

So as they eddied past on the whirling tides,
I raised my voice:”O souls that wearily rove,
Come to us, speak to us-if it be not denied.
Dante Alighieri, L’Inferno, Canto V c. 1300,
(translation of Dorothy L. Sayers).

A vector is an ordered collection of n real numbers, an n-tuple:

→
x = (x1, x2, . . . , xn)t =

 x1

...
xn

 .
xxiii
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Vectors are often denoted by an over arrow, by being written in
bold or (most commonly herein) understood from the context in
which the vector is used. A matrix is a rectangular array of real
numbers

Am×n =

 a11 a12 . . . a1n

...
...

. . .
...

am1 am2 . . . amn


The transpose of a matrix, denoted At is an n×m matrix with
the rows and columns of A interchanged

(At)n×m =


a11 . . . am1

a12 . . . am1

...
. . .

...
a1n . . . amn


In other words, if a matrix Am×n = (aij) i=1,...,m

j=1,...,n
then its transpose

(At)m×n = (aji) j=1,...,n

i=1,...,m
. For example,

[
1 2 3
4 5 6

]t
=

 1 4
2 6
3 6

 .
Vector operations of scalar multiplication and vector addition

are defined so that vector addition is equivalent to forming the
resultant of the two (force) vectors by the parallelogram rule. Thus,
if the vectors x, y represent forces, the sum x+ y is defined so that
x + y is the resultant force of x and y. Conveniently, it means
componentwise addition.

Definition 10 If α ∈ R and
→
x,
→
y are vectors

α
→
x = (αx1, αx2, . . . , αxn)t,
→
x +

→
y = (x1 + y1, x2 + y2, . . . , xn + yn)t.
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Vector addition and scalar multiplication share many of the
usual properties of addition and multiplication of real numbers.
One of the most important vector operations is the dot product or
the scalar product of two vectors.

Definition 11 Given vectors
→
x,
→
y , the dot product or scalar prod-

uct is the real number

→
x ·→y

or

〈→x,→y 〉
or

(
→
x,
→
y )

 := x1y1 + x2y2 + . . .+ xnyn

and the usual (euclidean) length of the vector x is

||x||2 =
√
→
x ·→x =

√
x2

1 + x2
2 + . . .+ x2

n.

With the definition of matrix multiplication (below) the dot
product can also be written x·y = xty. Recall that the dot product
is related to the angle3 θ between two vectors by the formula

cos θ =
〈x, y〉
||x||2||y||2

Actually, this formula shows that as long as any two quantities of
the three (θ, the dot product 〈·, ·〉 and the length || · ||2) are defined
the third is completely determined by the formula. Thus, existence
of a dot product is equivalent to being able to define angles between
vectors.

If a linear system is to be equivalent to writing Matrix A times
vector x = vector b, then there is only one consistent way to define

3The same formula is also interpreted as the correlation between x and y,
depending on intended application.
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the matrix-vector product. Matrix vector products are row × col-
umn. This means that the ith component of Ax is equal to (row i
of A ) dot product (the vector x). Matrix matrix multiplication is
a direct extension of matrix-vector multiplication.

Definition 12 If Am×n is a matrix and xn×1 is an n-vector, the
product Ax is an m-vector given by

(Ax)i :=

n∑
j=1

aijxj .

If y is an m×1 vector we can multiply ytA to obtain the trans-
pose of an n-vector given by

(
ytA

)
j

=

n∑
i=1

aijyi.

Matrix multiplication is possible for matrices of compatible
sizes. Thus we can multiply AB if the number of columns of A
equals the number of rows of B:

Am×nBn×p = Cm×p

and, in this case,

(AB)ij :=

n∑
`=1

Ai`B`j , i = 1, . . . ,m, j = 1, . . . , p.

In words this is:

The i,j entry in AB is the dot product: (The ith row vector in A)
· (the jth column vector in B).
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For example, a pair of linear systems can be combined into a
single system.

AN×Nx = b

⇔ a11 a12 . . . a1n

...
...

. . .
...

an1 an2 . . . ann


 x1

...
xn

 =

 b1
...
bn


and

AN×Ny = c

⇔ a11 a12 . . . a1n

...
...

. . .
...

an1 an2 . . . ann


 y1

...
yn

 =

 c1
...
cn


can be combined into the single, block system a11 a12 . . . a1n

...
...

. . .
...

an1 an2 . . . ann


 x1 y1

...
...

xn yn

 =

 b1 c1
...

...
bn cn


Often this is written as

AX = B where X := [x|y]n×2, B = [b|c]n×2.

In sharp contrast with multiplication of real numbers, multipli-
cation of a pair of N ×N matrices is generally not commutative!

Exercise 13

a. Pick two 2 × 2 matrices A,B by filling in the digits of your
phone number. Do the resulting matrices commute? Test if
the matrices commute with their own transposes.
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b. [a more advanced exercise] Do a literature search for con-
ditions under which two N × N matrices commute. If the
entries in the matrices are chosen at random, what is the
probability they commute? This can be calculated for the 2×2
case directly.

Exercise 14 Let x(t), y(t) be N vectors that depend smoothly on
t. g(t) := x(t) · y(t) is a differentiable function : R→ R. By using
the definition of derivative and dot product prove the versions of
the product rule of differentiation

g′(t) = x′(t) · y(t) + x(t) · y′(t).

Exercise 15 Pick two (nonzero) 3-vectors and calculate xty and
xyt. Notice that the first is a number while the second is a 3 × 3
matrix. Show that the dimension of the range of that matrix is,
aside from special cases where the range is just the zero vector, 1.

Exercise 16 Find two 2 × 2 matrices A and B so that AB = 0
but neither A = 0 nor B = 0.

Exercise 17 Let x(t), y(t) be N vectors that depend smoothly on
t. For A an N × N matrix g(t) := x(t)tAy(t) is a differentiable
function : R → R. Prove the following version of the product rule
of differentiation

g′(t) = x′(t)tAy(t) + x(t)tAy′(t).

Eigenvalues and singular values

“. . . treat Nature by the sphere, the cylinder and the
cone . . . ”

- Cézanne, Paul (1839 - 1906)
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One of the three fundamental problems of numerical linear alge-
bra is to find information about the eigenvalues of an N×N matrix
A. There are various cases depending on the structure of A (large
and sparse vs. small and dense, symmetric vs. non-symmetric)
and the information sought (the largest or dominant eigenvalue,
the smallest eigenvalue vs. all the eigenvalues).

Definition 18 (eigenvalue and eigenvector) Let A be an N ×
N matrix. The complex number λ is an eigenvalue of A if there

is at least one nonzero, possibly complex, vector
−→
φ 6= 0 with

A
−→
φ = λ

−→
φ .

−→
φ is an eigenvector associated with the eigenvalue λ. The eigenspace
of λ is the set of all linear combinations of eigenvectors of that λ.

Calculating λ, φ by hand (for small matrices typically) is a three
step process which is simple in theory but seldom practicable.

Finding λ,
−→
φ for an N ×N real matrix A by hand:

• Step 1: Calculate exactly the characteristic polynomial of
A. p(λ) := det(A−λI) is a polynomial of degree N with real
coefficients.

• Step 2: Find the N (counting multiplicities) real or complex
roots of p(λ) = 0. These are the eigenvalues

λ1, λ2, λ3, · · ·, λN

• Step 3: For each eigenvalue λi, use Gaussian elimination to
find a non-zero solution of

[A− λiI]
−→
φ i = 0, i = 1, 2, · · ·, N
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Example 19 Find the eigenvalues and eigenvectors of the 2 × 2
matrix

A =

[
1 1
4 1

]
.

We calculate the degree 2 polynomial

p2(λ) = det(A− λI) = det

[
1− λ 1

4 1− λ

]
= (1− λ)2 − 4.

Solving p2(λ) = 0 gives

p2(λ) = 0

⇔
(1− λ)2 − 4 = 0

⇔
λ1 = 3, λ2 = −1.

The eigenvector
−→
φ 1 of λ1 = 3 is found by solving

(A− λI)

[
x
y

]
=

[
0
0

]
⇔[

−2 1
4 −2

] [
x
y

]
=

[
0
0

]
.

Solving gives

y = t, −2x+ y = 0, or

x =
1

2
t, for any t ∈ R.
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Thus, (x, y)t = ( 1
2 t, t)

t for any t 6= 0 is an eigenvector. For exam-
ple, t = 2 gives

eigenvalue: λ1 = +3,

eigenvector:
−→
φ 1 =

[
1
2

]
eigenspace: {t

[
1
2
1

]
: −∞ < t <∞}.

Similarly, we solve for
−→
φ 2

(A− λI)

[
x
y

]
=

[
2 1
4 2

] [
x
y

]
=

[
0
0

]
.

or (x, y)t = (− 1
2 t, t)

t. Picking t = 2 gives

eigenvalue: λ2 = −1,

eigenvector:
−→
φ 2 =

[
−1
2

]
eigenspace: {t

[
−1
2

]
: −∞ < t <∞}..

It is sometimes true that there are not N independent eigen-
vectors.

Example 20 Find the eigenvalues and eigenvectors of the 2 × 2
matrix4

A =

[
2 1
0 2

]
.

The characteristic polynomial is given by

p(λ) = (2− λ)2

4This matrix is easily recognized as a Jordan block.
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and there is a single root λ = 2 of multiplicity 2. To find one

eigenvector
−→
φ 1, solve the system

(A− λI)

[
x
y

]
=

[
0 1
0 0

] [
x
y

]
=

[
0
0

]
All solutions of this system of equations satisfy x = 0 with y arbi-
trary. Hence an eigenvector is given by

−→
φ 1 =

[
0
1

]
.

A second eigenvector,
−→
φ 2, would satisfy the same system, so there

is no linearly independent second eigenvector!

Example 21 Let

A =

[
0 1
−1 0

]
.

We calculate as above and find

det[A− λI] = λ2 + 1 = 0

λ1 = i, λ2 = −i.

The eigenvector of λ = +i is calculated by Gaussian elimination to
be

λ = +i, φ = (−i, 1)T .

Exercise 22 Find the eigenvector of λ = −i.

Exercise 23 Find the eigenvalues λ(ε) of

A =

[
+ε 1
−1 −ε

]
.



EIGENVALUES AND SINGULAR VALUES xxxiii

Properties of eigenvalues

Eigenvalues and eigenvectors are mathematically interesting and
important because they give geometric facts about the matrix A.
Two of these facts are given in the following theorem.

Theorem 24 (i) Let A be an N ×N matrix. If x is any vector in
the eigenspace of the eigenvalue λ then Ax is just multiplication of
x by λ: Ax = λx.

(ii) A is invertible if and only of no eigenvalue of A is zero.

It is much harder to connect properties of eigenvalues to values
of specific entries in A. In particular, the eigenvalues of A are
complicated nonlinear functions of the entries in A. Thus, the
eigenvalues of A + B can have no general correlation with those
of A and B. In particular, eigenvalues are not additive: generally
λ(A+B) 6= λ(A) + λ(B).

Another geometric fact is given in the following exercise.

Exercise 25 Given two commuting matrices A and B, so that
AB = BA, show that if x is an eigenvector of A then it is also
an eigenvector of B, but with a possibly different eigenvalue.

Proposition 26 (Eigenvalues of triangular matrices) If A is
diagonal, upper triangular or lower triangular, then the eigenvalues
are on the diagonal of A.
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Proof. Let A be upper triangular. Then, using ∗ to denote a
generic non-zero entry,

det [A− λI] = det


a11 − λ ∗ ∗ ∗

0 a22 − λ ∗ ∗

0 0
. . . ∗

0 0 0 ann − λ

 =

expand down column 1 and repeat

= (a11 − λ)(a22 − λ) · . . . · (ann − λ) = pn(λ).

The roots of pn are obviously aii.
When the matrix A is symmetric, its eigenvalues and eigenvec-

tors have special, and very useful, properties.

Proposition 27 (Eigenvalues of symmetric matrices) If A is
symmetric (and real) (A = At), then:

(i) all the eigenvalues and eigenvectors are real,

(ii) there exists N orthonormal5 eigenvectors
−→
φ 1, . . . ,

−→
φ N of

A:

〈
−→
φ i,
−→
φ j〉 =

{
1, if i = j,
0, if i 6= j.

(iii) if C is the N × N matrix with eigenvector
−→
φ j in the jth

column then

C−1 = Ct and C−1AC =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λN

 .
5“Orthonormal” means that the vectors are orthogonal (mutually perpen-

dicular so their dot products give zero) and normal (their lengths are normal-
ized to be one).
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In the case that A is not symmetric, the eigenvalues and eigen-
vectors might not be real. In addition, there might be fewer than
N eigenvectors.

Example 28 The matrix A below has eigenvalues given by λ1 =
+i and λ2 = −i:

A =

[
0 1
−1 0

]
.

For some calculations, the so called singular values of a matrix
are of greater importance than its eigenvalues.

Definition 29 (Singular Values) The singular values of a real
N ×N matrix A are

√
λ(AtA).

The square root causes no problem in to the definition of sin-
gular values. The matrix AtA is symmetric so its eigenvalues are
real. Further, they are also nonnegative since AtAφ = λφ, both
λ, φ are real and thus

〈AtAφ, φ〉 = λ〈φ, φ〉 so

λ = 〈AtAφ,φ〉
〈φ,φ〉 = 〈Aφ,Aφ〉

〈φ,φ〉 =
|Aφ|22
|φ|22

≥ 0.

Exercise 30 Prove that6

det


a11 ∗ ∗ ∗
0 a22 ∗ ∗

0 0
. . . ∗

0 0 0 ann

 = a11 · a22 · . . . · ann.

6Here “∗” denotes a generic non-zero real number. This is a common way
to represent the non-zero entries in a matrix in cases where eiither their exact
value does not affect the result or where the non-zero pattern is the key issue.
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Exercise 31 Pick two (nonzero) 3−vectors and calculate the 3×3
matrix xyt. Find its eigenvalues. You should get 0,0, and some-
thing nonzero.

Exercise 32 Let

A =

[
1 t
−t 1

]
.

Find its eigenvalues and eigenvectors explicitly as a function of t.
Determine if they are differentiable functions of t.

Error and residual

“The errors of definitions multiply themselves ac-
cording as the reckoning proceeds; and lead men into
absurdities, which at last they see but cannot avoid,
without reckoning anew from the beginning.”

- Hobbes, Thomas, In J. R. Newman (ed.), The
World of Mathematics, New York: Simon and Schuster,
1956.

Numerical linear algebra is concerned with solving the eigen-

value problem A
−→
φ = λ

−→
φ (considered in Chapter 7) and solving

the linear system Ax = b (which we begin considering now). Com-
puter solutions for these problems are always wrong because we
cannot solve either exactly to infinite precision. For the linear sys-
tem we thus produce an approximation, x̂, to the exact solution,
x = A−1b. We are concerned, then, with “how wrong” x̂ is. Two
useful measures are:

Definition 33 Let Ax = b and let x̂ be any vector. The error
(vector) is e := x− x̂ and the residual (vector) is r̂ := b−Ax̂.

Obviously, the error is zero if and only if the residual is also
zero. Errors and residuals have a geometric interpretation:
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The size of the error is a measure of the distance
between the exact solution, x and its approximation x̂.

The size of the residual is a measure of how close x̂ is to
satisfying the linear equations.

Example 34 (Error and Residual for 2× 2 systems) Consider
the 2× 2 linear system

x− y = 0

−0.8x+ y = 1/2.

This system represents two lines in the plane, plotted below, and the
solution of the system is the intersection of the two lines. Consider
the point P = (0.5, 0.7) which is on the plot as well.

1 2 3 4 5

1

2

3

4

5

x

y

Lines L1, L2 and the point P

The size of the error is the distance from P to the intersection of
the two lines. The error is thus relatively large in the above figure.
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However, the size of the residual is the distance of P to the two
lines. For this example, the point P is close to both lines so this is
a case where the residual is expected to be smaller than the error.

For general N ×N systems, the error is essential but, in a very
real sense unknowable. Indeed, if we knew the exact error then we
could recover the exact solution by x = x̂ + e. If we could find
the exact solution, then we wouldn’t be approximating it in the
first place! The residual is easily computable so it is observable. It
also gives some indication about the error as whenever r̂ = 0, then
necessarily e = 0. Thus much of numerical linear algebra is about
using the observable residual to infer the size of the unknowable
error. The connection between residual and error is given in the
following theorem, the Fundamental Equation of Numerical Linear
Algebra (FENLA).

Theorem 35 (FENLA) Given a square N × N linear system

AN×Nx = b and x̂. Let e := x − x̂ and r̂ :=
−→
b − Ax̂ be the

error and residual respectively. Then

Ae = r̂

Proof. This is an identity so it is proven by expanding and rear-
ranging:

Ae = A(x− x̂) = Ax−Ax̂ = b−Ax̂ = r̂.

In pursuit of error estimates from residuals, the most common
vector and matrix operations include residual calculations, triad
calculations, quadratic form calculations, and norm calculations.

Residual Calculation. Given a squareN×N linear system Ax =
b and a candidate for its solution N -vectors x̂, compute the
residual:

r̂ :=
−→
b −Ax̂.
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Triad Calculation. Given n-vectors −→x ,−→y and −→z compute the
vector

−→x + (−→x · −→y )−→z .

Quadratic Form Calculation. Given a square N × N matrix
AN×N and n-vectors −→x and −→y compute the number

−→y · (A−→x ) = −→y trA−→x =

n∑
i,j=1

yiAijxj

The quadratic form reduces a lot of information (n2 +2n real
numbers) to one real number.

Norm Calculation. For an n-vector−→x compute norms (weighted
averages) such as the RMS (root mean square) norm

||−→x ||RMS =

√√√√ 1

n

n∑
i=1

|xi|2

Often, norms of residuals are computed:

Step 1 : r̂ :=
−→
b −Ax̂

Step 2 : ||r̂||RMS =

√√√√ 1

n

n∑
i=1

|ri|2

This last calculation is an example of a vector norm. In approx-
imating the solution (a vector) to a linear system, the error must
be measured. The error is typically measured by an appropriate
norm (a generalization of the idea of the length of a vector). Some
typical vector norms are given in the following definition.
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Definition 36 (Three vector norms) Three commonly used vec-
tor norms are given as follows.

||−→x ||1 :=

n∑
i=1

|xi|,

||−→x ||2 :=

√√√√ n∑
i=1

|xi|2,

||−→x ||∞ := max
1≤i≤n

|xi|

When solving problems with large numbers of unknowns (large
n) it is usually a good idea to scale the answers to be O(1). This
can be done by computing relative errors. It is sometimes7 done
by scaling the norms so the vector of all 1’s has norm equal to 1 as
follows

||−→x ||average :=
1

n

n∑
i=1

|xi|, and ||−→x ||RMS :=

√√√√ 1

n

n∑
i=1

|xi|2.

Exercise 37 Consider the 2× 2 linear system with solution (1, 1)

1.01x+ 0.99y = 2

0.99x+ 1.01y = 2

Let the approximate solution be (2, 0). Compute the following quan-
tities.

1. The error vector,

2. The 2 norm of the error vector,

7Computer languages such as Matlab have built-in functions to compute
these norms. These built-in functions do not compute the scaled form.
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3. The relative error (norm of the error vector divided by norm
of the exact solution),

4. The residual vector, and,

5. The 2 norm of the residual vector.

Exercise 38 Suppose you are given a matrix, A, a right hand side
vector, b, and an approximate solution vector, x. Write a computer
program to compute each of the following quantities.

1. The error vector,

2. The 2 norm of the error vector,

3. The relative error (norm of the error vector divided by norm
of the exact solution),

4. The residual vector, and,

5. The 2 norm of the residual vector.

Test your program with numbers from the previous exercise.
Hint: If you are using Matlab, the norm function can be used
to compute the unscaled quantity || · ||2.

Exercise 39 Given a point (x0, y0) and two lines in the plane.
Calculate the distance to the lines and relate it to the residual vec-
tor. Show that

||r||22 = (1 +m2
1)d2

1 + (1 +m2
2)d2

2

where m, d are the slopes and distance to the line indicated.
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When is a linear system solvable?

Copernicus, Nicholaus (1473-1543)

Mathematics is written for mathematicians.

De Revolutionibus.

“Of my 57 years I’ve applied at least 30 to forgetting
most of what I’ve learned or read, and since I’ve suc-
ceeded in this I have acquired a certain ease and cheer
which I should never again like to be without. ... I have
stored little in my memory but I can apply that little
and it is of good use in many and varied emergencies...”

- Emanuel Lasker

Much of the theory of linear algebra is dedicated to giving con-
ditions on the matrix A that can be used to test if an N ×N linear
system

Ax = b

has a unique solution for every right hand side b. The correct
condition is absolutely clear for 2 × 2 linear systems. Consider
therefore a 2× 2 linear system[

a11 a12

a21 a22

] [
x
y

]
=

[
b1
b2

]
.

The reason to call the variables x and y (and not x1, x2) is that the
2× 2 case is equivalent to looking in the x− y plane for the inter-
section of the two lines (and the “solution” is the x−y coordinates
of the intersection point of the 2 lines)

Line L1: a11x+ a12y = b1

Line L2: a21x+ a22y = b2.

Plotting two lines in the x− y plane the three cases are clear:
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• If L1 and L2 are not parallel then a unique solution exists for
all RHS.

1 2 3

1

2

3

x

y

Lines L1, L2 have unique intersection

• If L1 is on top of L2 then an infinite number of solutions exist
for that particular RHS (and no solutions for other RHS’).
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1 2 3

1

2

3

x

y

L1: x+ y = 2, L2: 2x+ 2x = 4 Infinite number of solutions

• If L1 is parallel to L2 and they are not the same line then no
solution exists.

1 2 3

1

2

3

x

y

Lines L1, L2 Parallel: No intersection
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Unique solvability thus depends on the angle between the two
lines: If it is not 0 or 180 degrees a unique solution exists for every
possible right hand side.

For the general N ×N linear system, the following is known.

Theorem 40 (Unique solvability of Ax = b) The N × N lin-
ear system Ax = b has a unique solution x for every right hand side
b if and only if any of the following equivalent conditions holds.

1.[The null space of A is trivial] The only solution of Ax =
−→
0 is the zero vector, x =

−→
0 .

2. [Uniqueness implies existence] Ax = b has at most one
solution for every RHS b.

3.[Existence implies uniqueness] Ax = b has at least one
solution for every RHS b.

4.[A restatement of trivial null space] The kernel or null

space of A is {−→0 }:

N(A) := {x : Ax = 0} = {−→0 }

5. [A restatement of existence implies uniqueness] The
range of A is RN :

Range(A) := {y : y = Ax for some x} = RN

6. [Nonzero determinant condition]The determinant of A
satisfies

det(A) 6= 0.

7. [Nonzero eigenvalue condition]No eigenvalue of A is
equal to zero:

λ(A) 6= 0 for all eigenvalues λ of A.

There are many more.
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“The well does not walk to the thirsty man.”,
Transuranian proverb (J. Burkardt)

Exercise 41 Consult reference sources in theoretical linear algebra
(books or online) and find 10 more unique solvability conditions.

When is an N×N matrix numerically singular?

To your care and recommendation am I indebted
for having replaced a half-blind mathematician with
a mathematician with both eyes, which will especially
please the anatomical members of my Academy.

- Frederick the Great (1712-1786), [To D’Alembert
about Lagrange. Euler had vacated the post.] In D.
M. Burton, Elementary Number Theory, Boston: Allyn
and Bacon, Inc., 1976.

Many of the theoretical conditions for unique solvability are
conditions for which no numerical value can be assigned to see how
close a system might be to being singular. The search for a way
to quantify how close to singular a system might be has been an
important part of numerical linear algebra.

Example 42 (determinant does not measure singularity)
Consider the two lines

−x+ y = 1 and

−1.0000001x+ y = 2

Their slopes are m = 1 and m = 1.0000001. Thus the angle between
them is very small and the matrix below must be almost singular[

−1 1
−1.0000001 1

]
.
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Many early researchers had conjectured that the determinant was
a good measure of this (for example, the above determinant is
0.0000001 which is indeed small). However, multiplying the second
equation through by 107 does not change the 2 lines, now written
as

−x+ y = 1 and

−10000001x+ 10000000y = 20000000,

or (obviously) the angle between them. The new coefficient matrix
is now [

−1 1
−10000001 10000000

]
The linear system is still as approximately singular as before but
the new determinant is now exactly 1. Thus:

How close det(A) is to zero is not a measure of how
close a matrix is to being singular.

Goldstine, von Neumann and Wilkinson found the correct path
by looking at 2 × 2 linear systems (we have been following their
example). Consider therefore a 2× 2 linear system[

a11 a12

a21 a22

] [
x
y

]
=

[
b1
b2

]
⇔

Line L1: a11x+ a12y = b1
Line L2: a21x+ a22y = b2.

Plotting two lines in the x− y plane, geometrically it is clear that
the right definition for 2× 2 systems of almost singular or numer-
ically singular is as follows.

Definition 43 For the 2 × 2 linear system above, the matrix A
is almost or numerically singular if the angle between the lines L1
and L2 is almost zero or zero to numerical precision.
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Exercise 44 1. For ε > 0 a small number, consider the 2 × 2
system:

x+ y = 1,

(1− 2ε)x+ y = 2 ,

and let A =

[
1 1

1− 2ε 1

]
2. Find the eigenvalues of the coefficient matrix A.

3. Sketch the two lines in the x−y plane the system represents.
On the basis of your sketch, explain if A is ill conditioned
and why.

In the following chapter, numerical methods for solving linear
systems are discussed and, along the way, the notion of numeri-
cal singularity will be refined and methods to estimate numerical
singularity of large systems will be given.



Part I

Direct Methods

1





Chapter 1

Gaussian Elimination

One of the main virtues of an electronic computer
from the point of view of the numerical analyst is its
ability to “do arithmetic fast.” - James Wilkinson,
1971.

Gaussian elimination is the basic algorithm of linear algebra and
the workhorse of computational mathematics. It is an algorithm
for solving exactly (in exact arithmetic) the N ×N system:

AN×NxxN×1
= bN×1, where det(A) 6= 0. (1.1)

It is typically used on all matrices with mostly non-zero entries
(so called dense matrices) and on moderate sized, for example
N ≤ 10, 0001, matrices which have only a few non zero entries per
row that occur in some regular pattern (these are called banded
and sparse matrices). Larger matrices, especially ones without
some regular pattern of non zero entries, are solved using itera-
tive methods.

1The number N = 10, 000 dividing small from large is machine dependent
and will likely be incorrect (too small) by a year after these notes appear.

3



4 CHAPTER 1. GAUSSIAN ELIMINATION

1.1 Elimination + Backsubstitution

Luck favors the prepared mind.
- Louis Pasteur

The N ×N system of equations Ax = b is equivalent to

a11x1 + a12x2+ . . . +a1NxN = b1,
a21x1 + a22x2+ . . . +a2NxN = b2,

...
aN1x1 + aN2x2+ . . . +aNNxN = bN .

(1.2)

Gaussian elimination solves it in two phases: elimination followed
by backsubstitution.

The Elimination Step: The elimination step reduces the
matrix A to upper form by operations which do not alter the solu-
tion of (1.1), (1.2). These “Elementary Row Operations”2 are:

1. Multiply a row of (1.2) by a non-zero scalar.

2. Add a multiple of one row of (1.2) to another.

3. Interchange two rows of (1.2).

To show how these are used, consider (1.1):
a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

. . .
...

aN1 aN2 . . . aNN



x1

x2

...
xn

 =


b1
b2
...
bn

 .
Gaussian elimination proceeds as follows.

2It is known that operation 1 multiplies det(A) by the scalar, operation 2
does not change the value of det(A) and operation 3 multiplies det(A) by −1.
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Substep 1: Examine the entry a11. If it is zero or too small, find
another matrix entry and interchange rows or columns to
make this the entry a11. This process is called “pivoting”
and a11 is termed the “pivot entry.” Details of pivoting will
be discussed in a later section, so for now, just assume a11 is
already suitably large.

With the pivot entry non-zero, add a multiple of row 1 to
row 2 to make a21 zero:

Compute: m21 :=
a21

a11
,

Then compute: Row 2⇐ Row 2−m21 ·Row 1.

This zeroes out the 2, 1 entry and gives
a11 a12 . . . a1N

0 a22 −m21a12 . . . a2N −m21a1N

a31 a32 . . . a3N

...
...

. . .
...

aN1 aN2 . . . aNN




x1

x2

x3

...
xN



=


b1

b2 −m21b1
b3
...
bN

 .

Note that the 2, 1 entry (and all the entries in the second row
and second component of the RHS) are now replaced by new
values. Often the replacement is written by an arrow, such
as a22 ⇐ a22 −m21a12. Often its denoted by an equals sign.
This is not a mathematical equals sign but really denotes
an assignment meaning : “Replace LHS by RHS”as in a22 =
a22−m21a12. Since this replacement of values is what is really
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done on the computer we have the system
a11 a12 . . . a1N

0 a22 . . . a2N

a31 a32 . . . a3N

...
...

. . .
...

aN1 aN2 . . . aNN




x1

x2

x3

...
xN

 =


b1
b2
b3
...
bN

 .

where the second row now contains different numbers than
before step 1.

Substep 1 continued: Continue down the first column, zeroing
out the values below the diagonal (the pivot) in column 1:

Compute: m31 :=
a31

a11
,

Then compute: Row 3⇐ Row 3−m31 ·Row 1,

. . . . . .

Compute: mN1 :=
aN1

a11
,

Then compute: Row n⇐ Row N −mN1 ·Row 1.

The linear system now has the structure:
a11 a12 . . . a1N

0 a22 . . . a2N

...
...

. . .
...

0 aN2 . . . aNN




x1

x2

...
xN

 =


b1
b2
...
bN

 .

Step 2: Examine the entry a22. If it is zero or too small, find
another matrix entry below (and sometimes to the right of)
a22 and interchange rows (or columns) to make this entry
a22. Details of this pivoting process will be discussed later.
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With the pivot entry non zero, add a multiple of row 2 to
row 3 to make a32 zero:

Compute 3, 2 multiplier: m32 :=
a32

a22
,

Then compute: Row 3⇐ Row 3−m32 ·Row 2.

Step 2 continued: Continue down column 2, zeroing out the val-
ues below the diagonal (the pivot):

Compute: m42 :=
a42

a22
,

Then compute: Row 4⇐ Row 4−m42 ·Row 2,

. . . . . .

Compute: mN2 :=
aN2

a22
,

Then compute: Row N ⇐ Row N −mN2 ·Row 2.

The linear system now has the structure:
a11 a12 . . . a1N

0 a22 . . . a2N

0 0
. . .

...
0 0 . . . aNN




x1

x2

...
xN

 =


b1
b2
...
bN

 .
Substeps 3 through N: Proceed as above for column 2, for each

of columns 3 through N. The diagonal entries a33 . . . aNN
become pivots (and must not be too small). When Gaussian
elimination terminates, the linear system has the structure
(here depicted only for the case N = 4, or 4× 4 matrix.):

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44



x1

x2

x3

x4

 =


b1
b2
b3
b4

 .
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The Backsubstitution Step: We now have reduced the linear
system to an equivalent upper triangular system with the
same solution. That solution is now quickly found by back
substitution as follows.

Substep 1: aNNxN = bN so xN = bN/aNN

Substep 2: xN−1 = (bN−1 − aN−1,NxN ) /aN−1,N−1

Substep 3: xN−2 =
(bN−2 − aN−2,N−1xN−1 − aN−2,NxN ) /aN−2,N−2

Substeps 4-(N-1): Continue as above.

Substep N: x1 = (b1 − a12x2 − a13x3 − · · · − a1NxN ) /a11.

1.2 Algorithms and pseudocode

Careful analysis of algorithms requires some way to make them
more precise. While the description of the Gaussian elimination
algorithm provided in the previous section is clear and complete, it
does not provide a straightforward roadmap to writing a computer
program. Neither does it make certain aspects of the algorithm
obvious: for example it is hard to see why the algorithm requires
O(N3) time for an N ×N matrix.

In contrast, a computer program would provide an explicit im-
plementation of the algorithm, but it would also include details that
add nothing to understanding the algorithm itself. For example,
the algorithm would not change if the matrix were written using
single precision or double precision numbers, but the computer pro-
gram would. Further, printed computer code is notoriously difficult
for readers to understand. What is needed is some intermediate ap-
proach that marries the structural precision of a computer program
with human language descriptions and mathematical notation.



1.2. ALGORITHMS AND PSEUDOCODE 9

This intermediate approach is termed “pseudocode.”A recent
Wikipedia article3 describes pseudocode in the following way.

“Pseudocode is a compact and informal high-level
description of a computer programming algorithm that
uses the structural conventions of a programming lan-
guage, but is intended for human reading rather than
machine reading. Pseudocode typically omits details
that are not essential for human understanding of the
algorithm, such as variable declarations . . . . The pro-
gramming language is augmented with natural language
descriptions of the details, where convenient, or with
compact mathematical notation. The purpose of using
pseudocode is that it is easier for humans to under-
stand than conventional programming language code,
and that it is a compact and environment-independent
description of the key principles of an algorithm. It is
commonly used in textbooks and scientific publications
that are documenting various algorithms, and also in
planning of computer program development, for sketch-
ing out the structure of the program before the actual
coding takes place.”

The term “pseudocode” does not refer to a specific set of rules
for expressing and formatting algorithms. Indeed, the Wikipedia
article goes on to give examples of pseudocode based on the For-
tran, Pascal, and C computer languages. The goal of pseudocode is
to provide a high-level (meaning: understandable by a human) al-
gorithm description with sufficient detail to facilitate both analysis

3From: Wikipedia contributors, “Pseudocode,
”http://en.wikipedia.org/w/index.php?title=Pseudocode&oldid=564706654
(accessed July 18, 2013). Wikipedia, The Free Encyclopedia. This article
cites: Justin Zobel (2004). ”Algorithms” in Writing for Computer Science
(second edition). Springer. ISBN 1-85233-802-4.
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and conversion to a computer program. A pseudocode description
of an algorithm should:

• Expose the underlying algorithm;

• Hide unnecessary detail;

• Use programming constructs where appropriate, such as loop-
ing and testing; and,

• Use natural and mathematical language where appropriate.

In this book, a pseudocode based on Matlab programming will
be used, and Matlab keywords and variables will be displayed in
a special font. In particular, a loop with index ranging from 1
through N will be enclosed in the pair of statements for k=1:N

and end, and a test will be enclosed with the pair if ... and end.
Subscripted variables are denoted using parentheses, so that Aij
would be denoted A(i,j). Although Matlab statements without
a trailing semicolon generally cause printing, the trailing semicolon
will be omitted here. If the pseudocode is used as a template for
Matlab code, this trailing semicolon should not be forgotten.

1.3 The Gaussian Elimination Algorithm

Algorithms are human artifacts. They belong to the
world of memory and meaning, desire and design.

- David Berlinski
“Go ahead and faith will come to you.”
- D’Alembert.

Notice that Gaussian elimination does not use the x values in
computations in any way. They are only used in the final step of
back substitution to store the solution values. Thus we work with
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the augmented matrix: an N × N + 1 matrix with the RHS
vector in the last column

WN×N+1 :=


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

b1
b2
...
bn

 .
Further, its backsubstitution phase does not refer to any of the
zeroed out values in the matrix W . Because these are not referred
to, their positions can be used to store the multipliers mij .

Evaluation of determinants using Gaussian elimination.
It is known that the elementary row operation 1 multiplies det(A)
by the scalar, the elementary row operation 2 does not change
the value of det(A) and the elementary row operation 3 multiplies
det(A) by −1. Based on this observation, Gaussian elimination is
a very efficient way to calculate determinants. If Elimination is
performed and the number of row interchanges counted we then
have (after W is reduced to upper triangular)

det(A) = (−1)sw11 · w22 · ... · wnn,
s = total number of swaps of rows and columns

In contrast, evaluation of a determinant by cofactor expansions
takes roughly n! floating point operations whereas doing it using
Gaussian elimination only requires 2

3n
3.

We shall see that backsubstitution is much cheaper and faster to
perform than elimination. Because of this, the above combination
of elimination to upper triangular form followed by backsubstitu-
tion is much more efficient than complete reduction of A to the
identity (so called, Gauss-Jordan elimination).

If the pivot entry at some step is zero we interchange the pivot
row or column with a row or column below or to the right of it so
that the zero structure created by previous steps is not disturbed.
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Exploiting the above observations, and assuming that pivot-
ing is not necessary, Gaussian elimination can be written in the
following algorithm.

Algorithm 45 (Gaussian elimination without pivoting)
Given a N × (N + 1) augmented matrix W ,

for i=1:N-1

Pivoting would go here if it were required.
for j=i+1:N

if Wi,i is too small
error(’divisor too small, cannot continue’)

end

m = Wji/Wii

for k=(i+1):(N+1)

Wjk = Wjk −mWik

end

end

end

if WN,N is too small
error(’singular!’)

end

Gaussian elimination has 3 nested loops. Inside each loop,
roughly N (and on average N/2) arithmetic operations are per-
formed. Thus, it’s pretty clear that about O(N3) floating point
operations are done inside Gaussian elimination for an N ×N ma-
trix.

Exercise 46 Consider two so-called “magic square” matrices.

A =

 8 1 6
3 5 7
4 9 2

 and B =


16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

 .
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Each of the rows, columns and diagonals of A sum to the same
values, and similarly for B. Gaussian elimination is written above
for an augmented matrix W that is N ×N + 1. Modify it so that it
can be applied to a square matrix. Then write a computer program
to do Gaussian elimination on square matrices, apply it to the ma-
trices A and B, and use the resulting reduced matrix to compute
the determinants of A and B. (det(A) = −360 and det(B) = 0.)

The backsubstitution algorithm is below. Backsubstitution pro-
ceeds from the last equation up to the first, and Matlab notation
for this “reverse” looping is for i=(N-1):-1:1.

Algorithm 47 (Backsubstitution) Given an N -vector x for stor-
ing solution values, perform the following:

x(N)=W(N,N+1)/W(N,N)

for i=(N-1):-1:1

Compute the sum s =
∑N
j=i+1Wi,jxj

x(i)=(W(i,N+1)-s)/W(i,i)

end

The sum s =
∑N
j=i+1Wi,jxj can be accumulated using a loop,

a standard programming approach to computing a sum is the fol-
lowing algorithm.

Algorithm 48 (Accumulating the sum
∑n
j=i+1Wi,jxj)

s=0

for j=(i+1):N

s=s+W(i,j)*x(j)

end

Thus the backsubstitution is given as:
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Algorithm 49 (Backsubstitution-more detail)

x(N)=W(N,N+1)/W(N,N)

for i=(N-1):-1:1

Next, accumulate
∑n
j=i+1Wi,jxj

s=0

for j=(i+1):N

s=s+W(i,j)*x(j)

end

x(i)=(W(i,N+1)-s)/W(i,i)

end

Backsubstitution has two nested loops. The innermost loop
contains one add and one multiply, for two operations, there are
roughly N(N − 1)/2 passes through this innermost loop. Thus, its
pretty clear that, in the whole, O(N2) floating point operations are
done inside backsubstitution for an N ×N matrix.

Exercise 50 Show that the complexity of computing det(A) for an
N ×N matrix by repeated expansion by cofactors is at least N !.

Computational Complexity and Gaussian Elimination

“In mathematics, you don’t understand things. You
just get used to them.”

- J. von Neumann (1903-1957), quoted in: G.
Zukov, The dancing Wu Li masters, 1979.

Computers perform several types of operations:

• Additions of real numbers

• Subtraction of a real numbers

• Multiplication of real numbers
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• Division of real numbers

• Arithmetic of integers

• Tests (such as “Test if the number X > 0?)”

• Other logical tests

• Accessing memory to find a number to operate upon

• “Loops” meaning operations of the above type performed re-
peatedly until some condition is met.

The cost (in time to execute) of each of these is highly com-
puter dependent. Traditionally arithmetic operations on real num-
bers have been considered to take the most time. Memory access
actually takes much more time than arithmetic and there are elab-
orate programming strategies to minimize the effect of memory
access time. Since each arithmetic operation generally requires
some memory access, numerical analysts traditionally have rolled
an average memory access time into the time for the arithmetic for
the purpose of estimating run time. Thus one way to estimate run
time is to count the number of floating point operations performed
(or even just the number of multiply’s and divides). This is com-
monly called a “FLOP count” for FLoating point OPeration count.
More elegantly it is called “estimating computational complexity.”
Counting floating point operations gives

• Backsubstitution for anN×N linear system takesN(N−1)/2
multiplies and N(N − 1)/2 adds. This is often summarized
as N2 FLOPS, dropping the lower order terms.

• Gaussian elimination for an N×N linear system takes (N3−
N)/3 multiplies (N3 − N)/3 adds and N(N − 1)/2 divides.
This is often summarized as 2

3N
3 FLOPS, dropping the lower

order terms.
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As an example, for a 1000× 1000 linear system, Gaussian elim-
ination takes about 1000 times as long as backsubstitution. Dou-
bling the size to 2000 × 2000 requires 8 times as long to run ( as

(2N)
3

= 8 ·
(
N3
)

).

Exercise 51 Estimate the computational complexity of computing
a dot product of two N -vectors.

Exercise 52 Estimate the computational complexity of computing
a residual and then the norm of a residual.

Exercise 53 Verify the claimed FLOP count for Gaussian elimi-
nation and back substitution.

1.4 Pivoting Strategies

“Perhaps the history of the errors of mankind, all
things considered, is more valuable and interesting than
that of their discoveries. Truth is uniform and narrow;
it constantly exists, and does not seem to require so
much an active energy as a passive aptitude of the soul
in order to encounter it. But error is endlessly diver-
sified; it has no reality, but it is the pure and simple
creation of the mind that invents it.”

- Benjamin Franklin,

Report of Dr. B. Franklin and other commissioners,
Charged by the King of France with the examination
of Animal Magnetism, as now practiced in Paris, 1784.

Gaussian elimination performs the operations

Wjk = Wjk −
WjiWik

Wii
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many times. This can cause serious roundoff error by division by
small numbers and subtraction of near equals. Pivoting strategies
are how this roundoff is minimized and its cascade through subse-
quent calculations controlled.

We introduce the topic of pivoting strategies with an example
(likely due to Wilkinson) with exact solution (10, 1)

0.0003x+ 1.566y = 1.569

0.3454x− 2.436y = 1.018 (1.3)

Solution = (10, 1)

In 4 significant digit base 10 arithmetic we calculate:

m = 0.3454/0.0003 = 1151

then

0.3454 ⇐ 0.3454− 1151 · 0.0003

and solving further for x, y gives

(x, y) = (3.333, 1.001)

This is very far from the exact solution and it seems likely that
the error is due to dividing by a small number in backsolving for
x after getting the approximate value of 1.001 for y. We consider
two strategies for overcoming this: rescaling before division (which
FAILS) and swapping rows (which works).
Attempt: (Rescaling FAILS)

Multiply equation (1.3) by 1000. This gives

0.3000x+ 1566y = 1569

0.3454x− 2.436y = 1.018

We find
m = 0.3454/0.3000 = 1.151
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but, however it again fails:

(x, y) = (3.333, 1.001)

Again, the failure occurs during backsubstitution in the step

x = [1569− 1566y]/0.3000

because the divisor is small with respect to both numerators.
Attempt: (Swapping rows SUCCEEDS)

0.3454x− 2.436y = 1.018

0.0003x+ 1.566y = 1.569

We find m = 8.686 · 10−4 and, again y = 1.001. This time,
using the first equation for the backsolve yields x = 10.00, a much
better approximation.

This example suggests that pivoting, meaning to swap rows or
columns, is the correct approach. The choice of which rows or
columns to swap is known as a pivoting strategy. Common ones
include:

Mathematical partial pivoting: Interchange only the rows, not
the columns, when the pivot entry Wii = 0. This strategy is
not sufficient to eliminate roundoff errors. Even if pivoting
is done when Wii = 0 to numerical precision, this strategy is
not sufficient.

Simple partial pivoting: Interchange only rows to maximize |Wji|
over j ≥ i.

Algorithm 54 (Simple partial pivoting) Given a column
i

Find row j ≥ i so that |Wji| is maximized.
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Swap rows j and i.

Simple partial pivoting is a common strategy, but there are
better ones.

Scaled partial pivoting: Interchange only rows so that the pivot
entry Wii is the element in column i on or below the diagonal
which is largest relative to the size of the whole row that entry
is in.

Algorithm 55 (Scaled partial pivoting) Given a column
i

1. Compute dj := maxi≤k≤N |Wjk|.
2. Find row j ≥ i so that |Wji|/di is maximized.

3. Swap rows i and j.

The following refinement of Algorithm 55 breaks the steps of
that algorithm into detailed pseudocode. The pseudocode in
this algorithm is intended to stand alone so that it can be
“called” by name from another, larger algorithm. Separate
groups of code of this nature are often called “functions,”
“subroutines,” or “procedures.” The Matlab syntax for a
function is:

function [“return” values] = function name(arguments)

There may be zero or more return values and zero or more
arguments. If there are zero or one return values, the brackets
(“[” and “]”) can be omitted.

Algorithm 56 (Scaled partial pivoting (detailed))
Given a row number, i, an N ×N matrix W , and the value
N , return the row number pivotrow with which it should be
swapped.
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function pivotrow = scaled_partial_pivoting(i,W,N)

% First, find the maximum in each row.

for j=i:N

d(j) = abs(W(j,j))

for k=i+1:N

if d(j) < abs(W(j,k))

d(j) = abs(W(j,k))

end

end

end

% Second, find the pivot row

pivotrow=i

pivot = abs(W(i,i))/d(i)

for j=i+1:N

if pivot < abs(W(j,i))/d(j)

pivot = abs(W(j,i))/d(j)

pivotrow = j

end

end

Scaled partial pivoting is a very commonly used strategy. It
gives a good balance between stability and computational cost.

Exercise 57 Give a detailed elaboration of the partial pivoting al-
gorithm (at a similar level of detail as the scaled partial pivoting
algorithm).

Exercise 58 Multiply the first equation in (1.3) by 10,000. Show
that Scaled partial pivoting yields the correct answer in four-digit
arithmetic, but partial pivoting does not.

Full pivoting: Interchange rows and columns to maximize |Wik|
over i ≥ j and k ≥ j. Full pivoting is less common because
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interchanging columns reorders the solution variables. The
reordering must be stored as an extra N×N matrix to recover
the solution in the correct variables after the process is over.

Example 59 Suppose at one step of Gaussian elimination, the
augmented system is

W =


1.0 2.0 3.0 4.0 1.7
0 10−10 2.0 3.0 6.0
0 2.0 3.0 1.0 −1000.0
0 3.0 2.0 −5.0 35.0

 .
The RHS vector and active submatrix are partitioned with lines
(that are not stored in W ). The pivot entry is now the 2, 2 entry
(currently W (2, 2) = 10−10). For the different pivoting strategies
we would have

• Mathematical pivoting: no swapping since 10−10 6= 0.

• Partial pivoting: Row 2 swap with Row 4 since 3.0 is the
largest entry below 10−10.

• Scaled partial pivoting: Row 2 swap with Row 3 since
2.0/3.0 > 3.0/5.0.

• Full pivoting: Row 2 swap with Row 4 and Column 2 swap
with column 4 since −5.0 is the largest entry in absolute value
in the active submatrix.

Putting scaled partial pivoting into the Gaussian Elimination
Algorithm 45 yields the following algorithm. In this algorithm,
a vector, p, is also computed to keep track of row interchanges,
although it is not needed when applying Gaussian Elimination to
an augmented matrix. This algorithm is written so that it can be
applied to any square or rectangular N ×M matrix with M ≥ N .
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Algorithm 60 (Gaussian Elimination with scaled partial pivoting)
Given a N ×M (M ≥ N) matrix W ,

for i = 1:N

p(i) = i

end

for i = 1:(N-1)

j = scaled_partial_pivoting(i,W,N)

Interchange p(i) and p(j)

Interchange rows i and j of W
for j=(i+1):N

m = W(j,i)/W(i,i)

for k =(i+1):M

W(j,k) = W(j,k) - m*W(i,k)

end

end

end

if WN,N is too small
error(’Matrix is singular!’)

end

Interchanging two components of p is accomplished by:

Algorithm 61 (Interchange components of p) Given a vector
p and two indices i and j.

temporary = p(i)

p(i) = p(j)

p(j) = temporary

Interchanging two rows of W is similar, but requires a loop.

Exercise 62 Write detailed pseudocode for interchanging two rows
of W .
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Exercise 63 Solve the 3× 3 linear system with augmented matrix
given below by hand executing the Gaussian elimination with scaled
partial pivoting algorithm:

W =

 −1 2 −1 0
0 −1 2 1
2 −1 0 0

 .
Exercise 64 Suppose you are performing Gaussian elimination on
a square matrix A. Suppose that in your search for a pivot for col-
umn i using simple partial pivoting you discover that maxj≥i |W (j, i)|
is exactly zero. Show that the matrix A must be singular. Would
the same fact be true if you were using scaled partial pivoting?

Exercise 65 In Algorithm 60, the matrix W is an N ×M matrix
and it employs Algorithm 55. In that algorithm dj is constructed
for i ≤ k ≤ N and not i ≤ k ≤ M . When M > N , explain why it
is a reasonable to ignore some columns of W when pivoting.

1.5 Tridiagonal and Banded Matrices

“The longer I live, the more I read, the more pa-
tiently I think, and the more anxiously I inquire, the
less I seem to know.”

- John Adams

Gaussian elimination is much faster for banded matrices (in
general) and especially so for tridiagonal ones (in particular).

Definition 66 An N × N matrix A is tridiagonal if Aij = 0 for
|i− j| > 1.
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Thus a tridiagonal matrix is one that takes the form:

d1 c1 0 0 . . . 0
a2 d2 c2 0 . . . 0
0 a3 d3 c3 . . . 0

. . .
. . .

. . .

0 . . . 0 aN−1 dN−1 cN−1

0 . . . 0 0 aN dN





x1

x2

x3

...
xN−1

xN


=



b1
b2
b3
...

bN−1

bN


.

Performing elimination without pivoting does not alter the tridi-
agonal structure. Thus the zeroes need not be stored (saving lots
of storage: from O(N2) to O(N)). There is no point in doing
arithmetic on those zeroes, either, reducing FLOPS from O(N3)
to O(N). There are two common ways to store a tridiagonal linear
system.

Method 1: storage as 4 vectors by:

−→a : = (0, a2, a3, · · ·, aN−1, aN )
−→
d : = (d1, d2, d3, · · ·, dN−1, dN )
−→c : = (c1, c2, c3, · · ·, cN−1, 0)
−→
b : = (b1, b2, b3, · · ·, bN−1, bN ).

Stored in this form the elimination and backsubstitution algo-
rithms are as follows.

Algorithm 67 (Tridiagonal Elimination) Given 4 N -vectors a, d, c, b,
satisfying a(1) = 0.0 and c(N) = 0.0

for i = 2:N

if d(i-1) is zero
error(’the matrix is singular or pivoting is required’)

end

m = a(i)/d(i-1)

d(i) = d(i) - m*c(i-1)
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b(i) = b(i) - m*b(i-1)

end

if d(N) is zero
error(’the matrix is singular’)

end

Clearly, tridiagonal Gaussian elimination has one loop. Inside
the loop, roughly five arithmetic operations are performed. Thus,
its pretty clear that, on the whole, O(N) floating point operations
are done inside tridiagonal Gaussian elimination for an N × N
matrix.

The backsubstitution algorithm is as follows.4

Algorithm 68 (Tridiagonal Backsubstitution) Given an ex-
tra N -vector x to store the solution values, perform the following:

x(N) = b(N)/d(N)

for i = N-1:-1:1

x(i)=( b(i) - c(i)*x(i+1) )/d(i)

end

Example 69 A tridiagonal matrix that frequently occurs is
tridiag(-1,2,-1) or

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0

. . .
. . .

. . .

0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2


.

4Recall that the syntax “for i=N-1:-1:1” means that the loop starts at
i=N-1 and i decreases to 1.
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The first step in GE for this matrix is to replace:
Row2 <= Row2− (−1/2)Row1.
This gives 

2 −1 0 0 . . . 0
0 1.5 −1 0 . . . 0
0 −1 2 −1 . . . 0

. . .
. . .

. . .

0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2


.

This zeroes out the entire first column.

Backsubstitution for tridiagonal matrices is also an O(N) algo-
rithm since there is one loop with a subtraction, a multiplication,
and a division.

In summary, tridiagonal system solution without pivoting re-
quires:

• 5N − 5 adds, multiplies and divides for elimination, and,

• 3N − 2 adds, multiplies and divides for backsubstitution.

More generally, for a banded, sparse matrix with half band-
width p (and thus full bandwidth 2p+ 1) banded sparse Gaussian
elimination takes O(p2N) FLOPS.

Method 2: Storage as a banded matrix with bandwidth three
or half bandwidth p = 1.

In this case we store the augmented matrix as

W4×N :=


b1 b2 . . . bN
c1 c2 . . . 0
d1 d2 . . . dN
0 a2 . . . aN

 .
Modification of the Gaussian elimination algorithm for this al-

ternative storage method is given below.
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Algorithm 70 (Tridiagonal Gaussian Elimination: Band Storage)
Given a 4 × n augmented matrix W , with W41 = 0.0 and W2N =
0.0.

for i = 2:N

if W(3,i-1) is zero
error(’the matrix is singular or pivoting is required’)

end

m = W(4,i)/W(3,i-1)

W(3,i) = W(3,i) - m*W(2,i-1)

W(1,i) = W(1,i) - m*W(1,i-1)

end

if W(3,N) is zero
error(’the matrix is singular.’)

end

Exercise 71 Give a pseudocode algorithm for backsubstitution for
tridiagonal matrices stored in band form.

Exercise 72 Extend the algorithms given here to general banded
systems with half bandwidth p < N/2.

Exercise 73 What is the operation count for an N×N system for
Gaussian elimination? Back substitution? If the matrix is tridiag-
onal, then what are the operation counts?

Exercise 74 If a 10000 × 10000 tridiagonal linear system takes
2 minutes to solve using tridiagonal elimination plus backsubstitu-
tion, estimate how long it would take to solve using the full GE
plus full backsubstitution algorithms. (This explains why it makes
sense to look at the special case of tridiagonal matrices.)

Exercise 75 Verify that Gaussian elimination requires O(p2N)
FLOPS for an N ×N banded matrix with half-bandwidth p.
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Exercise 76 The above algorithms for tridiagonal Gaussian elim-
ination contain lines such as “if W(3,N) is zero” or “if d(N) is
zero.” If you were writing code for a computer program, how would
you interpret these lines?

Exercise 77 Write a computer program to solve the tridiagonal
system A = tridiag(−1, 2,−1) using tridiagonal Gaussian elimina-
tion with band storage, Algorithm 70. Test your work by choosing
the solution vector of all 1′s and RHS containing the row sums of
the matrix. Test your work for system sizes N = 3, and N = 1000.

1.6 The LU decomposition

“Measure what is measurable, and make measurable
what is not so.”
- Galilei, Galileo (1564 - 1642), Quoted in H. Weyl
“Mathematics and the Laws of Nature” in I Gordon
and S. Sorkin (eds.) The Armchair Science Reader,
New York: Simon and Schuster, 1959.

“Vakmanschap is meesterschap.”
- (Motto of Royal Grolsch NV, brewery.)

Suppose we could factor the N ×N matrix A as the product

A = LU, L : lower triangular , U : upper triangular.

Then, we can solve the linear system Ax = b without Gaussian
elimination in two steps:

1. Forward substitution: solve Ly = b.

2. Backward substitution: solve Ux = y
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Step 1. Forward solve for y

Ly = b

⇔
`11 0 0 . . . 0 0
`21 `22 0 . . . 0 0
...

...
. . .

...
. . .

...
`N−1,1 `N−1,2 `N−1,3 . . . `N−1,N−1 0
`N1 `N2 `N,3 . . . `N,N−1 `N,N




y1

y2

...
yN−1

yN



=


b1
b2
...
bN−1

bNN



so

`11y1 = b1 ⇒ y1 = b1/`11,

`21y1 + `22y2 = b2 ⇒ y2 = (b2 − `21y1)/`22,

and so on.
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Step 2. Backward solve Ux = y for x

Ux = y

⇔
u11 u12 u1,3 . . . u1,N−1 u1N

0 u22 u23 . . . u2,N−1 u2N

...
...

. . .
...

. . .
...

0 0 0 . . . uN−1,N−1 uN,N
0 0 0 . . . 0 uN,N




x1

x2

...
xN−1

xN



=


y1

y2

...
yN−1

yNN

 ,

so

uNNxN = yN ⇒ xN = yN/uNN

and

uN−1,N−1xN−1 + uN−1,NxN = yN−1 ⇒
xN−1 = (yN−1 − uN−1,NxN )/uN−1,N−1.

Thus, once we compute a factorization A = LU we can solve linear
systems relatively cheaply. This is especially important if we must
solve many linear systems with the same A = LU and different
RHS’s b. First consider the case without pivoting.

Theorem 78 (Remarkable Algorithmic Fact) If no pivoting
is used and the Gaussian elimination algorithm stores the multi-
pliers mij below the diagonal of A the algorithm computes the LU
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factorization of A where L and U are given by

L =


1 0 0 . . . 0 0
m21 1 0 . . . 0 0
...

...
. . .

...
...

...
mN−1,1 mN−1,2 mN−1,3 . . . 1 0
mN1 mN2 mN,3 . . . mN,N−1 1

 ,

U =


u11 u12 u1,3 . . . u1,N−1 u1N

0 u22 u23 . . . u2,N−1 u2N

...
...

. . .
...

. . .
...

0 0 0 . . . uN−1,N−1 uN,N
0 0 0 . . . 0 uN,N

 .

Exercise 79 Prove Theorem 78 for the 3 × 3 case using the fol-
lowing steps.

1. Starting with a 3 × 3 matrix A, perform one column of row
reductions, resulting in a matrix

L1 =

 1 0 0
−m21 1 0
−m31 0 1


with −mn,1 for n = 2, 3 denoting the multipliers used in the
row reduction.

2. Consider the matrix

L1 =

 1 0 0
m21 1 0
m31 0 1


and show that

a) L1A = U1, and
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b) L1L1 = I, where I is the identity matrix, so L1 =
(L1)−1.

Hence, A = L1U1.

3. Similarly, perform one column of row reductions on the sec-
ond column of U1 and construct the matrix

L1 =

 1 0 0
0 1 0
0 −m32 1

 .
4. Show that

a) L2U1 = U2, and

b) L2L2 = I, where I is the identity matrix, so L2 =
(L2)−1, and

c) (this is the surprising part)

L1L2 =

 1 0 0
m21 1 0
m31 m32 1

 .
so that A = L1L2U2.

Exercise 80 Prove Theorem 78 for the general case, using Exer-
cise 79 as a model.

Remark 81 When solving systems with multiple RHS’s, it is com-
mon to compute L and U in double precision and store in the pre-
cision sought in the answer (either single or double). This gives
extra accuracy without extra storage. Precisions beyond double are
expensive, however, and are used sparingly.
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Remark 82 Implementations of Gaussian Elimination combine
the two matrices L and U together instead of storing the ones on
the diagonal of L and all the zeros of L and U , a savings of storage
for N2 real numbers. The combined matrix is

W =


u11 u12 u1,3 . . . u1,N−1 u1N

m21 u22 u23 . . . u2,N−1 u2N

...
...

. . .
...

. . .
...

mN−1,1 mN−1,2 mN−1,3 . . . uN−1,N−1 uN,N
mN,1 mN,2 mN,3 . . . mN,N−1 uN,N

 .

Example 83 Suppose A is the 4× 4 matrix below.
3 1 −2 −1
2 −2 2 3
1 5 −4 −1
3 1 2 3

 .
Performing Gauss elimination without pivoting (exactly as in the
algorithm) and storing the multipliers gives

W =


3 1 −2 −1
2
3 − 8

3
10
3

11
3

1
3 − 7

4
5
2

23
4

1 0 8
5 − 26

5

 .
Thus, A = LU where

L =


1 0 0 0
2
3 1 0 0
1
3 − 7

4 1 0

1 0 8
5 1

 and U =


3 1 −2 −1
0 − 8

3
10
3

11
3

0 0 5
2

23
4

0 0 0 − 26
5

 .
Exercise 84 Algorithm 70 describes tridiagonal Gaussian elimi-
nation. Modify that algorithm to store the multipliers in the matrix
W so that it computes both the lower and upper tridiagonal factors.
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Exercise 85 Suppose A has been factored as A = LU with L and
U given below. use this factorization to solve Ax = e3 , where
e3 = (0, 0, 1)t.

L =

 1 0 0
2 1 0
3 4 1

 , U =

 2 3 4
0 1 0
0 0 3

 .
Exercise 86 Algorithm 60 describes the algorithm for Gaussian
elimination with scaled partial pivoting for an augmented matrix
W , but it does not employ the combined matrix factor storage de-
scribed in Remark 82. Modify Algorithm 60 so that

1. It applies to square matrices; and,

2. It employs combined matrix factor storage.

The question remains: What happens when pivoting is re-
quired? To help answer this question, we need to introduce the
concept of a “permutation” to make the notion of swapping rows
clear.

Definition 87 A permutation vector is a rearrangement of the
vector

−→p = [1, 2, 3, · · ·, N ]t.

A permutation matrix is an N × N matrix whose columns are
rearrangements of the columns of the N ×N identity matrix. This
means that there is a permutation vector such that

jth column of P = p(j)th column of I.

For example, if N = 2, the permutation matrices are

P1 =

[
0 1
1 0

]
and P2 =

[
1 0
0 1

]
.
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Note that

P1

[
x1

x2

]
=

[
x2

x1

]
and P−1

1

[
x1

x2

]
=

[
x2

x1

]
.

If −→p = (2, 1) then we compute −→y = P−1−→x by

for i = 1:2

y(i) = x( p(i) )

end

More generally, we compute −→y = P−1−→x by

for i=1:N

y(i)=x( p(i) )

end

Theorem 88 (A = PLU factorization) Gaussian Elimination with
partial pivoting, as presented in Algorithm 60 and modified in Ex-
ercise 86, computes the permutation vector, −→p , as part of the elim-
ination process and stores both the multipliers and the upper tri-
angular matrix in the combined matrix W . Thus, it constructs the
factorization

A = PLU,

where P is the permutation matrix corresponding to the vector −→p .

Proof. The essential part of the proof can be seen in the 3 × 3
case, so that case will be presented here.

The first step in Algorithm 60 is to find a pivot for the first
column. Call this pivot matrix P1. Then row reduction is carried
out for the first column, with the result

A = (P−1
1 P1)A = P−1

1 (P1A) = P−1
1 L1U1,
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where

L1 =

 1 0 0
m21 1 0
m31 0 1

 and U1 =

 u11 ∗ ∗
0 ∗ ∗
0 ∗ ∗


where the asterisks indicate entries that might be non-zero.

The next step is to pivot the second column of U1 from the
diagonal down, and then use row-reduction to factor it.

A = P−1
1 L1(P−1

2 L2U)

where

L2 =

 1 0 0
0 1 0
0 m32 1

 and U =

 u11 u12 u13

0 u22 u23

0 0 u33


Finally, it must be shown that L1P

−1
2 L2 can be expressed as

P̃−1L. It is clear that

L1P
−1
2 L2 = (P−1

2 P2)L1P
−1
2 L2 = P−1

2 (P2L1P
−1
2 )L2.

There are only two possibilities for the permutation matrix P2. It
can be the identity, or it can be

P2 =

 1 0 0
0 0 1
0 1 0

 .
If P2 is the identity, then P−1

2 (P2L1P
−1
2 )L2 = L1L2 and is easily

seen to be lower triangular. If not,

P2L1P
−1
2 =

 1 0 0
0 0 1
0 1 0

 1 0 0
m21 1 0
m31 0 1

 1 0 0
0 0 1
0 1 0


=

 1 0 0
m31 1 0
m21 0 1

 .
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Hence,

P2L1P
−1
2 L2 =

 1 0 0
m31 1 0
m21 m32 1

 ,
a lower triangular matrix.

Exercise 89 Complete the proof of Theorem 88 for N ×N matri-
ces. Hint: It is important to realize that the fact that P2L1P

−1
2 L2

turns out to be lower triangular depends strongly on the permuta-
tion matrix P2 involving indices greater than the indices of columns
of L1 with non-zeros below the diagonal.

Given the factorization A = PLU , the solution of Ax = b is
then found in three steps.

Algorithm 90 (Solving PLUx = b)

1. Compute
−→
d = P−1−→b , i.e., rearrange

−→
b by:

for k=1:N

d(k)=b(p(k))

end

2. Forward solve L−→y =
−→
d .

3. Backsolve U−→x = −→y .

Example 91 Suppose in solving a 3 × 3, elimination swaps rows
1 and row 2. Then p = (1, 2, 3) is changed to p = (2, 1, 3) at
the end of elimination. Let b = (1, 3, 7)t, p = (2, 1, 3)t. Then
d = P−1b = (3, 1, 7)t

Remark 92
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1. Factoring A = PLU takes O(N3) FLOPS but using it there-
after for backsolves only takes O(N2) FLOPS.

2. If A is symmetric and positive definite then the PLU de-
composition can be further refined into an LLt decomposition
known as the Cholesky decomposition. It takes about 1/2 the
work and storage of PLU . Gaussian elimination for SPD
matrices do not require pivoting, an important savings in time
and storage.

Exercise 93 Find the LU decomposition of[
3 9
2 7

]
Exercise 94 Given the LU decomposition[

2 3
8 11

]
=

[
1 0
4 1

] [
2 3
0 −1

]
use it to solve the linear system

2x+ 3y = 0

8x+ 11y = 1.

Exercise 95 Write a computer program to perform Gaussian elim-
ination on a square matrix, A, using partial pivoting (Algorithm 60
as modified in Exercise 86).

1. At the end of the algorithm, reconstruct the matrices P , L,
and U and compute a relative norm ‖A− PLU‖/ ‖A‖. (You
can use the Frobenius norm ‖A‖2fro =

∑
ij |Aij |2.) The norm

should be zero or nearly zero. (Alternatively, perform the
calculation ‖A − PLU‖/ ‖A‖ without explicitly constructing
P , L, and U .)
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2. To help debug your work, at the beginning of each of the col-
umn reduction steps (the second for i= loop), reconstruct
the matrices P , L, and U and compute a norm ‖A− PLU‖.
The norm should be zero or nearly zero each time through the
loop. (Alternatively, compute the norm without reconstruct-
ing the matrix factors.) Once you are confident your code is
correct, you can eliminate this debugging code.

3. Test your code on the N×N matrix consisting of all ones ev-
erywhere except that the diagonal values are zero. Use several
different values of N as tests. The 3× 3 case looks like

A =

 0 1 1
1 0 1
1 1 0

 (1.4)

Exercise 96 (This exercise continues Exercise 95.) Write a com-
puter program to perform the backsubstitution steps, given the com-
pressed matrix W arising from Gaussian elimination with scaled
partial pivoting. Test your work by applying it to the N × N
matrix A described in Exercise 95 with right side given by b =
(N−1, N−1, . . . , N−1)t, whose solution is x = (1, 1, . . . , 1)t. Use
several values of N for your tests.





Chapter 2

Norms and Error Analysis

“fallor ergo sum.”

- Augustine.

In Gaussian elimination there are a large number of calcula-
tions. Each operation depends upon all previous ones. Thus,
round off error occurs and propagates. It is critically important
to understand and quantify precisely what “numerically singular”
or “ill conditioned” means, to quantify it and to predict its effect
on solution cost and accuracy. We begin this study in this chapter.

2.1 FENLA and Iterative Improvement

An expert is someone who knows some of the worst
mistakes that can be made in his subject, and how to
avoid them.

- Heisenberg, Werner (1901-1976), Physics and Be-
yond. 1971.

41
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If the matrix is numerically singular or ill-conditioned, it can be
difficult to obtain the accuracy needed in the solution of the system
Ax = b by Gaussian elimination alone. Iterative improvement is
an algorithm to increase the accuracy of a solution to Ax = b. The
basic condition needed is that Ax = b can be solved to at least
one significant digit of accuracy. Iterative improvement is based
on the Fundamental Equation of Numerical Linear Algebra (the
“FENLA”).

Theorem 97 (FENLA) Let AN×N , bn×1 and let x be the true
solution to Ax = b. Let x̂ be some other vector. The error e := x−x̂
and residual r := b−Ax̂ are related by

Ae = r.

Proof. Since e = x− x̂ , Ae = A(x− x̂) = Ax− Ax̂. Then, since
Ax = b,

Ae = Ax−Ax̂ = b−Ax̂ = r.

Given a candidate for a solution x̂, if we could find its error
ê(= x− x̂), then we would recover the true solution

x = x̂+ ê (since x̂+ ê = x̂+ (x− x̂) = x).

Thus we can say the following two problems are equivalent:

Problem 1: Solve Ax = b.

Problem 2: Guess x̂, compute r̂ = b−Ax̂, solve Aê = r̂, and set
x = x̂+ ê.

This equivalence is the basis of iterative improvement.

Algorithm 98 (Iterative Improvement) Given a matrix A, a
RHS vector b, and a precision t, find an approximate solution x to
the equation Ax = b with at least t correct significant digits.
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Compute the A = LU factorization of A in working precision
Solve Ax = b for candidate solution x̂ in working precision
for k=1:maxNumberOfIterations

Calculate the residual

r = b−Ax̂ (2.1)

in extended precision
Solve Ae = r (by doing 2 backsolves in working precision) for

an approximate error ê
Replace x̂ with x̂+ ê
if ‖ê‖ ≤ 10−t‖x̂‖
return

end

end

error(’The iteration did not achieve the required error.’)

It is not critical to perform the residual calculation (2.1) in
higher precision than that used to store the matrix A and vector
x, but it substantially improves the algorithm’s convergence and,
in cases with extremely large condition numbers, is required for
convergence.

Using extended precision for the residual may require several
iteration steps, and the number of steps needed increases as A be-
comes more ill-conditioned, but in all cases, it is much cheaper than
computing the LU decomposition of A itself in extended precision.
Thus, it is almost always performed in good packages.

Example 99 Suppose the matrix A is so ill conditioned that solv-
ing with it only gives 2 significant digits of accuracy. Stepping
through iterative improvement we have:

x̂ = 2 : sig-digits
Calculate r̂ = b−Ax̂
Solve Aê = r̂
ê = 2 : sig-digits
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Then x̂⇐ x̂+ ê : 4 significant digits.
ê = 2 : sig-digits
Then x̂⇐ x̂+ ê : 6 significant digits, and so on until the desired

accuracy is attained.

Example 100 On a 3 significant digit computer, suppose we solve
Ax = b where (to 3 significant digits)

b = [5.90 7.40 10.0]t

and

A =

 1.00 1.20 1.50
1.20 1.50 2.00
1.50 2.00 3.00

 .
The exact solution of Ax = b is

x = [2.00 2.00 1.00]t.

Step 1: Computing A = LU in working precision (using 3 signif-
icant digits in this example) gives

A =

 1.00 1.20 1.50
1.20 1.50 2.00
1.50 2.00 3.00


=

 1.00 0.00 0.00
1.20 1.00 0.00
1.50 3.33 1.00

 1.00 1.20 1.50
0.00 0.0600 0.200
0.00 0.00 0.0840

 .
Step 2: Solving Ax = b in 3 significant digit arithmetic using 2
backsolves (Ly = b and Ux = y) gives

x̂ = [1.87 2.17 0.952]t.

Step 3: A “double precision” (6 digit) calculation of the residual
gives

r = [−0.00200 − 0.00300 − 0.00100]t.
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Step 4: The single precision (3 digit) solution of LUê = r is

ê = [0.129 − 0.168 0.0476]t.

Step 5: Update solution

x̂ = x̂OLD + ê = [2.00 2.00 1.00]t

which is accurate to the full 3 significant digits!

Exercise 101 Algorithm 98 describes iterative improvement. For
each step, give the estimate of its computational complexity (its
“FLOP count”).

Exercise 102 Show that, when double precision is desired, it can
be more efficient for large N to compute the LU factorization in
single precision and use iterative refinement instead of using double
precision for the factorization and solution. The algorithm can be
described as:

1. Convert the matrix A to single precision from double preci-
sion.

2. Find the factors L and U in single precision.

3. Use Algorithm 98 to improve the accuracy of the solution.
Use A in double precision to compute the double precision
residual.

Estimate the FLOP count for the algorithm as outlined above,
assuming ten iterations are necessary for convergence. Count each
double precision operation as two FLOPs and count each change
of precision as one FLOP. Compare this value with the operation
count for double precision factorization with a pair of double pre-
cision backsolves.
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2.2 Vector Norms

“Intuition is a gift... . Rare is the expert who com-
bines an informed opinion with a strong respect for his
own intuition.”

- G. de Becker, 1997.

Iterative improvement introduces interesting questions like:

• How to measure improvement in an answer?

• How to measure residuals?

• How to quantify ill-conditioning?

The answer to all these questions involves norms. A norm is a
generalization of length and is used to measure the size of a vector
or a matrix.

Definition 103 Given x ∈ RN , a norm of x, ‖x‖, is a nonnegative
real number satisfying

• (Definiteness) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0 .

• (Homogeneity) For any real number α and all x ∈ RN

‖αx‖ = |α|‖x‖.

• (The triangle inequality) : For all x, y ∈ RN

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Example 104 (Important norms) (i) The Euclidean, or `2,
norm:

‖x‖2 =
√
x · x =

(
|x1|2 + |x2|2 + . . .+ |xN |2

)1/2
.
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(ii) 1−norm or `1 norm:

‖x‖1 := |x1|+ |x2|+ . . .+ |xN |.

(iii) The max norm or `∞ norm

‖x‖∞ := max
1≤j≤N

|xj |.

(iv) The p−norm or `p norm: for 1 ≤ p <∞,

‖x‖p = (|x1|p + |x2|p + . . .+ |xN |p)1/p
.

The max−norm is called the `∞ norm because

‖x‖p → max
j
|xj |, as p→∞.

Proposition 105 (Norm Equivalence) For all x ∈ RN have:

||x||∞ ≤ ||x||1 ≤ N ||x||∞

If the number of variables N is large, it is common to re-
define these norms to make them independent of n by requiring
‖(1, 1, . . . , 1)‖ = 1. This gives the perfectly acceptable modifica-
tions of (i)-(iv) below:

(i) ‖x‖RMS :=
√

1
N

∑N
j=1 x

2
j , (the “Root, Mean, Square”norm).

(ii) ‖x‖AVG := 1
N (|x1|+ . . .+ |xN |), the Average size of the en-

tries.
The weighted norms ‖ · ‖1 (the average), ‖ · ‖2 (the root mean

square) and ‖ · ‖∞ (the maximum) are by far the most important.
Only the ‖ · ‖2 or RMS norm comes from an inner product. Other
weights are possible, such as

|||x||| :=

√√√√ N∑
j=1

ωjx2
j , where ωj> 0 and

N∑
j=1

ωj = 1.
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Weighted norms used in practice in cases where different compo-
nents have different significance, uncertainty, impact on the final
answer etc.

Exercise 106 Show that ‖x‖p → maxj |xj |, as p→∞.

Norms that come from inner products

The Euclidean or l2 norm comes from the usual dot product by

||x||22 = x · x =
∑
|xi|2.

Dot products open geometry as a tool for analysis and for under-
standing since the angle1 between two vectors x, y can be defined
through the dot product by

cos(θ) =
x · y

||x||2||y||2
.

Thus norms that are induced by dot products are special because
they increase the number of tools available for analysis.

Definition 107 An inner product on RN is a map: x, y → 〈x, y〉∗,
mapping RN × RN → R and satisfying the following

• (definiteness) 〈x, x〉∗ ≥ 0 and 〈x, x〉∗ = 0 if and only if x = 0
.

• (bilinearity) For any real number α, β and all x, y, z ∈ RN

〈αx+ βy, z〉∗ = α〈x, z〉∗ + β〈y, z〉∗.

1In statistics this is called the correlation between x and y. If the value is
1 the vectors point the same way and are thus perfectly correlated. If its −1
they are said to be anti-correlated.



2.2. VECTOR NORMS 49

• (symmetry) : For all x, y ∈ RN

〈x, y〉∗ = 〈y, x〉∗.

Proposition 108 (Inner product induces a norm) If 〈·, ·〉∗ is
an inner product then ||x||∗ =

√
〈x, x〉∗ is the norm induced by the

inner product.

Since an inner product is a generalization of the usual euclidean
dot product it is therefore no surprise that norms and angles can
be defined through any given dot product by

Induced norm: ||x||∗ =
√
〈x, x〉∗

Induced angle: cos∗(θ) = 〈x,y〉∗
||x||∗ ||y||∗ .

The following definition shows that orthogonality has the ex-
pected meaning.

Definition 109 Vectors x, y are orthogonal in the inner product
〈x, y〉∗ if 〈x, y〉∗ = 0 (and thus the induced angle between them is
π/2). Vectors x, y are orthonormal if they are orthogonal and
have induced norm one ||x||∗ = ||y||∗ = 1. A set of vectors is
orthogonal (respectively orthonormal) if elements are pairwise or-
thogonal (respectively orthonormal).

We have used the subscript ∗ as a place holder in our definition
of inner product because it will be convenient to reserve 〈x, y〉 for
the usual euclidean dot product:

〈x, y〉 :=

N∑
j=1

xjyj = x · y.

Vectors are operated upon by matrices so the question of how an-
gles can change thereby can be important. There is one special
case with an easy answer.



50 CHAPTER 2. NORMS AND ERROR ANALYSIS

Theorem 110 Let 〈x, y〉 denote the usual euclidean inner product.
If A is an N ×N real, symmetric matrix (i.e., if A = At or aij =
aji) then for all x, y

〈Ax, y〉 = 〈x,Ay〉.

More generally, for all x, y and any N ×N matrix A

〈Ax, y〉 = 〈x,Aty〉.

Proof. We calculate (switching the double sum2)

〈Ax, y〉 =

N∑
i=1

 N∑
j=1

aijxj

 yi

=

N∑
j=1

(
N∑
i=1

aijyi

)
xj = 〈x,Aty〉.

The property that 〈Ax, y〉 = 〈x,Ay〉 is called self-adjointness
with respect to the given inner product 〈·, ·〉. If the inner product
changes, the matrices that are self-adjoint change and must be
redetermined from scratch.

Often the problem under consideration will induce the norm
one is forced to work with. One common example occurs with
SPD matrices.

Definition 111 An N×N matrix A is symmetric positive definite,
SPD for short, if

• A is symmetric: At = A, and

• A is positive definite: for all x 6= 0, xtAx > 0.

2Every proof involving a double sum seems to be done by switching their
order then noticing what you get.
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SPD matrices can be used to induce inner products and norms
as follows.

Definition 112 Suppose A is SPD. The A inner product and A
norm are

〈x, y〉A := xtAy, and ||x||A :=
√
〈x, x〉A

The A inner product is of special importance for solutions of
Ax = b when A is SPD. Indeed, using the equation Ax = b, 〈x, y〉A
can be calculated when A is SPD without knowing the vector x as
follows:

〈x, y〉A = xtAy = (Ax)
t
y = bty.

Exercise 113 Prove that if 〈·, ·〉∗ is an inner product then ||x||∗ =√
〈x, x〉∗ is a norm.

Exercise 114 Prove that if A is SPD then 〈x, y〉A := xtAy is an
inner product. Show that A, A2, A3, ··· are self adjoint with respect
to the A inner product: 〈Akx, y〉A = 〈x,Aky〉A.

Exercise 115 If 〈·, ·〉∗ satisfies two but not all three conditions
of an inner product find which conditions in the definition of a
norm are satisfied and which are violated. Apply your analysis to
〈x, y〉A := xtAy when A is not SPD.

Exercise 116 The unit ball is {x : ||x||∗ ≤ 1}. Sketch the unit
ball in R2 for the 1, 2 and infinity norms. Note that the only
ball that looks ball-like is the one for the 2-norm. Sketch the unit
ball in the weighted 2 norm induced by the inner product 〈x, y〉 :=
(1/4)x1y1 + (1/9)x2y2.

Exercise 117 An N × N matrix is orthogonal if its columns are
N orthonormal (with respect to the usual euclidean inner product)
vectors. Show that if O is an orthogonal matrix then OTO = I,
and that ||Ox||2 = ||x||2.
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2.3 Matrix Norms

“Wir müssen wissen.

Wir werden wissen.”

- David Hilbert (1862-1943) [Engraved on his tomb-
stone in Göttingen.]

It is easy to define a norm on matrices by thinking of an N ×
N matrix as just an ordered collection of N2 real numbers. For
example, maxi,j |aij | is a norm as is the so called Frobenius norm,

‖A‖Frobenius :=

√√√√ n∑
j=1

n∑
i=1

a2
ij .

However, most such norms are not useful. Matrices multiply
vectors. Thus, a useful norm is one which can be used to bound
how much a vector grows when multiplied by A. Thus, under
y = Ax we seek a notion of ||A|| under which

‖y‖ = ‖Ax‖ ≤ ‖A‖‖x‖

Starting with the essential function a matrix norm must serve and
working backwards gives the following definition.

Definition 118 (Matrix Norm) Given an N ×N matrix A and
a vector norm ‖ · ‖, the induced matrix norm of A is defined by

‖A‖ = max
x∈RN ,x 6=0

‖Ax‖
‖x‖

.

By this definition, ‖A‖ is the smallest number such that

‖Ax‖ ≤ ‖A‖‖x‖ for all x ∈ RN .
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The property that ‖Ax‖ ≤ ‖A‖‖x‖ for all x ∈ RN is the key using
matrix norms. It also follows easily from the definition of matrix
norms that

‖I‖ = 1.

Many features of the induced matrix norm follow immediately from
properties of the starting vector norm, such as the following.

Theorem 119 (A norm on matrices) The induced matrix norm
is a norm on matrices because if A,B are N ×N matrices and α
a scalar, then

1. ||αA‖ = |α|‖A||.

2. ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A ≡ 0.

3. ||A+B‖ ≤ ‖A‖+ ‖B‖,.

Proof. Exercise!
Other features follow from the fact that matrix norms split

products apart, such as the following.

Theorem 120 (Properties of Matrix Norms) Let A,B be N×
N matrices and α a scalar. Then

1. ‖Ax‖ ≤ ‖A‖‖x‖.

2. ‖AB‖ ≤ ‖A‖‖B‖.

3. If A is invertible, then for all x

‖x‖
‖A−1‖

≤ ‖Ax‖ ≤ ‖A‖‖x‖.

4. ‖A‖ = max‖x‖=1,x∈RN ‖Ax‖.

5. ‖A−1‖ ≥ 1
‖A‖ .
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6. For any N ×N matrix A and ‖ · ‖ any matrix norm:

|λ(A)| ≤ ‖A‖.

Proof. We will prove some of these to show how ‖Ax‖ ≤ ‖A‖‖x‖
is used in getting bounds on the action if a matrix. For example,
note that A−1Ax = x. Thus

‖x‖ ≤ ‖A−1‖‖Ax‖,

and so
‖x‖
‖A−1‖

≤ ‖Ax‖ ≤ ‖A‖‖x‖.

For (5), A−1A = I so ‖I‖ = 1 ≤ ‖A−1‖‖A‖ (using (2)), and
‖A−1‖ ≥ 1/‖A‖. For number 6, since Aφ = λφ. Thus |λ|‖φ‖ =
‖Aφ‖ ≤ ‖A‖‖φ‖.

Remark 121 The fundamental property that ‖AB‖ ≤ ‖A‖‖B‖
for all A,B shows the key to using it to structure proofs. As a

first example, consider the above proof of ‖x‖
‖A−1‖ ≤ ‖Ax‖. How

is one to arrive at this proof? To begin rearrange so it becomes
‖x‖ ≤ ‖A−1‖‖Ax‖. The top (upper) side of such an inequality
must come from splitting a product apart. This suggests starting
with ‖A−1Ax‖ ≤ ‖A−1‖‖Ax‖. Next observe the LHS is just ‖x‖.

The matrix norms is defined in a nonconstructive way. However,
there are a few special cases when the norm can be calculated:

• ‖A‖∞ is calculable; it is the maximum row sum. It has
value

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.
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• ‖A‖1 is calculable; it is the maximum column sum. It has
value

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |.

• If A = At is symmetric then ‖A‖2 is calculable. ‖A‖2 =
max{|λ| : λ is an eigenvalue of A}

• For general AN×N , ‖A‖2 is calculable. It is the largest sin-
gular value of A, or the square root of the largest eigenvalue
of AtA:

‖A‖2 =
√

max{λ : λ is an eigenvalue of AtA}.

Example 122 Let A be the 2× 2 matrix

A =

[
+1 −2
−3 +4

]
.

We calculate

||A||∞ = max{|1|+ | − 2|, | − 3|+ |4|} = max{3, 7} = 7,

||A||1 = max{|1|+ | − 3|, | − 2|+ |4|} = max{4, 6} = 6.

Since A is not symmetric, we can calculate the 2 norm either from
the singular values of A or directly from the definition of A. For
the 2× 2 case we can do the latter. Recall

||A||2 = max{||Ax||2 : ||x||2 = 1}.

Every unit vector in the plane can be written as

x = (cos θ, sin θ)t for some θ.

We compute

Ax = (cos θ − 2 sin θ,−3 cos θ + 4 sin θ)t,

||Ax||22 = (cos θ − 2 sin θ)2 + (−3 cos θ + 4 sin θ)2 ≡ f(θ).
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Thus

||Ax||2 =
√

max
0≤θ≤2π

f(θ),

which is a calculus problem (Exercise 123).
Alternately we can compute

AtA =

[
10 −14
−14 20

]
.

Then we calculate the eigenvalues of AtA by

0 = det

[
10− λ −14
−14 20− λ

]
⇒ (10− λ)(20− λ)− 142 = 0.

whereupon

||Ax||2 =
√

max{λ1, λ2},

Exercise 123 Complete the above two calculations of ||A||2.

Exercise 124 Calculate the 1, 2 and ∞ norms of A

A =

[
1 −3
−4 7

]
and

A =

[
1 −3
−3 7

]
.

Exercise 125 Show that an orthogonal change of variables pre-
serves the 2 norm: ||Ox||2 = ||x||2 if OtO = I .

Exercise 126 Prove that, for any induced matrix norm,

||I|| = 1, and

||A−1|| ≥ 1/||A||.
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A few proofs

We next prove these claimed formulas.

Theorem 127 (Calculation of 2 norm of a symmetric matrix)
If A = At is symmetric then ‖A‖2 is given by

‖A‖2 = max{|λ| : λ is an eigenvalue of A}.

Proof. If A is symmetric then it is diagonalizable by a real or-
thogonal matrix3 O:

A = OtΛO, where OtO = I and Λ = diag(λi)

We then have by direct calculation

‖A‖22 = max
x∈RN ,x 6=0

(
‖Ax‖2
‖x‖2

)2

= max
x∈RN ,x 6=0

〈Ax,Ax〉
〈x, x〉

= max
x∈RN ,x 6=0

〈OtΛOx,OtAOx〉
〈x, x〉

= max
x∈RN ,x 6=0

〈ΛOx,ΛOx〉
〈x, x〉

Now change variables on the RHS by y = Ox, x = Oty. An elemen-
tary calculation (Exercise 125) shows that an orthogonal change of
variables preserves the 2 norm: ‖Ox‖2 = ‖x‖2. This gives

‖A‖22 = max
y∈RN ,y=Ox6=0

〈Λy,Λy〉
||x||22

= max
y∈RN ,y 6=0

〈Λy,Λy〉
〈y, y〉

= max
y∈RN ,y 6=0

∑
i λ

2
i y

2
i∑

i y
2
i

= (|λ|max)2.

The proof the formulas for the 1 and infinity norms are a cal-
culation.

3Recall that an orthogonal matrix is one where the columns are mutually
orthonormal. This implies OtO = I .
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Theorem 128 (Matrix 1-norm and ∞-norm) We have

‖A‖∞ = max
1≤i≤N

N∑
j=1

|aij |,

‖A‖1 = max
1≤j≤N

N∑
i=1

|aij |.

Proof. Consider ‖A‖1. Partition A by column vectors (so −→aj
denotes the jth column) as

A = [−→a1 |−→a2| −→a3 |· · ·| −→aN ] .

Then we have
Ax = x1

−→a1 + · · ·+ xN
−→aN .

Thus, by the triangle inequality

||Ax||1 ≤ |x1| · ||−→a1||1 + · · ·+ |xN | · ||−→aN ||1

≤

(∑
i

|xi|

)(
max
j
||−→aj ||1

)
= ‖x‖1

(
max

1≤j≤N

N∑
i=1

|aij |

)
.

Dividing by ‖x‖1 we have thus

‖A‖1 ≤ max
1≤j≤N

N∑
i=1

|aij |.

To prove equality, we take j∗ to be the index (of the largest column
vector) for which maxj ||−→aj ||1 = ||−→aj∗ ||1 and choose x = ej∗ . Then

Aej∗ = 1−→a j∗ and

||Aej∗ ||1
||ej∗ ||1

=
||aj∗ ||1
||ej∗ ||1

= ||aj∗ ||1 = max
1≤j≤N

N∑
i=1

|aij |.

We leave the proof for ‖A‖∞ = max1≤i≤N
∑N
j=1 |aij | as an exercise.
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“He (Gill) climbed up and down the lower half of the
rock over and over, memorizing the moves... He says
that ‘... going up and down, up and down eventually...
your mind goes blank and you climb by well cultivated
instinct’. ”

J. Krakauer, from his book Eiger Dreams.

Exercise 129 Show that ‖A‖∞ = max1≤i≤n
∑n
j=1 |aij |. Hint:

(Ax)i = |
n∑
j=1

aijxj | ≤
n∑
j=1

|aij ||xj | ≤

(
max
j
|xj |
) n∑
j=1

|aij | = ||x||∞ · (Sum of row i) .

Exercise 130 Show that for A an N ×N symmetric matrix

‖A‖2Frobenius = trace(AtA) =
∑
i

λ2
i .

Exercise 131 If ||·|| is a vector norm and U an N×N nonsingular
matrix, show that ||x||∗ := ||Ux|| is a vector norm. When || · || =
|| · ||2, find a formula for the matrix norm induced by || · ||∗.

2.4 Error, Residual and Condition Number

We [he and Halmos] share a philosophy about linear
algebra: we think basis-free, we write basis-free , but
when the chips are down we close the office door and
compute with matrices like fury.

- Kaplansky, Irving, Paul Halmos: Celebrating 50
Years of Mathematics.

“What is now proved was once only imagin’d.”
- W. Blake , The Marriage of Heaven and Hell, 1790-

3.



60 CHAPTER 2. NORMS AND ERROR ANALYSIS

If we solve Ax = b and produce an approximate solution x̂, then
the fundamental equation of numerical linear algebra, Ae = r, links
error and residual, where

error : = e = x− x̂,
residual : = r = b−Ax̂.

Recall that, while e = 0 if and only if r = 0, there are cases where
small residuals and large errors coexist. For example, the point
P = (0.5, 0.7) and the 2× 2 linear system

x− y = 0

−0.8x+ y = 1/2.

are plotted below.

1 2 3 4 5

1

2

3

4

5

x

y

Lines L1, L2 and the point P

The point P is close to both lines so the residual of P is small.
However, it is far from the solution (the lines’ intersections). We
have seen the following qualitative features of this linkage:
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• If A is invertible then r = 0 if and only if e = 0.

• The residual is computable but e is not exactly computable
in a useful sense since solving Ae = r for e is comparable to
solving Ax = b for x.

• If A is well conditioned then ||r|| and ||e|| are comparable in
size.

• If A is ill conditioned then ||r|| can be small while ||e|| is
large.

• det(A) cannot be the right way to quantity this connection.
Starting with Ae = r we have (αA) e = αr and rescaling can
make det(αA) = 1 using det(αA) = αndet(A).

This section makes a precise quantitative connection between
the size of errors and residuals and, in the process, quantify condi-
tioning.

Definition 132 Let ‖ · ‖ be a matrix norm. Then the condition
number of the matrix A induced by the vector norm ‖ · ‖ is

cond‖·‖(A) := ‖A−1‖‖A‖.

Usually the norm in question will be clear from the context
in which cond(A) occurs so usually the subscript of the norm is
omitted. The condition number of a matrix is also often denoted
by the Greek letter kappa:

κ(A) = cond(A) = condition number of A.

Theorem 133 (Relative Error ≤ cond(A)×Relative Residual)
Let Ax = b and let x̂ be an approximation to the solution x. With
r = b−Ax̂

‖x− x̂‖
‖x‖

≤ cond(A)
‖r‖
‖b‖

. (2.2)
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Proof. Begin with Ae = r then e = A−1r. Thus,

‖e‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖. (2.3)

Since Ax = b we also know ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖. Dividing the
smaller side of (2.3) by the larger quantity and the larger side of
(2.3) by the smaller gives

‖e‖
‖A‖‖x‖

≤ ‖A
−1‖‖r‖
‖b‖

.

Rearrangement proves the theorem.
Equation (2.2) quantifies ill-conditioning: the larger cond(A)

is, the more ill-conditioned the matrix A.

Remark 134 The manipulations in the above proof are typical of
ones in numerical linear algebra and the actual result is a cor-
nerstone of the field. Note the pattern: we desire an inequality
||error|| ≤ ||terms||. Thus, we begin with an equation error =
product then take norms of both sides.

Example 135 ‖I‖ = 1 so cond(I) = 1 in any induced matrix
norm. Similarly for an orthogonal matrix cond2(O) = 1.

Example 136 Let

A =

[
1.01 0.99
.99 1.01

]
then ‖A‖∞ = 2. Since for any 2× 2 matrix4

[
a b
c d

]−1

=
1

det(A)

[
d −b
−c a

]
,

4This formula for the inverse of a 2 × 2 matrix is handy for constructing
explicit 2×2 examples wiith various features. It does not hold for 3×3 matrices.
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we can calculate A−1 exactly

A−1 =

[
25.25 −24.75
−24.75 25.25

]
.

Hence, ‖A−1‖∞ = 50. Thus cond(A) = 100 and errors can be (at
most) 100 × larger than residuals.

Example 137 Let A be as above and b = (2 2)t

A =

[
1.01 0.99
.099 1.01

]
, b =

[
2
2

]
,

so x = (1 1)t. Consider x̂ = (2 0)t. The error is e = x − x̂ =
(−1 1)t and ‖e‖∞ = 1. The residual of x̂ is

r = b−Ax̂ =

[
−0.02
−0.02

]
.

As ‖r‖∞ = 0.02 we see

‖r‖
‖b‖

=
0.02

2
and

‖e‖
‖x‖

=
1

1

so the error is exactly 100× larger than the residual!

Example 138 (The Hilbert Matrix) The N × N Hilbert ma-
trix HN×N is the matrix with entries

Hij =
1

i+ j − 1
, 1 ≤ i, j ≤ n.

This matrix is extremely ill conditioned even for quite moderate
values on n.
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Example 139 Let x = (1.0, 1.0)t and

A =

[
1.000 2.000
.499 1.001

]
, b =

[
3.00
1.50

]
,

Given x̂ = (2.00 0.500)t we calculate r = b − Ax̂ = (0, 0.0015)t

which is “small”in both an absolute and relative sense. As in the
previous example we can find A−1 and then calculate ‖A−1‖∞. We
find

‖A‖∞ = 3, ‖A−1‖∞ =

∥∥∥∥[ 333.67 −666.67
−166.67 333.33

]∥∥∥∥
∞

= 1000.34.

Thus,
cond(A) = 3001.02

and the relative residual can be 3000× smaller that the relative
error. Indeed, we find

‖x− x̂‖∞
‖x‖∞

= 1, and
‖r‖∞
‖b‖∞

= 0.0045.

Example 140 Calculate cond(HN ), for N = 2, 3, · · · , 13. (This
is easily done in Matlab.) Plot cond(H) vs N various ways and
try to find its growth rate. Do a literature search and find it.

Exercise 141 Suppose Ax = b and that x̂ is an approximation to
x. Prove the result of Theorem 133 that

||x− x̂||
||x||

≤ cond||·||(A)
||r||
||b||

.

Prove the associated lower bound

||x− x̂||
||x||

≥ [1/cond||·||(A)]
||r||
||b||

.

Hint: Think about which way the inequalities must go to have the
error on top.
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Exercise 142 Let A be the following 2×2 symmetric matrix. Find
the eigenvalues of A and the 2 norm of A and cond2(A):

A =

[
1 2
2 4

]
.

Exercise 143 Show that for any square matrix (not necessarily
symmetric) cond2(A) ≥ |λ|max/|λ|min.

Exercise 144 1. If cond(A) = 106 and you solve Ax = b on
a computer with 7 significant digits (base 10), What is the
expected number of significant digits of accuracy of the solu-
tion?

2. Let Ax = b and x̂ let be some approximation to x, e = x −
x̂, r = b−Ax̂.

3. Show that Ae = r and explain at least 3 places where this
equation is useful or important in numerical linear algebra.

4. Show that:

||e||/||x|| ≤ cond(A)||r||/||b||

2.5 Backward Error Analysis

One of the principal objects of theoretical research
in my department of knowledge is to find the point
of view from which the subject appears in its greatest
simplicity.

- Gibbs, Josiah Willard (1839 - 1903)

For many problems in numerical linear algebra results of the
following type have been proven by meticulously tracking through
computer arithmetic step by step in the algorithm under consider-
ation. It has been verified in so many different settings that it has
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become something between a meta theorem and a philosophical
principle of numerical linear algebra.

[Basic Result of Backward Error Analysis]5 The result
x̂ of solving Ax = b by Gaussian elimination in finite preci-
sion arithmetic subject to rounding errors is precisely the
same as the exact solution of a perturbed problem

(A+ E)x̂ = b+ f (2.4)

where

‖E‖
||A||

,
‖f‖
||b||

= O(machine precision).

First we consider the effect of perturbations to the matrix A.
Since the entries in the matrix A are stored in finite precision,
these errors occur even if all subsequent calculations in Gaussian
elimination were done in infinite precision arithmetic.

Theorem 145 (Effect of Storage errors in A) Let A be an N×
N matrix. Suppose Ax = b and (A+ E)x̂ = b. Then,

‖x− x̂‖
‖x̂‖

≤ cond(A)
‖E‖
‖A‖

.

Proof. The proof has a well defined strategy that we shall use in
other proofs:

5This has been proven for most matrices A. There are a few rare types of
matrices for which it is not yet proven and it is an open question if it holds for
all matrices (i.e., for those rare examples) without some adjustments.
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Step 1: By subtraction get an equation for the error driven by
the perturbation:

Ax = b

−(Ax̂ = b− Ex̂)

subtract

A(x− x̂) = Ex̂

x− x̂ = A−1Ex̂

Step 2: Bound error by RHS:

||x− x̂|| = ||A−1Ex̂|| ≤ ||A−1|| · ||E|| · ||x̂||.

Step 3: Rearrange to write in terms of relative quantities and
condition numbers:

‖x− x̂‖
‖x̂‖

≤ cond(A)
‖E‖
‖A‖

.

Theorem 146 (Effect of Storage Errors in b) Let Ax = b and
Ax̂ = b+ f . Then

‖x− x̂‖
‖x‖

≤ cond(A)
‖f‖
‖b‖

.

Proof. Since Ax̂ = Ax+f , x−x̂ = −A−1f , ‖x−x̂‖ ≤ ‖A−1‖‖f‖ =

cond(A) ‖f‖‖A‖ ≤ cond(A)‖f‖‖b‖ ‖x‖, because ‖b‖ ≤ ‖A‖‖x‖.

Remark 147 (Interpretation of cond(A)) When E is due to
roundoff errors ‖E‖/‖A‖ = O(machine precision). Then these re-
sults say that: cond(A) tells you how many significant digits are
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lost (worst case) when solving Ax = b. As an example, if machine
precision carries 7 significant digits, ‖E‖/‖A‖ = O(10−7), and if
cond(A) = 105 then x̂ will have at least 7−5 = 2 significant digits.

Other properties of cond(A) :

• cond(A) ≥ 1 and cond(I) = 1.

• Scaling A does not influence cond(A):

cond(αA) = cond(A), for any α 6= 0.

• cond(A) depends on the norm chosen but usually it is of the
same order of magnitude for different norms.

• cond(A) is not related to det(A). For example, scaling changes
det(A) but not cond(A):

det(αA) = αn det(A) but cond(αA) = cond(A)

• If A is symmetric then

cond2(A) = |λ|max/|λ|min.

• If A is symmetric, positive definite and ‖ · ‖ = ‖ · ‖2, then
cond(A) equals the spectral condition number, λmax/λmin

cond2(A) = λmax/λmin.

• cond(A) = cond(A−1).

• We shall see in a later chapter that the error in eigenvalue
and eigenvector calculations is also governed by cond(A).

The most important other result involving cond(A) is for the
perturbed system when there are perturbations in both A and b.
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The General Case

Say what you know, do what you must, come what may.
-Sonja Kovalevsky, [Motto on her paper “On the Prob-
lem of the Rotation of a Solid Body about a Fixed
Point.”]

We show next that the error in

(A+ E)x̂ = b+ f compared to the true system: Ax = b

is also governed by cond(A). This requires some technical prepa-
ration.

Lemma 148 (Spectral localization) For any N ×N matrix B
and ‖ · ‖ any matrix norm:

|λ(B)| ≤ ‖B‖.

Proof. Bφ = λφ. Thus |λ|‖φ‖ = ‖Bφ‖ ≤ ‖B‖‖φ‖.
This result holds for any matrix norm. Thus, various norms of

A can be calculated and the smallest used are an inclusion radius
for the eigenvalues of A.

Theorem 149 Let BN×N . Then we have

lim
n→∞

Bn = 0 if and only if there exists a norm ‖ · ‖ with ‖B‖ < 1.

Proof. We prove ‖B‖ < 1 ⇒ ‖Bn‖ → 0. This is easy; The other
direction will be proven later6. We have that ‖B2‖ = ‖B · B‖ ≤

6Briefly: Exercise 160 shows that given a matrix B and any ε > 0, there
exists a norm within ε of spr(B). With this result, if there does not exist a
norm with ‖B‖ < 1, then there is a λ(B) with |λ| = spr(B) > 1. Picking x =
eigenvector of λ, we calculate: |Bnx| = |λnx| → ∞.
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‖B‖ · ‖B‖ = ‖B‖2. By induction it follows that ‖Bn‖ ≤ ‖B‖n and
thus

‖Bn‖ ≤ ‖B‖n → 0 as n→∞.

We shall use the following special case of the spectral mapping
theorem.

Lemma 150 The eigenvalues of (I −B)
−1

are (1− λ)−1 where λ
is an eigenvalue of B.

Proof. Let Bφ = λφ. Then, φ − Bφ = φ − λφ and (I − B)φ =
(1 − λ)φ. Inverting we see that (1 − λ)−1 is an eigenvalue of

(I −B)
−1

. Working backwards (with details left as an exercise)

it follows similarly that (1 − λ)−1 an eigenvalue of (I −B)
−1

im-
plies λ is an eigenvalue of B.

Theorem 151 (The Neumann Lemma) Let BN×N be given,
with ‖B‖ < 1. Then (I −B)−1 exists and

(I −B)−1 = lim
N→∞

(
N∑
`=0

B`

)
.

Proof. IDEA OF PROOF: Just like summing a geometric series:

S = 1 + α+ α2 + · · ·+ αN

αS = α+ · · ·+ αN + αN+1

(1− α)S = 1− αN+1

To apply this idea, note that since |λ| ≤ ‖B‖, |λ| < 1. Further,
λ(I − B) = 1 − λ(B) by the spectral mapping theorem7. Since

7An elementary proof is because the eigenvalues of λ(B) are roots of the
polynomial det(λI −B) = − det((1− λ)I − (I −B)).
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|λ(B)| < 1, λ(I −B) 6= 0 and (I −B)−1 exists. We verify that the
inverse is as claimed. To begin, note that

(I −B)(I +B + · · ·+BN ) = I −BN+1.

Since BN → 0 as N →∞

I +B + · · ·+BN =

= (I −B)−1(I −BN+1) = (I −B)−1 − (I −B)−1BBN → (I −B)−1

As an application of the Neumann lemma we have the following.

Corollary 152 (Perturbation Lemma) Suppose A is invertible
and ‖A−1‖‖E‖ < 1, then A+ E is invertible and

‖(A+ E)−1‖ ≤ ‖A−1‖
1− ‖A−1‖‖E‖

Exercise 153 Prove this corollary.

The ingredients are now in place. We give the proof of the
general case.

Theorem 154 (The General Case) Let

Ax = b, (A+ E)x̂ = b+ f.

Assume A−1 exists and

‖A−1‖‖E‖ = cond(A)
‖E‖
‖A‖

< 1.

Then
‖x− x̂‖
‖x‖

≤ cond(A)

1− ‖A−1‖‖E‖

{
‖E‖
‖A‖

+
‖f‖
‖b‖

}
.
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Proof. The proof uses same ideas but is a bit more delicate in the
order of steps. First8,

Ax = b⇐⇒(A+ E)x = b+ Ex

(A+ E)x̂ = b+ f

(A+ E)e = Ex− f
e = (A+ E)−1(Ex− f)

‖e‖ ≤ ‖(A+ E)−1‖(‖E‖‖x‖+ ‖f‖)
Now

Ax = b so

{
x = A−1b, ‖x‖ ≤ ‖A−1‖‖b‖
‖b‖ ≤ ‖A‖‖x‖, and ‖x‖ ≥ ‖A‖−1‖b‖

Thus,

‖e‖
‖x‖
≤ ‖(A+ E)−1‖

(
‖E‖‖x‖
‖x‖

+
‖f‖
‖x‖

)
‖e‖
‖x‖
≤ ‖(A+ E)−1‖

‖E‖+ ‖A‖︸︷︷︸
factor out this A

‖f‖
‖b‖


‖e‖
‖x‖
≤ ‖A‖‖(A+ E)−1‖

(
‖E‖
‖A‖

+
‖f‖
‖b‖

)
.

Finally, rearrange terms after using

‖(A+ E)−1‖ ≤ ‖A−1‖
1− ‖A−1‖‖E‖

.

8The other natural way to start is to rewrite

Ax = b⇐⇒(A+ E)x = b+ Ex

Ax̂ = b+ f − Ex̂

e = A−1(f − Ex̂)

Since there are 2 natural starting points, the strategy is to try one and if it
fails, figure out why then try the other.
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Remark 155 (How big is the RHS?) If ‖A−1‖‖E‖ � 1, we
can estimate (e.g. 1

1−α ' 1 + α)

1

1− ‖A−1‖‖E‖
∼ 1 + ‖A−1‖‖E‖ = 1 + small

so that up to O(‖A−1‖‖E‖) the first order error is governed by
cond(A).

Remark 156 (Non-symmetric matrices.) The spectral condi-
tion number can be deceptive for non-symmetric matrices. Since
‖A‖ ≥ |λ(A)| for each of the eigenvalues λ(A) of A, ‖A‖ ≥ |λ|max(A)
and ‖A−1‖ ≥ |λ(A−1)|max = 1/|λ(A)|min. We thus have

cond(A) ≥ |λ(A)|max

|λ(A)|min

i.e., spectral condition number ≤ condition number. For example,
for A and B below, cond2(A) = cond2(B) = O(105) but we calculate

A =

[
1 −1
1 −1.00001

]
, and B =

[
1 −1
−1 1.00001

]
,

|λ|max(A)

|λ|min(A)
∼ 1, while

|λ|max(B)

|λ|min(B)
∼ 4 · 105.

There are many, other results related to Theorem 154. For
example, all the above upper bounds as relative errors can be com-
plemented by lower bounds, such as the following.

Theorem 157 Let Ax = b. Given x̂ let r = b−Ax̂. Then,

‖x− x̂‖
‖x‖

≥ 1

cond(A)

‖r‖
‖b‖

.
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Exercise 158 Prove the theorem.

The relative distance of a matrix A to the closest non-invertible
matrix is also related to cond(A). A proof due to Kahan9 is pre-
sented in Exercise 160.

Theorem 159 (Distance to nearest singular matrix) Suppose
A−1 exists. Then,

1

cond(A)
= min

{
‖A−B‖
‖A‖

: det(B) = 0

}
.

Exercise 160 Theorem 159 is a remarkable result. One proof due
to Kahan depends on ingenious choices of particular vectors and
matrices.

1. Show that if B is singular, then

1

cond(A)
≤ ‖A−B‖

‖A‖
.

Hint: If B is singular, there is an x so that Bx = 0 and
(A−B)x = Ax. Hence ‖A−B‖ ≥ ‖(A−B)x‖/‖x‖.

2. Show that there is a matrix B with

1

cond(A)
=
‖A−B‖
‖A‖

.

Hint: Show that it is possible to choose a vector y so that
‖A−1y‖ = ‖A−1‖‖y‖ 6= 0, set w = (A−1y)/‖A−1y‖2 and set
B = A− ywt.10

9W. Kahan, Numerical linear algebra, Canadian Math. Bulletin, 9 (1966),
pp. 757-801.

Kahan attributes the theorem to “Gastinel”without reference, but does
not seem to be attributing the proof. Possibly the Gastinel reference is: Noël
Gastinel, Matrices du second degré et normes générales en analyse numérique
linéaire, Publ. Sci. Tech. Ministére de l’Air Notes Tech. No. 110, Paris, 1962.

10Recall that wty = 〈w, y〉 is a scalar but that ywt, the “outer product,” is
a matrix.
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Example 161 (Perturbations of the right hand side b)
Consider the linear system with exact solution (1, 1):

3x1 + 4x2 = 7

5x1 − 2x2 = 3

and let f = (0.005,−0, 009)t so the RHS is changed to b + f =
(7.005, 2.991).
The solution is now

x̂ = (0.999 1.002)t.

Since a small change in the RHS produced a corresponding small
change in the solution we have evidence that[

3 4
5 −2

]
is well-conditioned.

Now modify the matrix to get the system (with exact solution
still (1, 1)t)

x1 + x2 = 2

1.01x1 + x2 = 2.01

This system is ill-conditioned. Indeed, change the RHS a little
bit to

b+ f = (2.005, 2.005)t.

The new solution x̂ is changed a lot to

x̂ = (0, 2.005)t.

Example 162 (Changes in the Coefficients) Suppose the co-
efficients of the system (solution = (1, 1)t)

1x1 + 1x2 = 2

1.01x1 + 1x2 = 2.01
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are changed slightly to read

1x1 + 1x2 = 2

1.0001x1 + 1x2 = 2.001.

Then, the exact solution changes wildly to

x̂ = (100,−98)t.

We still have a very small residual in the perturbed system

r1 = 2− (1 · 100 + 1 · (−98)) = 0

r2 = 2.001− (1.0001 · 100 + 1 · (−98)) = −0.009.

Example 163 (cond(A) and det(A) not related) Let ε denote
a small positive number. The matrix A below is ill conditioned and
its determinant is ε thus near zero:[

1 1
1 + ε 1

]
.

Rescaling the first row gives[
ε−1 ε−1

1 + ε 1

]
.

This matrix for an equivalent linear system has det(A) = 1 but
cond(A) = 2ε−1(ε−1 + 1 + ε) which can be high for ε small.

To summarize:

• If cond(A) = 10t then at most t significant digits are lost
when solving Ax = b.

• cond(A) = ‖A‖‖A−1‖ is the correct measure of ill-condition-
ing; in particular, it is scale invariant whereas det(A) is not.
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• For 2 × 2 linear systems representing two lines in the x1, x2

plane, cond(A) is related to the angle between the lines.

• The effects of roundoff errors and finite precision arithmetic
can be reduced to studying the sensitivity of the problem to
perturbations.

Exercise 164 Let Ax = b be a square linear system and suppose
you are given an approximate solution. Define the error and resid-
ual. State and prove an inequality relating the relative error, rela-
tive residual and cond(A).

Exercise 165 If A is a 2 × 2 matrix that is symmetric and pos-
itive definite then the cond2(A) = λmax(A)/λmin(A). If A is not
symmetric there can be very little connection between the condition
number and the so-called spectral condition number. Your goal in
this exercise is to find an example illustrating this. Specifically, find
a 2×2 matrix A with |λ|max(A)/|λ|min(A) = O(1), in other words of
moderate size, but cond2(A) very very large, cond2(A)� 1. HINT:
The matrix obviously cannot be symmetric. Try writing down the
matrix in Jordan canonical form

A =

[
a b
0 c

]
.

Exercise 166 If cond(A) = 105 and one solves Ax = b on a com-
puter with 8 significant digits (base 10), what is the expected number
of significant digits of accuracy in the answer? Explain how you
got the result.

Exercise 167 Often it is said that “The set of invertible matrices
is an open set under the matrix norm.” Formulate this sentence as
a mathematical theorem and prove it.
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Exercise 168 For B an N×N matrix. Show that for a > 0 small
enough then I − aB is invertible. What is the infinite sum in that
case:

∞∑
n=0

anBn?

Exercise 169 Verify that the determinant gives no insight into
conditioning. Calculate the determinant of the coefficient matrix
of the system

1x1 + 1x2 = 2

10.1x1 + 10x2 = 20.1.

Recalculate after the first equation is multiplied by 10:

10x1 + 10x2 = 20

10.1x1 + 10x2 = 20.1.

For more information see the articles and books of Wilkinson
[W61], [W63].
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Chapter 3

The MPP and the Curse of
Dimensionality

What we know is not much. What we do not know
is immense.

- de Laplace, Pierre-Simon (1749 - 1827)
(Allegedly his last words.) DeMorgan’s Budget of

Paradoxes.

3.1 Derivation

ceiiinosssttuv, (“Ut tensio, sic vis.”)
- Robert Hooke

The Poisson problem is the model problem in mechanics and
applied mathematics and the discrete Poisson problem is the model
problem in numerical linear algebra. Since practitioners of the mad
arts of numerical linear algebra will spend much of their (profes-
sional ) lives solving it, it is important to understand where it

81
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comes from. Suppose “something”is being studied and its distri-
bution is not uniform. Thus, the density of that “something” will
be variable in space and possibly change with time as well. Thus,
let

u(x, t) := density, where x = (x1, x2, x3).

For example, if something is heat, then the

heat density = ρCpT (x, t).

where

• ρ =material density,

• Cp =specific heat and

• T (x, t) =temperature at point x and time t.

To avoid using “something” too much, call it Q; keep the ex-
ample of heat in mind. Since Q is variable, it must be changing
and hence undergoing flow with “flux” defined as its rate of flow.
Thus, define

⇀

F := flux of Q at a point x at a time t.

Assumption: Q is conserved.

The mathematical realization of conservation is:
For any region B

d

dt
{total amount of Q in region B} =

Total flux of Q through ∂B +

Total contribution of any sources or sinks of Q inside B.
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Let, thus

f(x, t) := sources or sinks of Q per unit volume.

Mathematically, conservation becomes

d

dt

∫
B

u(x, t)dx+

∫
∂B

⇀

F (x, t) · n̂dσ =

∫
B

f(x, t)dx

where n̂ is the outward unit normal to B. We shall fix x and fix
the region B to be the ball about x of radius ε (denoted Bε(x)).
Recall the following fact from calculus about continuous functions
as well as the divergence theorem.

Lemma 170 (Averaging of continuous functions) If v(x) is
a continuous function then

lim
ε→0

1

vol(Bε)

∫
Bε

v(x′)dx′ = v(x),

The divergence theorem applies in regions with smooth bound-
aries, with polyhedral boundaries, with rough boundaries without
cusps, and many more regions. A domain must have a very exotic
boundary for the divergence theorem not to hold in it. Usually,
in applied math the question of “How exotic¿‘ is sidestepped, as
we do here, by just assuming the divergence theorem holds for the
domain. As usual, define a “regular domain” as one to which the
divergence theorem applies. We shall use if for spheres, which are
certainly regular domains.

Theorem 171 (The Divergence Theorem) If B is a regular
domain (in particular, B has no internal cusps) and if −→v (x) is a
C1 vector function then∫

B

div−→v dx =

∮
∂B

−→v · n̂dσ.
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The divergence theorem implies∫
∂B

−→
F · n̂dσ =

∫
B

div
−→
F dx

and thus (after dividing by vol(Bε)) conservation becomes:

d

dt

1

vol(Bε)

∫
Bε

u(x, t)dx+
1

vol(Bε)

∫
Bε

div(
−→
F )dx =

1

vol(Bε)

∫
Bε

fdx.

Letting ε→ 0 and using Lemma 170 gives the equation

∂u(x, t)

∂t
+ div(

−→
F ) = f (3.1)

This is one equation for four variables (u, F1, F2, F3). A connec-

tion between flux
⇀

F and density is needed. One basic description
of physical phenomena due to Aristotle is

“Nature abhors a vacuum”.

This suggests that Q often will flow from regions of high con-
centration to low concentration. For example, Fourier’s law of heat
conduction and Newton’s law of cooling state that

Heat F lux = −k∇T

where k is the (material dependent) thermal conductivity. The
analogous assumption for Q is

Assumption: (Q flows downhill) The flux in Q, is given
by −→

F = −k∇u.

Inserting this for
⇀

F in (3.1) closes the system for u(x, t):

∂u

∂t
− div(k∇u) = f(x, t).
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Recall that

∆u = div gradu =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

.

For simple materials, the value of the material parameter, k, can
be taken constant. Thus,

∂u

∂t
− k∆u = f(x, t),

If the process is at equilibrium (i.e. u = u(x), independent of t,
and f = f(x)) we have the model problem: find u(x) defined on a
domain Ω in Rd(d = 1, 2 or 3) satisfying

−∆u = f(x) inside Ω, u = 0 on the boundary ∂Ω. (3.2)

Remark 172 The boundary condition, u = 0 on ∂Ω, is the clear-
est one that is interesting; it can easily be modified. Also, in R1,R2

and R3 we have

∆u =
d2

dx2
u(x) in R1,

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

in R2,

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

in R3.

Problem (3.2) is the model problem. What about the time
dependent problem however? One common way to solve it is by
the “method of lines” or time stepping. Pick a ∆t (small) and let
un(x) ∼ u(x, t)|t=n∆t.
Then

∂u

∂t
(tn)

·
=
un(x)− un−1(x)

∆t
.
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Replacing ∂u
∂t by the difference approximation on the above RHS

gives a sequence of problems

un − un−1

∆t
− k∆un = fn

or, solve for n = 1, 2, 3, · · · ,

−∆un +

(
1

k

)
un = fn + un−1,

which is a sequence of many shifted Poisson problems.
We shall see that:

• Solving a time dependent problem can require solving the
Poisson problem (or its ilk) thousands or tens of thousands
of times.

• The cost of solving the Poisson problem increases exponen-
tially in the dimension from 1d to 2d to 3d.

3.2 1-D Model Poisson Problem

da Vinci, Leonardo (1452 - 1519)
Mechanics is the paradise of the mathematical sci-

ences, because by means of it one comes to the fruits of
mathematics.

Notebooks, v. 1, ch. 20.

The 1d Model Poisson Problem (MPP henceforth) is to find
u(x) defined on an interval Ω = (a, b) satisfying

−u′′(x) = f(x), a < x < b,
u(a) = g1, u(b) = g2,

(3.3)
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where f(x), g1 and g2 are given. If, for example, g1 = g2 = 0
the u(x) describes the deflection of an elastic string weighted by a
distributed load f(x). As noted in section 3.1, u(x) can also be the
equilibrium temperature distribution in a rod with external heat
sources f(x) and fixed temperatures at the two ends. Although it
is easy to write down the solution of (3.3), there are many related
problems that must be solved for which exact solutions are not
attainable. Thus, we shall develop method for solving all such
problems.

Difference Approximations

“Finite arithmetical differences have proved remark-
ably successful in dealing with differential equations, ...
in this book it is shown that similar methods can be
extended to the very complicated system of differential
equations which express the changes in the weather.”
- Richardson, Lewis Fry (1881 - 1953), page 1 from the
book Lewis F. Richardson, Weather prediction by nu-
merical process, Dover, New York, 1965. (originally
published in 1922)

Recall from basic calculus that

u′(a) = lim
h→0

u(a+ h)− u(a)

h
= lim
h→0

u(a)− u(a− h)

h
.

Thus, we can approximate by taking h nonzero but small as in:

u′(a)
·
= lim
h→0

u(a+ h)− u(a)

h
=: D+u(a),

u′(a)
·
= lim
h→0

u(a)− u(a− h)

h
=: D−u(a).

Graphically, we visualize these approximations as slopes of secant
lines approximating the sought slopes of the tangent line as in
Figure 3.1.
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x

u u(x)

slope =D+u(a)

slope =D
−
u(a)

slope =D0u(a)

Figure 3.1: A curve with tangent and two chords

It seems clear that often one of D+u(a), D−u(a) will underes-
timate u′(a) and the other overestimate u′(a). Thus averaging is
expected to increase accuracy (and indeed it does). Define thus

D0u(a) = (D+u(a) +D−u(a)) /2 =
u(a+ h)− u(a− h)

2h
.



3.2. 1-D MODEL POISSON PROBLEM 89

To reduce the model BVP to a finite set of equations, we need an
approximation to u′′ in (3.3). The standard one is

u′′(a)
·
= D+D−u(a) =

u(a+ h)− 2u(a) + u(a+ h)

h2
.

The accuracy of each approximation is found by using Taylor se-
ries1. The accuracy is (for smooth u)

u′(a) = D+u(a) +O(h),

u′(a) = D−u(a) +O(h),

u′(a) = D0u(a) +O(h2),

u′′(a) = D+D−u(a) +O(h2).

The expression, for example,

error in difference approximation = u′′(a)−D+D−u(a) = O(h2)

The expression f(h) = O(h2) means that there is a constant C so
that if h is small enough, then |f(h)| ≤ Ch2. If h is cut in half,
then |f(h)| is cut by approximately a fourth; and, h is cut by 10,
then |f(h)| is cut by approximately 100.

Reduction to Linear Equations

Although this may seem a paradox, all exact science
is dominated by the idea of approximation.
- Russell, Bertrand (1872-1970), in W. H. Auden and
L. Kronenberger (eds.) The Viking Book of Aphorisms,
New York: Viking Press, 1966.

1See any general numerical analysis book for this; it is not hard but would
delay our presentation to take this detour.



90 CHAPTER 3. MPP & CURSE OF DIMENSIONALITY

Divide [a, b] into N equal subintervals with breakpoints denoted
xj . Thus, we define

h :=
b− a
N + 1

, xj = a+ jh, j = 0, 1, · · · , N + 1,

so we have the subdivision

a = x0 < x1 < x2 < · · · < xN < xN+1 = b.

At each meshpoint xj we will compute a uj ∼ u(xj), We will, of
course, need one equation for each variable meaning one equation
for each meshpoint. Approximate −u′′ = f(x) at each xj by using
D+D−uj :

−D+D−uj = f(xj),

or equivalently

−uj+1 − 2uj + uj−1

h2
= f(xj), for j = 1, 2, 3, · · ·, N

Thus, the system of linear equations is

u0 = g0

−uj+1 + 2uj − uj−1 = h2f(xj), j = 1, 2, . . . , N,
uN+1 = g1.

Writing this out is instructive. It is

1u0 = g0

−1u0 +2u1 −1u2 = h2f(x1)
−1u1 +2u2 −1u3 = h2f(x2)
· · · · · · · · ·

−1uN−1 +2uN −uN+1 = h2f(xN )
1uN+1 = g1.
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This is N + 2 equations in N + 2 variables:

1 0 0 · · · 0 0
−1 2 −1 · · · 0 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 2 −1
0 0 · · · 0 0 1





u0

u1

...

...
uN
uN+1


=



g0

h2f(x1)
...
...

h2f(xN )
g1


.

The first and last equations can be eliminated (or not as you prefer)
to give

2 −1 0 · · · 0
−1 2 −1

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
−1 2 −1

0 · · · 0 −1 2





u1

u2

...

...
uN−1

uN


=



h2f(x1) + g0

h2f(x2)
...
...

h2f(xN−1)
h2f(xN ) + g1


.

Because of its structure this matrix is often written as A =
tridiag(−1, 2,−1). The first important question for A is:

Does this linear system have a solution?

We will investigate invertibility of A.

Lemma 173 (Observation about averaging) Let a be the av-
erage of x and y

a =
x+ y

2

then a must be between x and y:
If x < y, then x < a < y,
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If x > y, then x > a > y, and
If x = y then a = x = y.
More generally, the same holds for weighted averages with pos-

itive weighs: If

a = αx+ βy

where

α+ β = 1, α ≥ 0, β ≥ 0

then a must be between x and y.

Exercise 174 Prove this lemma about averaging.

We will use this observation about averaging to prove that A−1

exists.

Theorem 175 Let A = tridiag (−1, 2,−1). Then A−1 exists.

Proof. Suppose not. The Au = 0 has a nonzero solution u. Let
uJ be the component of u that is largest in absolute value:

|uJ | = max
j
|uj | ≡ uMAX.

We can also assume uJ > 0; if uJ < 0 then note that A(−u) = 0
has Jth component (−uJ) > 0 . Then, if J is not 1 or N , the J th

equation in Au = 0 is

−uJ+1 + 2uJ − uJ−1 = 0

or

uJ =
uJ+1 + uJ−1

2

implying that uJ is between uJ−1 and uJ+1. Thus either they are
all zero or

uJ = uJ−1 = uJ+1 ≡ uMAX.
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Continuing across the interval (a, b) we get

u1 = u2 = . . . = uN ≡ umax.

Consider the equation at x1: 2u1−u2 = 0. Thus 2umax−2umax = 0
so umax ≡ 0 and uJ ≡ 0. We leave the case when J = 1 and J = N
as exercises.

Exercise 176 An alternative proof that the matrix given by A =
tridiag(−1, 2,−1) is invertible involves a direct calculation of its
determinant to show it is not zero. Use row-reduction operations
and induction to show that det(A) = n+ 1 6= 0.

Remark 177 The eigenvalues of the matrix A = tridiag(−1, 2,−1)
have, remarkably, been calculated exactly. They are

λn = 4 sin2 nπ

2N + 1
, n = 1, . . . , N.

Thus, λmax(A) ≈ 4 and λmin ≈Constant·h2, so that

cond2(A) = O(h−2).

Exercise 178 Assume that λn = 4 sin2 nπ
2N+1 , n = 1, . . . , N. From

this show that cond2(A) = O(h−2) and calculate the hidden con-
stant.

Exercise 179 This exercise will calculate the eigenvalues of the 1d
matrix A = tridiag (−1, 2,−1) exactly based on methods for solving
difference equations. If Au = λu then, for we have the difference
equation

u0 = 0,

−uj+1 + 2uj − uj−1 = λuj , j = 1, 2, . . . , N,

uN+1 = 0.
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Solutions to difference equations of this type are power functions.
It is known that the exact solution to the above is

uj = C1R
j
1 + C2R

j
2

where R1/2 are the roots of the quadratic equation

−R2 + 2R− 1 = λR.

For λ to be an eigenvalue this quadratic equation must have two
real roots and there much be nonzero values of C1/2 for which u0 =
uN+1 = 0. Now find the eigenvalues!

Exercise 180 Consider the 1d convection diffusion equation (CD-
Eqn for short): for ε > 0 a small number, find u(x) defined on an
interval Ω = (a, b) satisfying

−εu′′(x) + u′(x) = f(x), a < x < b,
u(a) = g1, u(b) = g2,

(3.4)

where f(x), g1 and g2 are given. Let u′′(a), u′(a) be replaced by the
difference approximations

u′′(a)
·
= D+D−u(a) =

u(a+ h)− 2u(a) + u(a+ h)

h2

u′(a)
·
= D0u(a) =

u(a+ h)− u(a− h)

2h
.

With these approximations, the CDEqn is reduced to a linear sys-
tem in the same way as the MPP. Divide [a, b] into N subintervals
h := b−a

N+1 , xj = a+ jh, j = 0, 1, · · · , N + 1,

a = x0 < x1 < x2 < · · · < xN < xN+1 = b.

At each meshpoint xj we will compute a uj ∼ u(xj), We will, of
course, need one equation for each variable meaning one equation
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for each meshpoint. Approximate −u′′ = f(x) at each xj by using
D+D−uj:

−εD+D−uj +D0uj = f(xj), for j = 1, 2, 3, · · ·, N

(a) Find the system of linear equations that results. (b) Investigate
invertibility of the matrix A that results. Prove invertibility under
the condition

Pe :=
h

2ε
< 1.

P e is called the cell Peclet number.

Exercise 181 Repeat the analysis of the 1d discrete CDEqn from
the last exercise. This time use the approximation

u′(a)
·
= D−u(a) =

u(a)− u(a− h)

h
.

Complexity of Solving the 1d MPP

To solve the model problem we need only store a tridiagonal ma-
trix A and the RHS b then solve Au = b using tridiagonal Gaussian
elimination.

Storage Costs: ∼ 4h−1 real numbers: 4×N = 4N real numbers
∼ 4h−1.
Solution Costs: 5h−1 FLOPS: 3(N−1) floating point operations
for elimination, 2(N − 1) floating point operations for backsubsti-
tution.

This is a perfect result: The cost in both storage and floating
point operations is proportional to the resolution sought. If we
want to see the solution on scales 10× finer (so h ⇐ h/10) the
total costs increases by a factor of 10.
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3.3 The 2d MPP

The two-dimensional model problem is the first one that reflects
some complexities of real problems. The domain is taken to be
the unit square (to simplify the problem), Ω = (0, 1) × (0, 1). the
problem is, given f(x, y) and g(x, y), to approximate the solution
u(x, y) of

−∆u = f(x, y), in Ω,
u(x, y) = g(x, y), on ∂Ω.

(3.5)

You can think of u(x, y) as the deflection of a membrane stuck at
its edges and loaded by f(x, y). The figure below given a solution
where g(x, y) = 0 and where f(x, y) > 0 and so pushes up on the
membrane.

An example solution of the 2d MPP

Here we use (x, y) instead of (x1, x2) because it is more familiar,
we will take g(x, y) ≡ 0 (to simplify the notation). Recall that

−∆u = −(uxx + uyy).
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Different boundary conditions and more complicated domains and
operators are important and interesting. However, (3.5) is the im-
portant first step to understand so we consider only (3.5) in this
section.

To reduce (3.5) to a finite set of linear equations, we need to
introduce a mesh and approximate uxx and uyy as in the 1d problem
by their second differences in the x and y directions, respectively

uxx(a, b) ∼ u(a+ ∆x, b)− 2u(a, b) + u(a−∆x, b)

∆x2
, (3.6)

uyy(a, b)
·
=
u(a, b+ ∆y)− 2u(a, b) + u(a, b−∆y)

∆y2
. (3.7)

To use these we introduce a mesh on Ω. For simplicity, take a
uniform mesh with N+1 points in both directions. Choose thus
∆x = ∆y = 1

N+1 =: h. Then set

xi = ih, yj = jh, i, j = 0, 1, . . . , N + 1.

We let uij denote the approximation to u(xi, yj) we will compute
at each mesh point. A 10× 10 mesh (h=1/10) is depicted below.
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A coarse mesh on the unit square, with interior nodes indicated
by larger dots and boundary nodes by smaller ones.

To have a square linear system, we need one equation for each
variable. There is one unknown (uij) at each mesh point on Ω.
Thus, we need one equation at each mesh point. The equation for
each mesh point on the boundary is clear:

uij = g(xi, yj) ( here g ≡ 0) for each xi, yj on ∂Ω. (3.8)

Thus, we need an equation for each xi, yj inside Ω. For a typical
(xi, yj) inside Ω we use the approximations (3.6) and (3.7). This
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gives

−
(
ui+1j − 2uij + ui−1j

h2
+
uij+1 − 2uij + uij−1

h2

)
= f(xi, yj)

(3.9)

for all (xi, yj) inside of Ω.

The equations (3.8) and (3.9) give a square (N + 2)2 × (N + 2)2

linear system for the uij ’s. Before developing the system, we note
that (3.9) can be simplified to read

−ui+1j − ui−1j + 4uij − uij+1 − uij−1 = h2f(xi, yj).

This is often denoted using the “difference molecule”represented
by the figure

-1&%
'$

-1&%
'$

-1&%
'$

-1&%
'$

4&%
'$
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and by the following figure using the “compass” notation, where P
is the mesh point and N,S,E,W are the mesh points immediately
above, below, to the right and the left of P,

−u(N)− u(S) + 4u(P )− u(E)− u(W ) = h2f(P ).
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A sample mesh showing interior points and indicating a five-point
Poisson equation stencil and the “compass” notation, where C is
the mesh point and N,S,E,W are the mesh points immediately

above, below, to the right and the left of C.
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The equation, rewritten in terms of the stencil notation, be-
comes

−u(N)− u(S) + 4u(C)− u(E)− u(W ) = h2f(C).

The discrete Laplacian, denoted ∆h, in 2d is thus

−∆huij :=
−uij+1 − uij−1 + 4uij − ui+1j − ui−1j

h2
,

so the equations can be written compactly as

−∆huij = f(xi, yj), at all (xi, yj) inside Ω,

uij = g(xi, yj) ( ≡ 0 ) at all (xi, yj) on ∂Ω.
(3.10)

The boundary unknowns can be eliminated so (3.10) becomes an
N2 ×N2 linear system for the N2 unknowns:

AN2×N2 uN2×1 = fN2×1. (3.11)

Since each equation couples uij to its four nearest neighbors in
the mesh, A will typically have only 5 nonzero entries per row. To
actually find A we must order the unknowns uij into a vector uk,
k = 1, 2, . . . , N2. A lexicographic ordering is depicted in Figure
3.2.

Thus, through the difference stencil, if uij is the kth entry in u,
uij is linked to uk−1, uk+1, uk+N and uk−N , as in Figure 3.3.

Thus, the typical kth row (associated with an interior mesh
point (xi, yj) not adjacent to a boundary point) of the matrix A
will read:

(0, 0, . . . , 0,−1, 0, 0, . . . , 0,−1, 4,−1, 0, . . . , 0,−1, 0, . . . , 0). (3.12)

Conclusion: A is an N2 × N2 (' h−2 × h−2) sparse, banded
matrix. It will typically have only 5 nonzero entries per row. Its
bandwidth is 2N+1 and it’s half bandwidth is thus p = N(' h−1).
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Figure 3.2: Node numbering in a lexicographic order for a 10× 10
mesh.
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d t d

t t t

d t d

uk−1

uk−N uk uk+N

uk+1

Figure 3.3: The 2d difference stencil at the kth point in a lexico-
graphic ordering with N numbered points in each direction.

Complexity Estimates:

For a given resolution h or givenN storing A as a banded matrix
requires storing

2(N + 1)×N2 real numbers ' 2h−3 real numbers.

Solving Au = f by banded Gaussian elimination requires

O((2N + 1)2N2) = O(N4) ' O(h−4) FLOPS.

The exact structure of A can easily be written down because all
the choices were made to keep A as simple as possible. A is an
N2 ×N2 block tridiagonal matrix (N ×N blocks with each block



104 CHAPTER 3. MPP & CURSE OF DIMENSIONALITY

an N ×N matrix) of the form:

A =


T −I 0

−I T
. . .

. . .
. . . −I

0 −I T

 (3.13)

where I is the N ×N identity matrix and

T = tridiag(−1, 4,−1) (N ×N matrix)

Exercise 182 Consider the 2d MPP with RHS f(x, y) = x −
2y and boundary condition g(x, y) = x − y. Take h = 1/2 and
write down the difference approximation to u(1/2, 1/2). Compute
is value.

Exercise 183 Consider the 2d MPP with RHS f(x, y) = x − 2y
and boundary condition g(x, y) = x − y. Take h = 1/3 and write
down the 4× 4 linear system for the unknown values of uij.

Exercise 184 The N2 eigenvalues and eigenvectors of the matrix
A in (3.13) have been calculated exactly, just as in the 1D case.
They are, for n,m = 1, . . . , N ,

λn,m = 4

(
sin2 nπ

2(N + 1)
+ sin2 mπ

2(N + 1)

)
,

and

(−→u n,m)j,k = sin
jnπ

N + 1
sin

kmπ

N + 1
,

where j and k vary from 1, . . . , N . Verify these expressions by
calculating A−→u n,m and showing it is equal to λn,m

−→u n,m.

Exercise 185 Let the domain be the triangle with vertices at (0, 0),
(1, 0), and (0, 1). Write down the linear system arising from the
MPP on this domain with f(x, y) = x+ y, g = 0 and N = 5.
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3.4 The 3-D MPP

The 3d model Poisson problem is to find

u = u(x, y, z)

defined for (x, y, z) in the unit cube

Ω := {(x, y, z)|0 < x, y, z < 1}

satisfying

−∆u = f(x, y, z) , in Ω,

u = g(x, y, z), on the boundary ∂Ω.

The Laplace operator in 3d is (writing it out)

∆u = div gradu =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
,

and a discrete Laplacian is obtained by approximating each term
by the 1d difference in the x, y and z directions. We shall now
develop the linear system arising from the usual central difference
model of this problem, making the simplest choice at each step.
First, take

h =
1

N + 1
, and set

∆x = ∆y = ∆z = h =
1

N + 1
.

Define the mesh points in the cube as

xi = ih, yj = jh, zk = kh for 0 ≤ i, j, k ≤ N + 1.

Thus a typical mesh point is the triple (xi, yj , zk). There are (N +
2)3 of these but some are known from boundary values; there are
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exactly N3 of these that need to be calculated. Thus we must have
an N3×N3 linear system: one equation for each unknown variable!
Let the approximation at the meshpoint (xi, yj , zk) be denoted (as
usual) by

uijk := approximation to u(xi, yj , zk).

The discrete Laplacian in 3d is

∆huijk :=
ui+1jk − 2uijk + ui−1jk

h2

+
uij+1k − 2uijk + uij−1k

h2
+
uijk+1 − 2uijk + uijk−1

h2

Collecting terms we get

∆huijk :=

ui+1jk + uij+1k + uijk+1 − 6uijk + ui−1jk + uij−1k + uijk−1

h2
.

The 3d discrete model Poisson problem is thus

−∆huijk = f(xi, yj , zk), at all meshpoints (xi, yj , zk) inside Ω

uijk = g(xi, yj , zk) = 0, at all meshpoints (xi, yj , zk) on ∂Ω.

In the above “at all meshpoints (xi, yj , zk) inside Ω” means for
1 ≤ i, j, k ≤ N and “at all meshpoints (xi, yj , zk) on ∂Ω” means
for i or j or k = 0 or N+1. We thus have the following square (one
variable for each meshpoint and one equation at each meshpoint)
system of linear equations (where fijk := f(xi, yj , zk)).
For 1 ≤ i, j, k ≤ N ,

−ui+1jk−uij+1k−uijk+1+6uijk−ui−1jk−uij−1k−uijk−1 = h2fijk,

And for i or j or k = 0 or N + 1,

uijk = 0. (3.14)
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Figure 3.4: The difference molecule or stencil in 3d

The associated difference stencil is sketched in Figure 3.4.

Counting is good!
This system has one unknown per meshpoint and one equation per
meshpoint. In this form it is a square (N + 2)3 × (N + 2)3 linear
system. Since uijk = 0 for all boundary meshpoints we can also
eliminate these degrees of freedom and get a reduced2 N3 × N3

2We shall do this reduction herein. However, there are serious reasons not
to do it if you are solving more general problems: including these gives a negli-
gably smaller system and it is easy to change the boundary conditions. If one
eliminates these unknowns, then changing the boundary conditions can mean
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linear system, for 1 ≤ i, j, k ≤ N :

−ui+1jk−uij+1k−uijk+1+6uijk−ui−1jk−uij−1k−uijk−1 = h2fijk,

where subscripts of i, j, or k equal to 0 or N +1 are taken to mean
that uijk = 0.

The complexities of these connections is revealed by considering
the nearest neighbors on the physical mesh that are linked in the
system. A uniform mesh is depicted below.

A 3d mesh

reformatting all the matrices and programming again from scratch. On the
other hand, this reduction results in a symmetric matrix while keeping Dirich-
let boundary conditions in the matrix destroys symmetry and complicates the
solution method.
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Figure 3.5: Geometry of a 3d uniform mesh. Each point has six
neighbors, indicated by heavy dots.

A typical row in the matrix (when a lexicographic ordering of
meshpoints is used) looks like

0, . . . , 0,−1, 0, . . . . . . , 0︸ ︷︷ ︸
N2−N−1

,−1, 0, . . . 0,︸ ︷︷ ︸
N−1

−1, 6,

− 1, 0, . . . , 0︸ ︷︷ ︸
N−1

,−1, 0, . . . . . . , 0︸ ︷︷ ︸
N2−N−1

,−1, 0, . . . , 0

where the value 6 is the diagonal entry. If the mesh point is adja-
cent to the boundary then this row is modified. (In 3d adjacency
happens often.)

To summarize, some basic facts about the coefficient matrix A
of linear system derived from the 3d model Poisson problem on an
N ×N ×N mesh with h = 1/(N + 1):

• A is N3 ×N3 (huge if N = 100 say!).
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• A has at most 7 nonzero entries in each row.

• N3 equations with bandwidth = 2N2 + 1 or half bandwidth
p = N2.

• Storage as a banded sparse matrix requires storing

N3 ×
(
2N2 + 1

) .
= 2N5 real numbers.

• Solution using banded sparse Gaussian elimination requires
about

O(
(
2N2 + 1

)2 ×N3) = O(N7) FLOPS.

• Suppose you need 10× more resolution (so ∆x ← ∆x/10,
∆y ← ∆y/10 and ∆z ← ∆z/10). Then h → h/10 and thus
N → 10N . It follows that

Storage requirements increase 100, 000 times, and

Solution by banded sparse GE takes 10, 000, 000 longer!

The 3d matrix has certain mathematical similarities to the 1d
and 2d matrices. Exploiting these one can show.

Theorem 186 (Eigenvalues of the discrete MPP) Let A de-
note the coefficient matrix arising from the 3d model Poisson prob-
lem on a uniform mesh with h = 1/(N+1). Then A is nonsingular.
Furthermore, the eigenvalues of A are given by

λpqr = 4

(
sin2

(
pπ

2(N + 1)

)
+ sin2

(
qπ

2(N + 1)

)
+ sin2

(
rπ

2(N + 1)

))
, for 1 ≤ p, q, r ≤ N .

Thus,

λmax(A)
.
= 12, λmin(A)

.
= h2,

cond2(A) = O(h−2).
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Table 3.1: Costs of banded sparse GE

1d 2d 3d

Storage cost (# real numbers) 4h−1 2h−3 2h−5

Solution cost (# FLOPs) 5h−1 O(h−4) O(h−7)

Exercise 187 Prove the claimed estimates of cond(A) from the
formula for the eigenvalues of A.

3.5 The Curse of Dimensionality

“Let us first understand the facts, and then we may
seek for the causes.”

Aristotle.

The right way to compare the costs in storage and computer
time of solving a BVP is in terms of the resolution desired, i.e., in
terms of the meshwidth h. The previous estimates for storage and
solution are summarized in Table 3.1. Comparing these we see the
curse of dimensionality clearly: As the dimension increases, the
exponent increases rather than the constant or parameter being
raised to the exponent. In other words:

The cost of storing the data and solving the linear
system using direct methods for the model problem

increases exponentially with the dimension.

To put some concrete numbers to this observation, on a typical
inexpensive PC in 2012, one is able to store the data for a 2d model
problem on a mesh with h ' 1/500. In other words, one can store
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roughly

in 2d: 2 · 5003 = 250, 000, 000 double precision numbers.

If one is solving the 1d problem instead with this computer it could
store a matrix with h = hmin where

4h−1
min = 250, 000, 000, or hmin = 1.6× 10−8

which is an exceedingly small meshwidth. On the other hand, if
you were solving a 3d problem, the finest mesh you can store is

2h−5
min = 250, 000, 000, or hmin '

1

40
,

which is exceedingly coarse.

Using the same kind of estimates, suppose storage is not an issue
and that for h = 1/1000 solving the 2d problem takes 100 minutes.
This means the completely hypothetical computer is doing roughly
10−10 minute/flop. From the above table we would expect the time
required to solve the 1d and 3d problems for the same resolution,
h = 1/1000, to be:

in 1d: 10−7 minutes,

in 3d: 10+11 minutes!

This is the curse of dimensionality in turnaround times. In
practical settings, often programs are used for design purposes
(solve, tweak one design or input parameter, solve again, see what
changes) so to be useful one needs at least 1 run per day and 3
runs per day are desired.

How is one to break the curse of dimensionality? We start with
one key observation.
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Computing a residual grows slowly with dimension

Shakespeare, William (1564-1616)

Though this be madness, yet there is method in’t.

Given an approximate solution to the model Poisson problem
we can compute a residual cheaply since A only has a few nonzero
entries per row.

The 1d case: We have3

for i=1:N

r(i) = h^2*f(i)-(-u(i+1)+2u(i)-u(i-1))

end

This takes 3 multiplications and 3 additions per row giving 6h−1

FLOPS. Notice that the matrix does not need to be stored—only
the vectors f, u and r, of length N' 1/h.

The 2d case: The 2d case takes 5 multiplies and 5 adds per
row for h−2 rows by:

for i=1:N

for j=1:N

r(i,j)=h^2*f(i,j)-(-u(i,j+1)-u(i,j-1) + 4u(i,j)

-u(i+1,j)-u(i-1,j) )

end

end

This gives a total of only 10h−2 FLOPS and requires only 2h−2

real numbers to be stored.

The 3d case: The 3d case takes 7 multiplies and adds per row
for h−3 rows by:

3When i=1, the expression “u(i-1)” is to be interpreted as the boundary
value at the left boundary, and when i=N, the expression “u(i+1)” is to be
interpreted as the boundary value at the right boundary.
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for i=1:N

for j=1:N

for k=1:N

r(i,j,k)=h^2*f(i,j,k) - ( ...

-u(i+1,j,k)-u(i,j+1,k)-u(i,j,k+1)

+6u(i,j) ...

-u(i-1,j,k)-u(i,j-1,k)-u(i,j,k-1) )

end

end

end

This gives a total of only 14h−3 FLOPS and requires only 2h−3

real numbers to be stored.
To summarize,

Costs for computing residual

dimension of model 1d 2d 3d

# real numbers storage 2h−1 2h−2 2h−3

# FLOPS 6h−1 10h−2 14h−3

The matrix A does not need to be stored for the MPP since we
already know the nonzero values and the components they multi-
ply. More generally we would only need to store the nonzero entries
and a pointer vector to tell which entry in the matrix is to be mul-
tiplied by that value. Thus the only hope to break the curse of
dimensionality is to use algorithms where the work involves com-
puting residuals instead of elimination! These special methods are
considered in the next chapter.

Exercise 188 Write a program to create, as an array, the ma-
trix which arises from the 2d model Poisson problem on a uniform
N ×N mesh. Start small and increase the dimension (N and the
dimension of the matrices).
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1. Find the smallest h (largest N) for which the program will
execute without running out of memory.

2. Next from this estimate and explain how you did it: the small-
est h (largest N) for which this can be done in 2d in banded
sparse storage mode. The same question in 1d. The same
question in 3d.

3. Make a chart of your findings and draw conclusions.

Exercise 189 If solving a 2d MPP program takes 30 minutes with
N = 20000, estimate how long it would take to solve the problem
with the same value of h in 1d and in 3d. Explain.

Exercise 190 Same setting as the last problem. Now however,
estimate how long it would take to compute a residual in 1d, 2d and
3d. Explain how you did the estimate.

Exercise 191 Think about the problem of computing Ax where A
is large and sparse but with a non zero structure less regular than
for the MPP. Thus, the non zero entries in A must be stored as well
as (for each) somehow the row and column number in which that
entry appears. Formalize one way to store A in this manner then
write down in pseudo code how to compute x → Ax. Many peo-
ple have worked on sparse matrix storage schemes so it is unlikely
that your solution will be best possible. However, after finding one
answer, you will be able to quickly grasp the point of the various
sparse storage schemes. Next look in the Templates book, Barrett,
Berry, et al [BB94] and compare your method to Compressed Row
Storage. Explain the differences.





Chapter 4

Iterative Methods

“The road to wisdom? Well, it is plain

And simple to express:

Err and err and err again,

But less and less and less.”

- Piet Hein1

4.1 Introduction to Iterative Methods

Iterative methods for solving Ax = b are rapidly becoming the
workhorses of parallel and large scale computational mathemat-
ics. Unlike Gaussian elimination, using them reliably depends on
knowledge of the methods and the matrix and there is a wide dif-
ference in the performance of different methods on different prob-
lems. They are particularly important, and often the only option,
for problems where A is large and sparse. The key observation for

1Piet Hein is a famous Danish mathematician, writer and designer. He is
perhaps most famous as a designer. Interestingly, he is a descendent of another
Piet Hein from the Netherlands who is yet more famous in that small children
there still sing songs praising him.

117
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these is that to compute a matrix-vector multiply, x̂ → Ax̂, one
only needs to store the nonzero entries in Aij and their indices i
and j. These are typically stored in some compact data structure
that does not need space for the zero entries in A. If the nonzero
structure of A is regular, as for the model Poisson problem on a
uniform mesh, even i and j need not be stored!

Consider the problem of solving linear systems

Ax = b, A : large and sparse.

As in chapter 3, computing the residual

r = b−Ax̂, x̂ : an approximate solution

is cheap in both operations and storage. Iterative methods take a
form exploiting this, generally resembling:

Algorithm 192 (Basic Iterative Method) Given an approxi-
mate solution x̂ and a maximum number of steps itmax:

Compute residual: r̂ = b−Ax̂
for i = 1:itmax

Use r̂ to improve x̂
Compute residual using improved x̂: r̂ = b−Ax̂
Use residual and update to estimate accuracy
if accuracy is acceptable, exit with converged solution

end

Signal failure if accuracy is not acceptable.

As an example (that we will analyze in the next section) con-
sider the method known as first order Richardson, or FOR. In FOR,
we pick the number ρ > 0, rewrite Ax = b as

ρ(x− x) = b−Ax,
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then guess x0 and iterate using

ρ(xn+1 − xn) = b−Axn, or

xn+1 = [I − 1

ρ
A]xn +

1

ρ
b.

Algorithm 193 (FOR = First Order Richardson) Given ρ >
0, target accuracy tol, maximum number of steps itmax and initial
guess x0:

Compute residual: r0 = b−Ax0

for n = 1:itmax

Compute update ∆n = (1/ρ)rn

Compute next approximation xn+1 = xn + ∆n

Compute residual rn+1 = b−Axn+1

Estimate residual accuracy criterion ‖rn+1‖/‖b‖ <tol
Estimate update accuracy criterion ‖∆n‖/‖xn+1‖ <tol
if both residual and update are acceptable

exit with converged solution
end

end

Signal failure if accuracy is not acceptable.

We shall see that FOR is a terrific iterative method for intro-
ducing the ideas and mathematics of the area but a very slow one
for actually solving Ax = b. Nevertheless, if there were no faster
ones available, then it would still be very widely used because of
the curse of dimensionality. To understand why, let us return to
the example of the model Poisson problem in 3d discussed in the
previous chapter. Recall that, for a typical point (xi, yj , zk) ∈ Ω,
the equation becomes

6uijk−ui+1jk−ui−1jk−uij+1k−uij−1k−uijk+1−uijk−1 = h2fijk,

where uijk = u(xi, yj , zk) and fijk = f(xi, yj , zk) and if any point
lies on the boundary, its value is set to zero. Picking ρ = 6 (called
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the Jacobi method) makes FOR particularly simple, and it is given
by

Algorithm 194 (Jacobi iteration in 3d) Given a tolerance tol,
a maximum number of iterations itmax and arrays uold, unew and
f, each of size (N+1,N+1,N+1). with boundary values2 of uold and
unew filled with zeros:

h=1/N

for it=1:itmax

% initialize solution, delta, residual and rhs norms

delta=0

unorm=0

resid=0

bnorm=0

for i=2:N

for j=2:N

for k=2:N

% compute increment

au=-( uold(i+1,j,k) + uold(i,j+1,k) ...

+ uold(i,j,k+1) + uold(i-1,j,k) ...

+ uold(i,j-1,k) + uold(i,j,k-1) )

unew(i,j,k)=(h^2*f(i,j,k) - au)/6

% add next term to norms

delta=delta + (unew(i,j,k) - uold(i,j,k))^2

unorm=unorm + (unew(i,j,k))^2

resid=resid + (h^2*f(i,j,k) ...

- au - 6*uold(i,j,k))^2

bnorm=bnorm + (h^2*f(i,j,k))^2

end

2Boundaries are locations for which i or j or k take on the values 1 or
(N+1).
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end

end

uold=unew % set uold for next iteration

% complete norm calculation

delta=sqrt(delta)

unorm=sqrt(unorm)

resid=sqrt(resid)

bnorm=sqrt(bnorm)

% test for convergence

if resid<tol*bnorm & delta<tol*unorm

’solution converged’

return

end

end

error(’convergence failed’)

Remark 195 If Algorithm 194 were written to be executed on a
computer, the calculation of bnorm would be done once, before the
loop began. Calculating it on each iteration is a waste of computer
time because it never changes.

Programming the Jacobi method in this way is particularly sim-
ple for a uniform mesh (as above). The computations reflect the
underlying mesh. Each approximate solution is computed at a
given mesh point by averaging the values of the points 6 nearest
neighbors then adding this to the right hand side. This style of pro-
gramming is obviously parallel (think of 1 CPU at each point on
the mesh with nearest neighbor connections). Unfortunately, the
program must be rewritten from scratch whenever the geometry of
the mesh connectivity changes.



122 CHAPTER 4. ITERATIVE METHODS

The Jacobi method requires that only three N × N × N ar-
rays be stored: f(i,j,k), containing the value f(xi, yj , zk), and
uold(i,j,k) and unew(i,j,k) containing the values of the old
and new (or updated) approximations. Remarkably, this does not
require that the coefficient matrix be stored at all! Thus, provided
it converges rapidly enough, we have a method for overcoming the
curse of dimensionality. Unfortunately, this “provided ”is the key
question: Iterative methods utility depend on speed of convergence
and, double unfortunately, we shall see that the Jacobi method does
not converge fast enough as the next example begins to indicate.

Example 196 (FOR for the 1d Model Poisson Problem)
The 1d model problem

−u′′ = f(x), 0 < x < 1, u(0) = 0 = u(1)

with h = 1
5 and f(x) = x

5 leads to the 4×4 tridiagonal linear system

2u1 −u2 = 1
−u1 +2u2 −u3 = 2

−u2 +2u3 −u4 = 3
−u3 +2u4 = 4.

The true solution is

u1 = 4, u2 = 7, u3 = 8, u4 = 6.

Taking ρ = 2 in FOR gives the iteration

uNEW
1 =

1

2
+

1

2
uOLD

2

uNEW
2 =

2

2
+ (uOLD

1 + uOLD
3 )/2

uNEW
3 =

3

2
+ (uOLD

2 + uOLD
4 )/2

uNEW
4 =

4

2
+ uOLD

3 /2.
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(This is also known as the Jacobi iteration.) Taking u0 = uOLD =
(0, 0, 0, 0)t we easily compute the iterates

u1 =


1/2
1

3/2
2

 , u10 =


3.44
6.07
7.09
5.42

 , u20 =


3.93
6.89
7.89
5.93

 , u35 =


4.00
7.00
8.00
6.00

 .
This problem is only a 4× 4 linear system and can be very quickly
solved exactly by hand. To solve to 2 digits by the Jacobi method
took 35 steps which is much slower.

Exercise 197 For the choices below do 2 steps of FOR

ρ = 2, A =

[
2 1
1 2

]
, b =

[
1
−1

]
, x0 =

[
0
0

]
.

Exercise 198

1. Write a computer program to apply FOR with ρ = 2 (Jacobi
iteration) to the 1d Model Poisson Problem as described in
Example 196, performing only a fixed number of iterations,
not checking for convergence. Check your work by verifying
the four iterates given in Example 196. Warning: The four
values u1, u2, u3 and u4 in Example 196 would refer to the
four values u(2), u(3), u(4) and u(5) if Algorithm 194 were
to be written for 1d. This is because u(1)=0 and u(6)=0.

2. Add convergence criteria as described in Algorithm 194 to
your code. For the same problem you did in part 1, how many
iterations would be required to attain a convergence tolerance
of 10−8?

3. For the 1d Model Poisson Problem that you coded above in
part 1, but with h = 1/200 and f(x) = x/200, how many
iterations would be required to attain a convergence tolerance
of 10−8?
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4. It is easy to find the analytic solution the 1d Model Pois-
son Problem by integrating twice. Compare the analytic solu-
tion with your computed solution with h = 1/200 by comput-
ing the relative difference between the two at each of the 200
mesh points and finding the square root of the sum of squares
of these differences divided by the square root of the sum of
squares of either solution (the relative two norm).

Exercise 199 Consider the 2d MPP with RHS f(x, y) = x − 2y
and boundary condition g(x, y) = x − y. Take h = 1/3 and write
down the 4× 4 linear system for the unknown values of uij. Take
ρ = 2 and initial guess the zero vector and do 2 steps of FOR. It
will be easier to draw a big picture of the physical mesh and do the
calculations on the picture than to write it all out as a matrix.

Exercise 200 Consider the 2d MPP with RHS f(x, y) = 0 and
with boundary condition g(x, y) = x− y.

1. Write a computer program to solve this problem for h = 1/N
using FOR with ρ = 4 (Jacobi iteration). This amounts to
modifying Algorithm 194 for 2d instead of 3d.

2. It is easy to see that the solution to this problem is u(x, y) =
x − y. Remarkably, this continuous solution is also the dis-
crete solution. Verify that your code reproduces the continu-
ous solution to within the convergence tolerance for the case
h = 1/3 (N = 3).

3. Verify that your code reproduces the continuous solution to
within the convergence tolerance for the case h = 1/100 (N =
100).

Iterative Methods 3 Standard Forms

Francis Bacon:
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“Truth emerges more readily from error than from
confusion.”

FOR can be generalized by replacing the value ρ with a matrix
M . It can be written as

Algorithm 201 (Stationary iterative method) Given a N ×
N matrix A, another N ×N matrix M , a right side vector b and
an initial guess x0,

n=0

while convergence is not satisfied
Obtain xn+1 as the solution of M(xn+1 − xn) = b−Axn
n=n+1

end

The matrix M does not depend on the iteration counter n,
hence the name “stationary.” This algorithm results in a new iter-
ative method for each new choice of M , called a “preconditioner.”
For FOR (which takes very many steps to converge) M = (1/ρ)I.
At the other extreme, if we pick M = A then the method converges
in 1 step but that one step is just solving a linear system with A so
no simplification is obtained. From these two extreme examples,
it is expected that some balance must be struck between the cost
per step (less with simpler M) and the number of steps (the closer
M is to A the fewer steps expected).

Definition 202 Given an N ×N matrix A, an N ×N matrix M
that approximates A in some useful sense and for which the linear
system My = d is easy to solve is a preconditioner of A.

Definition 203 For a function Φ, a fixed point of Φ(x) is any x
satisfying x = Φ(x) and a fixed point iteration is an algorithm
approximating x by guessing x0 and repeating xn+1 = Φ(xn) until
convergence.
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There are three standard ways to write any stationary iterative
method.

1. Residual-Update Form: rn = b−Axn is the residual and
∆n = xn+1 − xn is the update. Thus, the residual-update
form is: given xn,

rn = b−Axn

∆n = M−1rn

xn+1 = xn + ∆n.

This is often the way the methods are programmed.

2. Fixed Point Iteration Form: A stationary iterative method
can be easily rewritten as a fixed point iteration. Define
T = I −M−1A then we have

xn+1 = M−1b+ Txn =: Φ(xn).

T is the iteration operator. This is the form used to ana-
lyze convergence and rates of convergence.

3. Regular Splitting Form: This form is similar to the last
one for FOR. Rewrite

A = M −N, so N = M −A.

Then Ax = b can be written Mx = b+Nx. The iteration is
then

Mxn+1 = b+Nxn.

For FOR M = ρI and N + ρI − A so the regular splitting
form becomes

ρIxn+1 = b+ (ρI −A)xn.
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Remark 204 (Jacobi method) As an example of a regular split-
ting form, consider the case that A = D − L − U , where D is the
diagonal part of A, L is the lower triangular part of A, and U is
the upper triangular part of A. The iteration in this case takes the
form

Dxn+1 = b+ (L+ U)xn.

This is called the Jacobi method.

Three Quantities of Interest

Detelina’s Law:

“If your program doesn’t run, that means it has an
error in it.

If your program does run, that means it has two
errors in it.”

There are three important quantities to track in the iterative
methods:

1. The error, en = x− xn, which is unknown but essential;

2. The residual, rn = b−Axn, which is computable; and,

3. The update, ∆n = xn+1 − xn, which is computable.

The residual and updates are used to give indications of the
error and to decide when to stop an iterative method.

Theorem 205 For first order Richardson (T = TFOR = I −
ρ−1A), en, rn and ∆n all satisfy the same iteration

en+1 = Ten, rn+1 = Trn, and ∆n+1 = T∆n.
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Proof. This is by subtraction. Since

x = ρ−1b+ Tx and

xn+1 = ρ−1b+ Txn,

subtraction gives

(x− xn+1) = T (x− xn) and en+1 = Ten.

For the update iteration, note that

xn+1 = ρ−1b+ Txn and xn = ρ−1b+ Txn−1.

Subtraction gives

(xn+1 − xn) = T (xn − xn−1) and ∆n+1 = T∆n.

The residual update is a little trickier to derive. Since

ρxn+1 = ρxn + b−Axn = ρxn + rn

multiply by −A and add ρb:

ρ
(
b−Axn+1

)
= ρ (b−Axn)−Arn

ρrn+1 = ρrn −Arn and thus

rn+1 = (I − ρ−1A)rn = Trn.

Remark 206 For other iterations, the typical result is

en+1 = Ten, ∆n+1 = T∆n, and rn+1 = ATA−1rn.

The matrix ATA−1 and T are similar matrices. For FOR, because
of the special form of T = ρI − ρ−1A, ATA−1 = T since

ATA−1 = A(I−ρ−1A)A−1 = AA−1−ρ−1AAA−1 = I−ρ−1A = T.

Thus, rn+1 = Trn.
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This theorem has an important interpretation:

∆n, rn and en −→ 0 at the same rate.

It is entirely possible that residuals rn and errors en can be of
widely different sizes. However, since they both go to zero at the
same rate, if the residuals improve by k significant digits from the
initial residual, the errors will have typically also improved by k
significant digits over the initial error.

The third big question is When to stop? (Alternately, how to
measure “satisfaction” with a computed answer.) The theorem is
important because it says that monitoring the (computable) resid-
uals and updates is a valid way to test it the (incomputable) error
has been improved enough to stop.

Stopping Criteria: Every iteration should include three (!)
tests of stopping criteria.

1. Too Many Iterations: If n ≥ itmax (a user supplied max-
imum number of iterations), then the method is likely not
converging to the true solution: stop, and signal failure.

2. Small Residual: With a preset tolerance tol1 (e.g., tol1=
10−6), test if:

‖rn‖
‖b‖

≤ tol1.

3. Small Update: With tol2 a preset tolerance, test if:

‖∆n‖
‖xn‖

≤ tol2.

The program should terminate if either the first test or both
the second and third tests are satisfied. Usually other computable
heuristics are also monitored to check for convergence and speed of
convergence. One example is the experimental contraction constant

αn :=
‖rn+1‖
‖rn‖

or
‖∆n+1‖
‖∆n‖

.
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This is monitored because αn > 1 suggests divergence and αn < 1
but very close to 1 suggests very slow convergence.

To summarize, the important points

• Iterative methods require minimal storage requirements. They
are essential for 3d problems!

• Basic iterative methods are easy to program3. The programs
are short and easy to debug and often are inherently parallel.

• Iterative method’s convergence can be fast or not at all. The
questions of convergence (at all) and speed of convergence
are essential ones that determine if an iterative method is
practical or not.

4.2 Mathematical Tools

The Looking Glass Dossier:
“The Red Queen: ’Why, sometimes I’ve believed as

many as six impossible things before breakfast...’
Alice: ’Perhaps, but surely not all at the same time!’
The Red Queen: ’Of course all at the same time, or

where’s the fun?’
Alice: ’But that’s impossible!’
The Red Queen: ’There, now that’s seven!’ ”

To analyze the critically important problem of convergence of
iterative methods, we will need to develop some mathematical pre-
liminaries. We consider an N ×N iteration matrix T and a fixed
point x and the iteration xn

x = b+ Tx, xn+1 = b+ Txn.

3Of course, in Matlab direct solution is an intrinsic operator (\), so even
the simplest iterative methods are more complicated. Further, often the re-
quirements of rapid convergence adds layers of complexity to what started out
as a simple implementation of a basic iterative method.
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Subtracting we get the error equation

en = x− xn satisfies en+1 = Ten.

Theorem 207 Given the N ×N matrix T , a necessary and suffi-
cient condition that for any initial guess

en −→ 0 as n→∞

is that there exists a matrix norm ‖ · ‖ with

‖T‖ < 1.

Proof. Sufficiency is easy. Indeed, if ‖T‖ < 1 we have

‖en‖ = ‖Ten−1‖ ≤ ‖T‖‖en−1‖.

Since en−1 = Ten−2, ‖en−1‖ ≤ ‖T‖‖en−2‖ so ‖en‖ ≤ ‖T‖2‖en−2‖.
Continuing backward (for strict proof, this means : using an in-
duction argument) we find

‖en‖ ≤ ‖T‖n‖e0‖.

Since ‖T‖ < 1, ‖T‖n → 0 as n→∞.

Proving that convergence implies existence of the required norm
is harder and will follow from the next two theorems that complete
the circle of ideas.

The proof that ‖T‖ < 1 for some norm ‖ · ‖ is also mathemati-
cally interesting and important. It is implied by the next theorem.

Theorem 208 For any N×N matrix T , a matrix norm ‖·‖ exists
for which ‖T‖ < 1 if and only if for all eigenvalues λ(T )

|λ(T )| < 1.
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Definition 209 (spectral radius) The spectral radius of an
N ×N matrix T , spr(T ), is the size of the largest eigenvalue of T

spr(T ) = max{|λ| : λ = λ(T )}.

Theorem 210 Given any N × N matrix T and any ε > 0 there
exists a matrix norm ‖ · ‖ with ‖T‖ ≤ ρ(T ) + ε.

Proof. See Appendix A
Using this result, the following fundamental convergence theo-

rem holds.

Theorem 211 A necessary and sufficient condition that

en → 0 as n→∞ for any e0,

is that ρ(T ) < 1.

Proof. That it suffices follow from the previous two theorems. It
is easy to prove that it is necessary. Indeed, suppose ρ(T ) ≥ 1 so
T has an eigenvalue λ

Tφ = λφ with |λ| ≥ 1.

Pick e0 = φ. Then, e1 = Te0 = Tφ = λφ, e2 = Te1 = λ2φ, . . . ,

en = λnφ.

Since |λ| ≥ 1, en clearly does not approach zero as n→∞.
Since the eigenvalues of T determine if the iteration converges,

it is useful to know more about eigenvalues.

Definition 212 (similar matrices) B and PBP−1 are said to
be similar matrices.
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Lemma 213 (Similar Matrices have the same eigenvalues)
Let B be any N ×N matrix and P any invertible matrix then the
similar matrices

B and PBP−1

have the same eigenvalues.

Proof. The proof is based on interpreting a similarity transforma-
tion as a change of variable:

Bφ = λφ holds if and only if

PB(P−1P )φ = λPφ, if and only if

(PBP−1)Ψ = λΨ, where Ψ = Pφ.

For many functions f(x) we can insert an N ×N matrix A for
x and f(A) will still be well defined as an N×N matrix. Examples
include

f(x) =
1

x
⇒ f(A) = A−1

f(x) =
1

1 + x
⇒ f(A) = I +A−1

f(x) = ex = 1 + x+
x2

2!
+ . . .⇒ f(A) = eA =

∞∑
n=0

An

n!
,

f(x) = x2 − 1⇒ f(A) = A2 − I.

In general, f(A) is well defined (by its power series as in eA) for
any analytic function. The next theorem, known as the Spectral
Mapping Theorem, is extremely useful. It says that

the eigenvalues of the matrix f(A) are f(the eigenvalues
of A):

λ(f(A)) = f(λ(A)).
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Theorem 214 (Spectral Mapping Theorem) Let f : C → C
be an analytic function4. If (λ, φ) is an eigenvalue, eigenvector pair
for A then (f(λ), φ) is an eigenvalue, eigenvector pair for f(A).

Exercise 215 (a) Let A be a 2 × 2 matrix with eigenvalues 2, -
3. Find the eigenvalues of eA, A3, (2A + 2I)−1. For what values
of a, b is the matrix B = aI + bA invertible? Explain. (b) If
the eigenvalues of a symmetric matrix A satisfy 1 ≤ λ(A) ≤ 200,
find an interval (depending on ρ) that contains the eigenvalues of
λ(T ), T = I − (1/ρ)A. For what values of ρ are |λ(T )| < 1? (c)
For the same matrix, find an interval containing the eigenvalues of
(I +A)−1(I −A).

Exercise 216 If A is symmetric, show that
cond2(AtA) = (cond2(A))2.

Exercise 217 Let A be invertible and f(z) = 1/z. Give a direct
proof of the SMT for this particular f(·). Repeat for f(z) = z2.

4.3 Convergence of FOR

I was a very early believer in the idea of convergence.
- Jean-Marie Messier

This section gives a complete and detailed proof that the First
Order Richardson iteration

ρ(xn+1 − xn) = b−Axn (4.1)

converges, for any initial guess, to the solution of

Ax = b.

4Analytic is easily weakened to analytic in a domain, an open connected
set, including the spectrum of A.
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The convergence is based on two essential assumptions: that the
matrix A is symmetric, positive definite (SPD) and the parameter
ρ is chosen large enough. The convergence proof will also give an
important information on

• how large is “large enough”,

• the optimal choice of ρ,

• the expected number of steps of FOR required.

Theorem 218 (Convergence of FOR) Suppose A is SPD. Then
FOR converges for any initial guess x0 provided

ρ > λmax(A)/2.

Proof of Theorem 218. Rewrite Ax = b as ρ(x− x) = b−Ax.
Subtracting (4.1) from this gives the error equation

ρ(en+1 − en) = −Aen, en = x− xn,

or
en+1 = Ten, T = (I − ρ−1A).

From Section 4.2, we know that en → 0 for any e0 if and only if
|λ(T )| < 1 for every eigenvalue λ of the matrix T . If f(x) = 1−x/ρ,
note that T = f(A). Thus, by the spectral mapping theorem

λ(T ) = 1− λ(A)/ρ.

Since A is SPD, its eigenvalues are real and positive:

0 < a = λmin(A) ≤ λ(A) ≤ λmax(A) = b <∞.

We know en → 0 provided |λ(T )| < 1, or

−1 < 1− λ(A)/ρ < +1.
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Since λ(A) ∈ [a, b], this is implied by

−1 < 1− x

ρ
< +1, for a ≤ x ≤ b.

This is true if and only if (for ρ > 0)

−ρ < ρ− x < +ρ

or −2ρ < −x < 0 or 0 < x < 2ρ or

ρ >
x

2
for 0 < a ≤ x ≤ b.

This is clearly equivalent to

ρ >
b

2
=
λmax(A)

2
.

Optimization of ρ

If you optimize everything, you will always be un-
happy.

Donald Knuth

Clearly, the smaller ‖T‖2 the faster en → 0. Now, from the
above proof

‖T‖2 = max |λ(T )| = max |1− λ(A)/ρ|.

The eigenvalues λ(A) are a discrete set on [a, b]. A simple sketch
(see the next subsection) shows that

‖T‖2 = max{|1− λ(A)/ρ| : all λ(A)} =

max{|1− λmin/ρ|, |1− λmax/ρ|}.
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We see that ‖T‖2 < 1 for ρ > b/2, as proven earlier. Secondly, we
easily calculate that the “optimal” value of ρ is

α = αmin at ρ =
a+ b

2
=
λmin + λmax

2
.

Let

κ =
λmax

λmin

denote the spectral condition number of A. Then, if we pick

• ρ = λmax(A), ‖T‖2 = 1− 1
κ ,

• ρ = (λmax + λmin)/2, ‖T‖2 = 1− 2
κ+1 .

Getting an estimate of λmax(A) is easy; we could take, for ex-
ample,

λmax ≤ ‖A‖ANYNORM = e.g. = max
1≤i≤N

N∑
j=1

|aij |.

However, estimating λmin(A) is often difficult. The shape of α(ρ)
also suggests that it is better to overestimate ρ than underestimate
ρ. Thus, often one simply takes ρ = ‖A‖ rather than the “opti-
mal”value of ρ. The cost of this choice is that it roughly doubles
the number of steps required.

Geometric Analysis of the min-max problem

The problem of selecting an optimal parameter for SPD matrices
A is a one parameter min-max problem. There is an effective and
insightful way to solve all such (one parameter min-max) problems
by drawing a figure and saying “Behold!”5. In this sub-section

5All the better if one can say it in Greek.
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we shall solve the optimal parameter problem by this geometric
approach. We shall give the steps in detail (possibly excruciating
detail even) with apologies to the many readers for whom the curve
sketching problem is an easy one.

Following the previous sections, we have that the error satisfies

en+1 = Tρe
n = (I − 1

ρ
A)en.

FOR converges provided

|λ|max(T ) = max{|1− λ(A)/ρ| : λ an eigenvalue of A} < 1.

The parameter optimization problem is then to find ρoptimal by

min
ρ

max
λ=λ(A)

|1− λ/ρ|.

To simplify this we suppose that only the largest and smallest eigen-
values (or estimates thereof) are known. Thus, let

0 < a = λmin(A) ≤ λ ≤ b = λmax(A) <∞

so that the simplified parameter optimization problem is

min
ρ

max
a≤λ≤b

|1− λ/ρ|.

Fix one eigenvalue λ and consider in the y − ρ plane the curve
y = 1 − λ/ρ. The plot also has boxes on the ρ axis indicating
a = λmin(A), b = λmax(A) and the chosen intermediate value of λ.
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rho

y

Plot of y = 1− λ/ρ for one value of λ.

The next step is for this same one eigenvalue λ to consider in
the y − ρ plane the curve y = |1 − λ/ρ|. This just reflects up the
portion of the curve below the rho axis in the previous figure. We
also begin including the key level y = 1.

rho

y

Plot of y = |1− λ/ρ| for one value of λ.
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The next step is to plot y = maxa≤λ≤b |1 − λ/ρ|. This means
plotting the same curves for a few more values of λ and taking the
upper envelope of the family of curves once the pattern is clear. We
do this in two steps. First we plot more examples of y = |1− λ/ρ|.

rho

y

The family y = |1− λ/ρ| for four values of λ.

The upper envelop is just whichever curve is on top of the fam-
ily. We plot it next with the two curves that comprise it.
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rho

y

The dark curve is y = maxa≤λ≤b |1− λ/ρ|

The dark curve in the last figure is our target. It is

||T (ρ)||2 = max
a≤λ≤b

|1− λ/ρ|.

Checking which individual curve is the active one in the maximum,
we find:

• Convergence: ||T (ρ)||2 < 1 if and only if ρ is bigger than
the value of rho at the point where 1 = −(1−λmax/ρ). Solving
this equation for rho we find the condition

convergence if and only if ρ > λmax/2.

• Parameter selection: The optimal value of rho is where
minρ maxa≤λ≤b |1− λ/ρ| is attained. This is the value of rho
where the dark, upper envelope curve is smallest. Checking
the active constraints, it is where the two dashed curves cross
and thus where (1 − λmin/ρ) = −(1 − λmax/ρ). Solving for
rho gives the value

ρoptimal =
λmin + λmax

2
,
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the y value is given by

‖T (ρopotimal)‖2 = 1− 2

κ+ 1
,

and the condition number is

κ = cond2(A) =
λmax(A)

λmin(A)
.

How many FOR iterations?

“Computing is no more about computers than astron-
omy is about telescopes.”

- Edsger Dijkstra:

The above analysis also gives insight on the expected number
of iterations for FOR to converge. Since

en = Tn−1, so we have en = Te0.

Because of the multiplicative property of norms

‖en‖ ≤ ‖Tn‖‖e0‖ ≤ ‖T‖n‖e0‖.

Thus, the relative improvement in the error is

‖en‖
‖e0‖

≤ ‖T‖n.

If we want the initial error to be improved by some factor ε then
we want

‖en‖
‖e0‖

< ε.

Since ‖en‖/‖e0‖ ≤ ‖T‖n, it suffices that ‖T‖n < ε or (taking logs
and solving for n)

n ≥
ln( 1

ε )

ln
(

1
‖T‖

) .
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Usually, we take ε = 10−1 and speak of number of iterations for
each significant digit of accuracy. This is

n ≥ ln(10)/ ln

(
1

‖T‖

)
.

We can estimate how big this is using

‖T‖ = 1− α, where α is small.

and ln(1− α)
.
= −α+O(α2) (by Taylor series). This gives

1(
1
‖T‖

) .
= α−1, where ‖T‖ = 1− α.

Refer to the previous α = 1/κ(A) for ρ = (λmax(A) + λmin(A))/2.
Conclusions

1. For ρ = λmax(A), FOR requires approximately

n
.
= ln(10) · κ(A) iterations

per significant digit of accuracy.
2. For ρ = (λmax(A)+λmin(A))/2, FOR requires approximately

n
.
= ln(10)

1

2
(κ(A) + 1) iterations

per significant digit of accuracy.
3. For the model Poisson problem, κ(A)

.
= O(h−2), this gives

n = O(h−2) iterations

per significant digit of accuracy.
4. The problem of FOR is that it is too slow. On, e.g., 100×100

meshes it requires tens of thousands of iterations for each signifi-
cant digit sought. Thus, in the hunt for “better”iterative methods,
it is clear “better”means “faster”which means fewer iterations per
significant digit which means find an iteration for which its itera-
tion operator T satisfies spr(T ) is smaller that of FOR!
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Exercise 219 Let A be N×N and SPD. Consider FOR for solving
Ax = b. Define the A-norm by:

|x|A :=
√
xtAx =

√
< Ax, x > =

√
< x,Ax >.

Give a complete convergence analysis of the FOR error in the A
norm (paralleling our analysis). What is the optimal ρ? In partic-
ular show that for the optimal value of ρ

‖x− xn‖A ≤
(
κ− 1

κ+ 1

)
‖x− xn−1‖A.

What is the number of iterations per significant digit for the MPP?
If you prefer, you can explore this computationally instead of the-
oretically [Choose one approach: analysis or computations, not
both].

Exercise 220 Consider error in FOR yet again. Suppose one
chooses 2 values of ρ and alternates with ρ1, ρ2, ρ1, ρ2 etc. Relabel
the steps as follows:

ρ1(xn+1/2 − xn) = b−Axn

ρ2(xn+1 − xn+1/2) = b−Axn+1/2

Eliminate the half step to write this as an stationary iterative method
[i.e., relate xn+1 to xn]. Analyze convergence for SPD A. Can this
converge faster with two different values of ρ than with 2 steps of
one value of ρ? If you prefer, you can explore this computationally
instead of theoretically [Choose one approach: analysis or compu-
tations. It will be most exciting if you work with someone on this
problem with one person doing the analysis and the other the nu-
merical explorations].

Exercise 221 Consider the 2d Model Poisson Problem on a uni-
form mesh with h = 1/(N + 1), boundary condition: g(x, y) = 0,
right hand side: f(x, y) = x+ y.
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1. Take h = 1/3 and write down the 4x4 linear system in
matrix vector form.

2. Given an N × N mesh, let u(i, j) denote an N × N array
of approximations at each (xi, yj). Give pseudocode for
computing the residual r(i, j) (N × N array) and its norm.
c. Suppose the largest N for which the coefficient matrix can
be stored in banded sparse form (to be solved by Gaussian
elimination) is N = 150.

3. Estimate the largest value of N the problem can be stored to
be solved by First Order Richardson. Explain carefully!

4.4 Better Iterative Methods

“Computer scientists want to study computing for its
own sake; computational scientists want to build useful
things.”

- Greg Wilson

FOR has a huge savings in storage over Gaussian elimination
but not in time to calculate the solution. There are many better
iterative methods; we consider a few such algorithms in this section:
the Gauss-Seidel method, over-relaxation and the SOR method.
These are still used today – not as solvers but as preconditioners
for the Conjugate Gradient method of Chapter 5.

The Gauss-Seidel Method

“Euler published 228 papers after he died, making the
deceased Euler one of history’s most prolific mathemati-
cians.”

- William Dunham:
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The Gauss-Seidel Method is easiest to understand for the 2d
model problem by comparing it with the Jacobi method (which is
FOR with ρ = 4). The Jacobi or ρ = 4 FOR method is

Algorithm 222 (Jacobi Algorithm for the 2d MPP) Given an
array uold of size N+1 by N+1 with boundary values filled with zeros,
a maximum number of iterations itmax, and a tolerance tol,

h=1/N

for it=1:itmax

for i=2:N

for j=2:N

(∗) unew(i,j)=h^2*f(i,j)+ ...

( uold(i+1,j)+uold(i-1,j)+ ...

uold(i,j+1)+uold(i,j-1) )/4

end

end

if convergence is satisfied, exit
unew=uold

end

The idea of Gauss-Seidel is to use the best available information
instead: if unew is known at a neighbor in step (∗), why not use
it instead of uold? This even makes it simpler to program and
reduces the storage needed because we no longer have to track old
and new values and simply use the most recent one.

Algorithm 223 (Gauss-Seidel algorithm for the 2d MPP)
Given an array u of size N+1 by N+1 with boundary values filled with
zeros, a maximum number of iterations itmax, and a tolerance tol,

h=1/N

for it=1:itmax

for i=2:N
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for j=2:N

(∗) u(i,j)=h^2*f(i,j)+ ...

( u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1) )/4

end

end

if convergence is satisfied, exit
end

Algebraically, Jacobi and Gauss-Seidel for a general linear sys-
tem are equivalent to splitting A into

A = D + L+ U,
D = diagonal of A,
L = lower triangular part of A
U = upper triangular part of A.

Ax = b is rewritten as (L+D + U)x = b. The Jacobi iteration for
Ax = b is

D
(
xn+1 − xn

)
= b−Axn

equivalently: (Jacobi for Ax=b)

Dxn+1 = b− (L+ U)xn.

The Gauss-Seidel iteration for Ax = b is

(D + U)
(
xn+1 − xn

)
= b−Axn

equivalently: (Gauss-Seidel for Ax=b)

(D + U)xn+1 = b− Lxn.

Both take the general form

pick M then:

M
(
xn+1 − xn

)
= b−Axn.
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There is a general theory for stationary iterative methods in this
general form. The heuristics that are derived from this theory are
easy to summarize:

• M must be chosen so that spr(I −M−1A) < 1 and so that
M∆x = r is easy to solve.

• The closer M is to A the faster the iteration converges.

Costs for the MPP: In most cases, the Gauss-Seidel itera-
tion takes approximately 1

2 as many steps as Jacobi iteration. This
is because, intuitively speaking, each time (*) in Algorithm 223 is
executed, it involves half old values and half updated values. Thus,
using Gauss-Seidel over FOR cuts execution time roughly in half.
However, the model problem still needs 1

2O(h−2) iterations. Cut-
ting costs by 50% is always good. However, the essential problem
is how the costs grow as h→ 0. In other words, the goal should be
to cut the exponent as well as the constant!

Relaxation

Goro Shimura, of the Shimura-Taniyama Conjec-
ture:

“Taniyama was not a very careful person as a math-
ematician.

He made a lot of mistakes, but he made mistakes in
a good direction,

and so eventually, he got right answers.
I tried to imitate him, but I found out
that it is very difficult to make good mistakes.”

“The time to relax is when you don’t have time for
it.”

– Sydney J. Harris
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Relaxation is an ingenious idea. It is appealing because

• it is algorithmically easy to put into any iterative method
program.

• it introduces a parameter that must be chosen. With the
right choice, often it can reduce the number of iterations re-
quired significantly.

The second point (cost reduction) happens in cases where the
number of steps is sensitive to the precise choice of the parameter.
However, it is not appealing because

• It introduces a parameter which must be chosen problem by
problem and the number of steps can increase dramatically
for slightly non-optimal choices.

The idea is simple: pick the relaxation parameter ω, then add
one line to an existing iterative solver as follows.

Algorithm 224 (Relaxation Step) Given ω > 0, a maximum
number of iterations itmax and x0:

for n=1:itmax

Compute xn+1
temp by some iterative method

Compute xn+1 = ωxn+1
temp + (1− ω)xn

if xn+1 is acceptable, exit
end

Since the assignment operator “=”means “replace the value on
the left with the value on the right,” in a computer program there is
sometimes no need to allocate extra storage for the temporary vari-
able xn+1

temp. Under-relaxation means 0 < ω < 1 and is a good choice
if the underlying iteration undershoots and overshoots in an alter-
nating manner. Small positive values of ω can slow convergence to
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an impractical level, but rarely cause divergence. Over-relaxation
means ω > 1 and is a good choice when the underlying iteration
is progressing slowly in a single direction. The right choice of ω
can drastically improve convergence, but can cause divergence if ω
is too big. This is because under relaxation is just linear interpo-
lation between the past two values while over-relaxation is linear
extrapolation from the past two values. For matrices arising from
the MPP and similar problems, a theory for finding the optimal
value of ω during the course of the iteration is well-established, see
Hageman and Young [HY81].

Exercise 225 In this exercise, you will see a simple example of
how over-relaxation or under-relaxation can accelerate convergence
of a sequence.

For a number r with |r| < 1, consider the sequence6 {en =
(r)n}∞n=0. This sequence satisfies the recursion

en = ren−1 (4.2)

and converges to zero at a rate r. Equation (4.2) can be relaxed as

en = ωren−1 + (1− ω)en = (1 + ω(r − 1)en−1. (4.3)

1. Assume that 0 < r < 1 is real, so that the sequence {en} is of
one sign. Show that there is a value ω0 so that if 1 < ω < ω0,
then (4.3) converges more rapidly than (4.2).

2. Assume that −1 < r < 0 is real, so that the sequence {en}
is of alternating sign. Show that there is a value ω0 so that
if 0 < ω0 < ω < 1, then (4.3) converges more rapidly than
(4.2).

6The notation (r)n means the nth power of r as distinct from en, meaning
the nth iterate.
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3. Assume that r is real, find the value ω0 and show that, in this
very special case, the relaxed expression converges in a single
iteration.

Exercise 226 Show that FOR with relaxation does not improve
convergence. It just corresponds to a different value of ρ in FOR.

Exercise 227 Consider Gauss-Seidel plus relaxation (which is the
SOR method studied next). Eliminate the intermediate (temporary)
variable and show that the iteration operator is

T (ω) = (
1

ω
D + L)−1(

1− ω
ω

D − U).

Gauss-Seidel with Over-relaxation = Successive
Over Relaxation

“The researches of many commentators have already
thrown much darkness on this subject, and it is prob-
able that if they continue we shall soon know nothing
at all about it.”

- Mark Twain:

SOR = Successive Over Relaxation is one of the most famous
algorithms in numerical analysis. It is simply Gauss-Seidel plus
over relaxation. For many years it was the method of choice for
solving problems like the model Poisson problem and its theory is
both lovely and complete. Unfortunately, it also includes a tun-
ing parameter that must be chosen. For the MPP it is tabulated
and for a class of problems including MPP, methods for closely
approximating the optimal ω are well-known. For more complex
problems finding the optimal ω, while theory assures us that it
exists, presents practical difficulties.

Heuristics exist for choosing good guesses for optimal ω, some-
times equation by equation. In industrial settings, there is a long
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history of refined heuristics based on theoretical results. In one
case at Westinghouse, Dr. L. A. Hageman7 was asked to devise au-
tomated methods for finding optimal ω values for a large computer
program used for design of nuclear reactors. This program typi-
cally ran for hours and would often fail in the middle of the night,
prompting a telephone call to the designer who had submitted the
problem. The designer could sometimes get the program running
again by reducing the chosen value of ω, otherwise, a late-night
trip to work was required. In addition to the inconvenience, these
failures caused loss of computer time, a limited and valuable re-
source at the time. Dr. Hageman relieved the users of estimating ω
and failures of the program were largely limited to modelling errors
instead of solution errors. Methods for estimating ω can be found
in Hageman and Young [HY81].

For A = L+D + U SOR is as follows:

Algorithm 228 (SOR for Ax=b) Given ω > 0, a maximum
number of iterations itmax and x0:

Compute r0 = b−Ax0

for n=1:itmax

Compute xn+1
temp by one GS step:

(D + U)
(
xn+1
temp − xn

)
= b−Axn

Compute xn+1 = ωxn+1
temp + (1− ω)xn

Compute rn+1 = b−Axn+1

if xn+1 and rn+1 are acceptable, exit
end

For the 2d MPP the vector x is the array u(i, j) and the action
of D,U and A can be computed directly using the stencil. That
D+U is upper triangular means just use the most recent value for
any u(i, j). It thus simplifies as follows.

7Personal communication.
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Algorithm 229 (SOR algorithm for the 2d MPP) Given an
array u of size N+1 by N+1 with boundary values filled with zeros,
a maximum number of iterations itmax, a tolerance tol, and an
estimate for the optimal omega =omega (see below):

h=1/N

for it=1:itmax

for i=2:N

for j=2:N

uold=u(i,j)

u(i,j)=h^2*f(i,j) ...

+ (u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1))/4

u(i,j)=omega*u(i,j)+(1-omega)*uold

end

end

if convergence is satisfied, exit
end

Convergence results for SOR are highly developed. For example,
the following is known.

Theorem 230 (Convergence of SOR) Let A be SPD and let
TJacobi = D−1(L+U) be the iteration matrix for Jacobi (not SOR).
If spr(TJacobi) < 1, then SOR converges for any ω with 0 < ω < 2
and there is an optimal choice of ω, known as ωoptimal, given by

ωoptimal =
2

1 +

√
1− (spr(TJacobi))

2
.

For ω = ωoptimal and TSOR, TGaussSeidel the iteration matrices for
SOR and Gauss-Seidel respectively, we have

spr(TSOR) = ωoptimal−1 < spr(TGaussSeidel) ≤ (spr(TJacobi))
2
< 1.
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The dramatic reason SOR was the method of choice for ω =
ωoptimal is that it reduces the exponent in the complexity estimate
for the MPP

from O(h−2) to O(h−1).

Exercise 231 Theorem 186 presents the eigenvalues of the 3d MPP
matrix, and the analogous expression for the 2d MPP (A) is

λpq = 4

(
sin2

(
pπ

2(N + 1)

)
+ sin2

(
qπ

2(N + 1)

))
,

for 1 ≤ p, q ≤ N .

Using this expression along with the observation that the diagonal of
A is a multiple of the identity, find spr(TJacobi) and spr(TSOR) for
ω = ωoptimal. How many iterations will it take to reduce the error
from 1 to 10−8 using: (a) Jacobi, and (b) SOR with ω = ωoptimal
for the case that N = 1000?

Three Level Over-relaxed FOR

Alan Greenspan, at his 1988 confirmation hearings:
“I guess I should warn you if I turn out to be par-

ticularly clear, you’ve probably misunderstood what I
said.”

Adding a relaxation step to FOR just results in FOR with a
changed value of ρ. It is interesting that if a relaxation step is
added to a 2 stage version of FOR, it can dramatically decrease
the number of steps required. The resulting algorithm is often
called Second Order Richardson and it works like this:

Algorithm 232 (Second Order Richardson) Given the matrix
A, initial vector u0, values of ρ and ω, and a maximum number of
steps itmax:



4.4. BETTER ITERATIVE METHODS 155

Do one FOR step:
r0 = b−Au0

u1 = u0 + r0/ρ
for n = 1:itmax

rn = b−Aun
un+1
TEMP = un + rn/ρ

un+1 = ωun+1
TEMP + (1− ω)un−1

if converged, exit, end
end

It has some advantages to the other SOR on some parallel ar-
chitectures (and some other disadvantages as well, such as having
to optimize over two parameters).

It can reduce the number of iterations as much as SOR. It takes
more to program it and requires more storage than SOR. However,
it is parallel for the model problem while SOR is less so. In 2
stage algorithms, it is usual to name the variables uOLD, uNOW

and uNEW .

Algorithm 233 (Second Order Richardson for the MPP)
Given a maximum number of iterations itmax, an (N+1)×(N+1)
mesh on a square, starting with guesses uold(i,j), unow(i,j) and
choices of ρ =rho, and ω=omega

for its=1:itmax

for i=2:N

for j=2:N

au = - uold(i+1,j) - uold(i-1,j) ...

+ 4.0*uold(i,j) ...

- uold(i,j+1) - uold(i,j-1)

r(i,j) = h^2*f(i,j) - au

unow(i,j) = uold(i,j) + (1/rho)*r(i,j)

unew(i,j) = omega*unow(i,j) + (1-omega)*uold(i,j)

end
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end

Test for convergence
if convergence not satisfied

Copy unow to uold and unew to unow

for i=2:N

for j=2:N

uold(i,j)=unow(i,j)

unow(i,j)=unew(i,j)

end

end

else

Exit with converged result
end

end

Convergence analysis has been performed for two stage meth-
ods8.

Algorithmic Issues: Storing a large, sparse matrix

“Just as there are wavelengths that people cannot see,
and sounds that people cannot hear, computers may
have thoughts that people cannot think.”

- Richard Hamming, a pioneer numerical analyst:

Neo: The Matrix.
Morpheus: Do you want to know what it is?
Neo: Yes.
Morpheus: The Matrix is everywhere.

- an irrelevant quote from the film “The Matrix”

8N.K. Nichols, On the convergence of two-stage iterative processes for solv-
ing linear equations, SIAM Journal on Numerical Analysis, 10 (1973), 460–469.
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If you are using an iterative method to solve Ax = b, most
typically the method will be written in advance but all references
to A will be made through a function or subroutine that performs
the product Ax. It is in this subroutine that the storage for the
matrix A is determined. The “best”storage scheme for very large
systems is highly computer dependent. And, there are problems
for which A need not be stored at all.

For example, for the 2d Model Poisson problem, a residual (and
its norm) can be calculated on the physical mesh as follows.

Algorithm 234 (Calculating a residual: MPP) Given an ar-
ray u of size N+1 by N+1 containing the current values of the iterate,
with correct values in boundary locations,

rnorm=0

for i=2:N

for j=2:N

au=4*u(i,j)-(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1))

r(i,j)=h^2*f(i,j)-au

rnorm=rnorm+r(i,j)^2

end

end

rnorm=sqrt(rnorm/(N-1)^2)

Note that because the nonzero entries are known and regular
the above did not even need to store the nonzero entries in A. We
give one important example of a storage scheme for more irregular
patterned matrices: CRS=Compressed Row Storage.

Example 235 (CRS=Compressed Row Storage) Consider a
sparse storage scheme for the following matrix A below (where
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“· · · ”means all the rest zeroes).

2 −1 0 0 3 0 0 . . .
0 2 0 1 0 0 5 . . .
−1 2 −1 0 1 0 0 . . .
0 0 3 2 1 0 1 . . .

. . .


To use A we need to first store the nonzero entries. In CRS this
is done, row by row, in a long vector. If the matrix has M nonzero
entries we store them in an array of length M named value

value = [2,−1, 3, 2, 1, 5,−1, 2,−1, 1, 3, 2, 1, 1, . . . ]

Next we need to know in the above vector the index where each row
starts. For example, the first 3 entries, 2,−1, 3, come from row
1 in A. Row 2 starts with the next (4th in this example) entry.
This metadata can be stored in an array of length M named row,
containing indices where each row starts. Of course, the first row
always starts with the first value in value, so there is no need to
store the first index, 1, leaving (M − 1) row indices to be stored.
By convention, the final index in value is (M + 1).

row = [4, 7, 11, . . . ,M)

Now we know that Row 1 contains entries 1, 2, 3 (because Row 2
starts with entry 4), we need to store the column numbers that
each entry in value corresponds with in the global matrix A. This
information can be stored in a vector of length M named col.

col = [1, 2, 5, 2, 4, 7, . . . ]

With these three arrays we can calculate the matrix vector product
as follows.



4.5. DYNAMIC RELAXATION 159

Algorithm 236 (Matrix-Vector product with CRS) Given the
N -vector x and the N ×N matrix A stored in CRS, this computes
the N -vector y = Ax.

first=1

for i=1:N

y(i)=0

for j=first:row(i)-1

k=col(j)

y(i)= y(i) + value(j)*x(k)

end

first=row(i)

end

Exercise 237 Write a pseudocode routine for calculating x→ Atx
when A is stored in CRS. Compare your routine to the one given in
in the Templates book, Barrett, Berry, et al [BB94], Section 4.3.2.

Remark 238 The Matlab program uses a variant of CRS to
implement its sparse vector and matrix capabilities. See Gilbert,
Moler and Schreiber [GMS92] for more information.

4.5 Dynamic Relaxation

There is one last approach related to stationary iterative meth-
ods we need to mention: Dynamic Relaxation. Dynamic relax-
ation is very commonly used in practical computing. In many
cases for a given practical problem both the evolutionary problem
(x′(t) + Ax(t) = b) and the steady state problem (Ax = b) must
eventually be solved. In this case it saves programmer time to
simply code up a time stepping method for the evolutionary prob-
lem and time step to steady state to get the solution of the steady
problem Ax = b. It is also roughly the same for both linear and
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nonlinear systems, a highly valuable feature. Excluding program-
mer effort, however, it is however almost never competitive with
standard iterative methods for solving linear systems Ax = b. To
explain in the simplest case, suppose A is SPD and consider the
linear system Ax = b. We embed this into the time dependent
system of ODEs

x′(t) +Ax(t) = b, for 0 < t <∞ (IVP)

x(0) = x0 the initial guess.

Since A is SPD it is not hard to show that as t→∞ the solution
x(t)→ A−1b.

Theorem 239 Let A be SPD. Then for any initial guess the unique
solution to (IVP) x(t) converges to the unique solution of the linear
system Ax = b:

x(t)→ A−1b as t→∞.

Thus one way to solve the linear system is to use any explicit
method for the IVP and time step to steady state. There is in
fact a 1 − 1 correspondence between time stepping methods for
some initial value problem associated with Ax = b and stationary
iterative methods for solving Ax = b. While this sounds like a
deep meta-theorem it is not. Simply identify the iteration number
n with a time step number and the correspondence emerges. For
example, consider FOR

ρ(xn+1 − xn) = b−Axn.

Rearrange FOR as follows:

xn+1 − xn

∆t
+Axn = b where ∆t := ρ−1.

This shows that FOR is exactly the forward Euler method for IVP
with timestep and pseudo-time

∆t := ρ−1 and tn = n∆t and xn ' x(tn).
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Similarly, the linear system Ax = b can be embedded into a second
order equation with damping

x′′(t) + ax′(t) +Ax(t) = b, for a > 0 and 0 < t <∞
x(0) = x0, x

′(0) = x1 the initial guesses.

Timestepping gives an iterative method with 2 parameters (a,∆t)
and thus resembles second order Richardson.

xn+1 − 2xn + xn−1

∆t2
+ a

xn+1 − xn−1

2∆t
+Axn = b .

The reasons this approach is not competitive, if programmer
time is not counted, include:

• The evolutionary problem is forced to compute with physical
time whereas an iterative method can choose some sort of
pseudo-time that leads to steady state faster.

• The evolutionary problem seeks time accuracy to the prese-
lected problem whereas iterative methods only seek to get to
the steady state solution as fast as possible.

Exercise 240 Find the IVP associated with the stationary itera-
tive methods Gauss-Seidel and SOR.

Exercise 241 Complete the connection between second order Richard-
son and the second order IVP.

Exercise 242 Show that the solution of both IVP’s converges to
the solution of Ax = b as t→∞.

4.6 Splitting Methods

The classic and often very effective use of dynamic relaxation is
in splitting methods. Splitting methods have a rich history; entire
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books have been written to develop aspects of them so we shall give
one central and still important example. the Peaceman-Rachford
method. Briefly, the N ×N matrix A is split as

A = A1 +A2

where the subsystems A1y = RHS1 and A2y = RHS2 are “easy to
solve.”Usually easy to solve means easy either in computer time
or in programmer effort; often A is split so that A1 and A2 are
tridiagonal (or very close to tridiagonal) or so that you already
have a code written to solve the subsystems that is highly adapted
to their specific features. Given that the uncoupled problems can
be solved, splitting methods then are applied to solve the coupled
problems such as9

(A1 +A2)x = b,

d

dt
x(t) + (A1 +A2)x(t) = f(t)

We consider the first two problems. We stress that splitting meth-
ods involve two separate steps and each is important for the success
of the whole method:

• Pick the actual splitting A = A1 +A2.

• Pick the splitting method to be used with that splitting.

The first splitting method and in many ways still the best is
the Peaceman-Rachford method.

Algorithm 243 (Peaceman-Rachford Method) Pick parame-
ter ρ > 0, Pick initial guess x0

Until satisfied: given xn

9Another possibility would be F1(x) + F2(x) = 0, where Ai = F ′i .
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Solve

(ρI +A1)xn+1/2 = b+ (ρI −A2)xn, (PR, step 1)

(ρI +A2)xn+1 = b+ (ρI −A1)xn+1/2.(PR, step 2)

Test for convergence.

Each step is consistent with Ax = b. (If xn+1/2 = xn = x then
rearranging (ρI + A1)xn+1/2 = b + (ρI − A2)xn gives Ax = b.)
The first half step is A1 implicit and A2 explicit while the second
half step reverses and is A2 implicit and A1 explicit. The classic
questions are:

• When does it converge?

• How fast does it converge?

• How to pick the methods parameter?

We attack these by using the fundamental tools of numerical
linear algebra.

Lemma 244 The Peaceman-Rachford method satisfies

xn+1 = b̃+ Txn

where the iteration operator T = TPR is

TPR = TPR(ρ) = (ρI +A2)−1(ρI −A1)(ρI +A1)−1(ρI −A2)

Proof. Eliminating the intermediate variable xn+1/2 gives this
immediately.

Thus Peaceman-Rachford converges if and only if10 spr(TPR) <
1. This is a product of four terms. It can be simplified to a product
of the form F (A1) · F (A2) by commuting the (non-commutative)
terms in the product using the following observation.

10Recall the spectral radius is spr(T ) :=max{|λ|: λ is an eigenvalue of T}
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Lemma 245 (AB similar to BA) Let A,B be N ×N matrices.
If either A or B is invertible, then AB is similar to BA

AB ∼ BA.

Thus
spr(AB) = spr(BA).

Proof. Exercise!
Define the function11 T : C→ C by

T (z) =
ρ− z
ρ+ z

.

Using the property that we can commute matrices without altering
the spectral radius of the product, we find

spr(TPR(ρ)) = spr
[
(ρI −A1)(ρI +A1)−1(ρI −A2)(ρI +A2)−1

]
= spr [T (A1)T (A2)] .

We are now ready to prove one of the most famous results in iter-
ative methods.

Theorem 246 (Kellogg’s Lemma) Let B be an N×N real ma-
trix. If

xTBx > 0 for all 0 6= x ∈ RN ,
then

||T (B)||2 < 1.

Proof. Let x 6= 0 be given. Then

||T (B)x||22
||x||22

=
〈T (B)x, T (B)x〉

〈x, x〉
=

=
〈(ρI −B)(ρI +B)−1x, (ρI −B)(ρI +B)−1x〉

〈x, x〉
.

11This is an abuse of notation to use T for so many things. However, it is
not too confusing and standard in the area (so just get used to it).
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Now change variables by y = (ρI + B)−1x, so x = (ρI + B)y. We
then have

||T (B)x||22
||x||22

=
〈(ρI −B)y, (ρI −B)y〉
〈(ρI +B)y, (ρI +B)y〉

=
ρ2||y||22 − 2ρyTBy + ||By||22
ρ2||y||22 + 2ρyTBy + ||By||22

.

Checking the numerator against the denominator and recalling
xTBx > 0, they agree term by term with one minus sign on top
and the corresponding sign a plus on bottom. Thus

||T (B)x||22
||x||22

< 1 and ||T (B)||2 ≤ 1.

To prove strict inequality, assume equality holds. Then if ‖T (B)‖2 =
1, there must exist at least one x 6= 0 for which ||T (B)x||22 = ||x||22.
The same argument shows that for this x, xTBx = 0, a contradic-
tion.

Using Kellogg’s lemma we thus have a very strong convergence
result for (PR).

Theorem 247 (Convergence of Peaceman-Rachford) Let ρ >
0, xTAix ≥ 0 for i = 1, 2 with xTAix > 0 for all 0 6= x ∈ RN for
one of i = 1 or 2. Then (PR) converges.

Proof. We have

spr(TPR) = spr [T (A1)T (A2)] .

By Kellogg’s lemma we have for both i = 1, 2, ||T (Ai)||2 ≤ 1 with
one of ||T (Ai)||2 < 1. Thus, ||T (A1)T (A2)||2 < 1 and

spr(T (A1)T (A2)) ≤ ||T (A1)T (A2)||2 < 1.
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Remark 248 (What does the condition xTAix > 0 mean?)
Peaceman-Rachford is remarkable in that its convergence is com-
pletely insensitive to the skew symmetric part of A. To see this,
recall that any matrix can be decomposed into the sum of its sym-
metric part and its skew-symmetric part A = As +Ass by

As =
1

2
(A+AT ), so (As)

T
= As

Ass =
1

2
(A−AT ), so (Ass)

T
= −Ass.

For x a real vector it is not hard to check12 that xTAssx ≡ 0. Thus,
xTAix > 0 means:

The symmetric part of A is positive definite. The skew sym-
metric part of A is arbitrary and can thus be arbitrarily large.

Exercise 249 The following iteration is silly in that each step
costs as much as just solving Ax = b. Nevertheless, (and ignoring
this aspect of it) prove convergence for matrices A with xTAx > 0
and analyze the optimal parameter:

w(ρI +A)xn+1 = b+ ρxn.

Exercise 250 Analyze convergence of the Douglas-Rachford method
given by:

(ρI +A1)xn+1/2 = b+ (ρI −A2)xn,

(ρI +A2)xn+1 = A2x
n + ρxn+1/2.

Parameter selection

The Peaceman-Rachford method requires a one parameter opti-
mization problem be solved to pick ρ. We shall use exactly the

12a := xTAssx =
(
xTAssx

)T
= xTAssT x ≡ −xTAssx. Thus a = −a so

a = 0.
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same method as for FOR to solve the problem for SPD A. The so-
lution process is exactly the same as for FOR but its conclusion is
quite different, as we shall see. In this section we shall thus assume
further that

A,A1, A2 are SPD.

We shall actually solve the following problem where B plays the
role of A1, A2:

Problem 251 Given the N ×N SPD matrix B, find

ρoptimal = arg min
ρ
||T (B)||2, or

ρoptimal = arg min
ρ

max
λmin(B)≤λ≤λmax(B)

|ρ− λ
ρ+ λ

|.

Consider φ(ρ) = |ρ−λρ+λ |, we follow the same steps as for FOR
and sketch the curves below for several values of λ. We do this in
two steps. First we plot more examples of y = |ρ−λρ+λ |.

rho

y

The family y = |ρ−λρ+λ | for four values of λ.
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The upper envelope is the curve is on top of the family. We plot it
next with the two curves that comprise it.

rho

y

The dark curve is y = maxa≤λ≤b |ρ−λρ+λ |

Solving for the optimal value by calculating the intersection point
of the two curves comprising the upper envelop, we find

ρoptimal =
√
λmaxλmin

||TPR(ρoptimal)||2 =

√
κ− 1√
κ+ 1

= 1− 2√
κ+ 1

.

Connection to Dynamic Relaxation

The PR method can be written in residual-update form by elimi-
nating the intermediate step and rearranging. There results

1

2
(ρI +A1)(ρI +A2)

(
xn+1 − xn

)
= b−Axn. (PR, step 1)
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The ADI splitting

To motivate the first (and still important) splitting A = A1 + A2,
we recall a remark from the Gaussian elimination chapter.

Remark 252 (How fast is tridiagonal Gaussian elmination?)
Tridiagonal Gaussian elimination has 1 loop. Inside each loop
roughly 3 arithmetic operations are performed. Thus, O(N) float-
ing point operations are done inside tridiagonal Gaussian elimina-
tion for an N×N matrix. If we solve an N×N linear system with
a diagonal matrix, it will take N divisions (one for each diagonal
entry). The operation count of 3N − 3 multiplies and divides for
tridiagonal elimination is remarkable. Solving a tridiagonal linear
system is almost as fast as solving a diagonal (completely uncou-
pled) linear system.

Indeed, consider the 2d MPP. Recall that the domain is the unit
square, Ω = (0, 1)× (0, 1). Approximate uxx and uyy by

uxx(a, b)
.
=
u(a+ ∆x, b)− 2u(a, b) + u(a−∆x, b)

∆x2
, (4.4)

uyy(a, b)
.
=
u(a, b+ ∆y)− 2u(a, b) + u(a, b−∆y)

∆y2
. (4.5)

Introduce a uniform mesh on Ω with N+1 points in both directions:
∆x = ∆y = 1

N+1 =: h and

xi = ih, yj = jh, i, j = 0, 1, . . . , N + 1.

Let uij denote the approximation to u(xi, yj) we will compute at
each mesh point. On the boundary use

uij = g(xi, yj) ( here g ≡ 0) for each xi, yj on ∂Ω.
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and eliminate the boundary points from the linear system. For a
typical (xi, yj) inside Ω we use

−
(
ui+1j − 2uij + ui−1j

h2
+
uij+1 − 2uij + uij−1

h2

)
= f(xi, yj)

(4.6)

for all (xi, yj) inside of Ω

uij = g(xi, yj) ( ≡ 0 ) at all (xi, yj) on ∂Ω. (4.7)

The boundary unknowns can be eliminated giving an N2 × N2

linear system for the N2 unknowns:

AN2×N2 uN2×1 = fN2×1.

To split A with the ADI = Alternating Direction Implicit splitting
we use the directional splitting already given above:

A = A1 +A2, where

A1 = −ui+1j − 2uij + ui−1j

h2

A2 = −uij+1 − 2uij + uij−1

h2

Note that:

Solving (ρI +Ai)v = RHS requires solving one N ×N ,
tridiagonal linear system per horizontal mesh line (when i = 1) or
vertical mesh line (when i = 2). Solving tridiagonal linear systems
is very efficient in both time and storage; one Peaceman Rachford
step with the ADI splitting is of comparable cost to 6 FOR steps.

Exercise 253 If one full PR-ADI step costs the same as 6 FOR
steps, is it worth doing PR-ADI? Answer this question using results
on condition numbers of tridiag(−1, 2,−1) and the estimates of
number of steps per significant digit for each method.



Chapter 5

Solving Ax = b by
Optimization

“According to my models, we are doubling the paradigm
shift rate approximately every decade.”

- From a letter to Scientific American by Ray Kurzweil:

“Fundamentals, fundamentals. If you don’t have them
you’ll run into someone else’s.”

- Virgil Hunter (Boxing trainer)

Powerful methods exist for solving Ax = b when A is SPD based on
a deep connection to an optimization problem. These methods are
so powerful that often the best methods for solving a general linear
system Bx = f is to pass to the least squares equations (BtB)x =
Btf in which the coefficient matrix A := BtB is now coerced to be
SPD (at the expense of squaring its condition number). We begin
to develop them in this chapter, starting with some background.

Definition 254 (SPD matrices) AN×N is SPD if it is sym-
metric, that is A = At, and positive definite, that is xtAx > 0
for x 6= 0.

171
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If A and B are symmetric we say A > B if A−B is SPD, i.e.
if xtAx > xtBx for all x 6= 0.

A is negative definite if −A is positive definite.
A is nonsymmetric if A 6= At, skew-symmetric if At = −A

and indefinite if there are choices of x for which xtAx is both
positive and negative.

A nonsymmetric (real) matrix A satisfying xtAx > 0 for all
real vectors x 6= 0 is called positive real.

It is known that a symmetric matrix A is positive definite if
and only if all λ(A) > 0.

Lemma 255 (The A-inner product) If A is SPD then

〈x, y〉A = xtAy

is a weighted inner product on Rn, the A-inner product, and

‖x‖A =
√
〈x, x〉A =

√
xtAx

is a weighted norm, the A-norm.

Proof. 〈x, y〉A is bilinear:

〈u+ v, y〉A = (u+ v)tAy = utAy + vtAy = 〈u, y〉A + 〈v, y〉A

and
〈αu, y〉A = (αu)tAy = α

(
utAy

)
= α〈u, y〉A.

〈x, y〉A is positive

〈x, x〉A = xtAx > 0, for x 6= 0, since A is SPD.

〈x, y〉A is symmetric:

〈x, y〉A = xtAy = (xtAy)t = ytAtxtt = ytAx = 〈y, x〉A.
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Thus 〈x, x〉A is an inner product and, as a result, ‖x‖A =
√
〈x, x〉A

is an induced norm on RN .
We consider two examples that show that the A-norm is a

weighted `2 type norm.

Example 256 A =

[
1 0
0 2

]
. Then the A norm of [x1, x2]t is

‖x‖A =

√
[x1, x2]

[
1 0
0 2

] [
x1

x2

]
=
√
x2

1 + 2x2
2,

which is exactly a weighted l2 norm.

Example 257 Let A2×2 be SPD with eigenvalues λ1, λ2 (both pos-
itive) and orthonormal eigenvectors φ1, φ2:

Aφj = λjφj .

Let x ∈ R2 be expanded

x = αφ1 + α2φ2.

Then, by orthogonality, the l2 norm is calculable from either set of
coordinates (x1, x2) or (α, β) the same way

‖x‖2 = x2
1 + x2

2 = α2 + β2.

On the other hand, consider the A norm:

‖x‖2A = (α1φ1 + βφ2)
t
A (α1φ1 + βφ2)

= (α1φ1 + βφ2)
t
A (α1λ1φ1 + βλ2φ2)

by orthogonality of φ1, φ2

= λ1α
2 + λ2β

2.
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Comparing the `2 norm and the A norm

‖x‖2 = α2 + β2 and ‖x‖2A = λ1α
2 + λ2β

2,

we see that ‖ · ‖A is again exactly a weighted `2 norm, weighted by
the eigenvalues of A.

Exercise 258 For A either (i) not symmetric, or (ii) indefinite,
consider

x, y → 〈x, y〉A
In each case, what properties of an inner product fail?

Exercise 259 If A is skew symmetric show that for real vectors
xtAx = 0. Given an N × N matrix A, split A into its symmetric
and skew-symmetric parts by

Asymmetric =
A+At

2

Askew =
A−At

2

Verify that A = Asymmetric+ Askew. Use this splitting to show that
any positive real matrix is the sum of an SPD matrix and a skew
symmetric matrix.

5.1 The connection to optimization

Nature uses as little as possible of anything.
- Kepler, Johannes (1571-1630)

We consider the solution of Ax = b for SPD matrices A. This
system has a deep connection to an associated optimization prob-
lem. For A anN×N SPD matrix, define the function J(x1, . . . , xN )
→ R by

J(x) =
1

2
xtAx− xtb.
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Theorem 260 Let A be SPD. The solution of Ax = b is the unique
minimizer of J(x). There holds

J(x+ y) = J(x) +
1

2
ytAy > J(x) for any y

Further, if x̂ is any other vector in RN then

‖x− x̂‖2A = 2 (J(x̂)− J(x)) . (5.1)

Proof. This is an identity. First note that since A is SPD if y 6= 0
then ytAy > 0. We use x = A−1b and A is SPD. Expand and
collect terms:

J(x+ y) =
1

2
(x+ y)tA(x+ y)− (x+ y)tb

=
1

2
xtAx+

1

2
xtAx+

1

2
· 2ytAx+

1

2
ytAy − xtb− ytb

= J(x) + yt(Ax− b) +
1

2
ytAy +

1

2
ytAy

J(x) +
1

2
ytAy > J(x).

This is the first claim. The second claim is also an identity: we
expand the LHS and RHS and cancel terms until we reach some-
thing equal. The formal proof is then this verification in reverse.
Indeed, expanding

‖x− x̂‖2A = (x− x̂)tA(x− x̂) = xtAx− x̂tAx− xtAx̂+ x̂tAx̂

= ( since Ax = b) = xb − x̂tb− x̂tb+ x̂tAx̂ = x̂tAx̂− 2x̂tb+ xtb

and

2 (J(x̂)− J(x)) = x̂tAx̂− 2x̂tb− xtAx+ 2xtb

= (since Ax = b) = x̂tAx̂− 2x̂tb− xt[Ax− b] + xtb

= x̂tAx̂− 2x̂tb+ xtb,
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which are obviously equal. Each step is reversible so the result is
proven.

Thus, for SPD A we can write.

Corollary 261 For A SPD the following problems are equivalent:

solve : Ax = b,

minimize : J(y).

The equivalence can be written using the terminology of opti-
mization as x = A−1b is the argument that minimizes J(y):

x = arg min
y∈RN

J(y)

Example 262 (The 2× 2 case) Consider the 2×2 linear system

A−→x =
−→
b . Let A be the symmetric 2× 2 matrix

A =

[
a c
c d

]
.

Calculating the eigenvalues, it is easy to check that A is SPD if
and only if

a > 0, d > 0, and c2 − ad < 0.

Consider the energy functional J(x). Since −→x is a 2 vector, denote
it by (x, y)t. Since the range is scalar, z = J(x, y) is an energy
surface:

z = J(x, y) =
1

2
(x, y)

[
a c
c d

](
x

y

)
− (x, y)

(
b1
b2

)
=

z =
1

2

[
ax2 + 2cxy + dy2

]
− (b1x+ b2y).
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This surface is a paraboloid opening up if and only is the above
condition on the eigenvalues hold: a > 0, d > 0, and c2 − ad < 0.
One example is plotted below. The solution of Ax = b is the point
in the x− y plane where z = J(x, y) attains its minimum value.

z=J(x,y)

An example of z = J(x, y)

Minimization problems have the added advantage that it is easy
to calculate if an approximate solution has been improved: If J(the
new value) < J(the old value) then it has! It is important that the
amount J(∗) decreases correlates exactly with the decrease in the
A-norm error as follows.
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Equation (5.1) shows clearly that solving Ax = b (so x̂ = x) is
equivalent to minimizing J(·) (since J(x̂) ≥ J(x) and equals J(x)
only when x̂ ≡ x). Theorems 260 and 261 show that powerful
tools from optimization can be used to solve Ax = b when A is
SPD. There is a wide class of iterative methods from optimization
that take advantage of this equivalence: descent methods. The
prototypical descent method is as follows.

Algorithm 263 (General Descent Method) Given Ax = b, a
quadratic functional J(·) that is minimized at x = A−1b, a maxi-
mum number of iterations itmax and an initial guess x0:

Compute r0 = b−Ax0

for n=1:itmax

(∗) Choose a direction vector dn

Find α = αn by solving the 1d minimization problem:
(∗∗) αn = arg minα Φ(xn + αdn)

xn+1 = xn + αnd
n

rn+1 = b−Axn+1

if converged, exit, end
end

The most common examples of steps (∗) and (∗∗) are:

• Functional: Φ(x) := J(x) = 1
2x

tAx− xtb

• Descent direction: dn = −∇J(xn).

These choices yield the steepest descent method. Because the
functional J(x) is quadratic, there is a very simple formula for αn
in step (∗∗) for steepest descent:

αn =
dn · rn

dn ·Adn
, where rn = b−Axn. (5.2)
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It will be convenient to use the 〈·, ·〉 notation for dot products so
this formula is equivalently written

αn =
〈dn, rn〉
〈dn, Adn〉

=
〈dn, rn〉
〈dn, dn〉A

.

The difference between descent methods arises from:

1. The functional minimized, and most commonly

2. The choice of descent direction.

Many choices of descent direction and functionals have been
tried. Examples of other choices include the following:

Choice of descent direction dn :

• Steepest descent direction: dn = −∇J(xn).

• Random directions: dn = a randomly chosen vector

• Gauss-Seidel like descent: dn cycles through the standard
basis of unit vectors e1, e2, · · ·, eN and repeats if necessary.

• Conjugate directions: dn cycles through an A-orthogonal set
of vectors.

Choice of Functionals to minimize:

• If A is SPD the most common choice is

J(x) =
1

2
xtAx− xtb

• Minimum residual methods: for general A ,

J(x) :=
1

2
〈b−Ax, b−Ax〉.
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• Various combinations such as residuals plus updates:

J(x) :=
1

2
〈b−Ax, b−Ax〉+

1

2
〈x− xn, x− xn〉.

Exercise 264 Prove (5.2) that αn = dn·rn
dn·Adn . Hint: Set d

dα (J(x+
αd)) = 0 and solve.

Exercise 265 Consider solving Ax = b by a descent method for a
general non-SPD, matrix A. Rewrite the above descent algorithm
to minimize at each step ||b−Axn||22 := rn · rn. Find a formula for
αn. Find the steepest descent direction for ||b−Axn||22.

Exercise 266 If A is an N ×N SPD matrix and one has access
to a complete set of A-orthogonal vectors φ1, · · ·, φN show that the
solution to Ax = b can be written down in closed form (but using
inner products). Find the number of FLOPs required to get the
solution by just calculating the closed form solution.

Exercise 267 For A SPD and C an N ×N matrix and ε a small
parameter, consider the minimization problem:

xε = arg min Jε(x) :=
1

2
xtAx+

1

2ε
||Cx||22 − xtb.

Find the linear system xε satisfies. Prove the coefficient matrix is
SPD. Show that xε → A−1b as ε → ∞. Next consider the case
ε→ 0 and show

xε → Nullspace(C), i.e., Cxε → 0.

Exercise 268 Let A be the symmetric 2× 2 matrix

A =

[
a c
c d

]
.

Find a necessary and sufficient condition on trace(A) and det(A)
for A to be SPD.
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5.2 Application to Stationary Iterative
Methods

“As a historian, I cannot believe how low the stan-
dards are in mathematics! In my field, no one would put
forth an argument without at least ten proofs, whereas
in mathematics they stop as soon as they have found a
single one!”

- An irate historian berating Andrey Kolmogorov.
“How long will you delay to be wise?” - Epictetus

Consider a stationary iterative method based on decomposing
A by A = M − N. With this additive decomposition, Ax = b is
equivalent to Mx = b+Nx. The induced iterative method is then

M (xn+1 − xn) = b−Axn or (5.3)

Mxn+1 = b+Nxn.

Obviously, if M = A this converges in one step but that one step is
just solving Ax = b. The matrix M must approximate A and yet
systems Mxn+1 = RHS must also be very easy to solve. Some-
times such a matrix M is call a preconditioner of the matrix A
and A = M −N is often called a regular splitting of A. Examples
include

• FOR: M = ρI, N = ρI −A

• Jacobi: M = diag(A)

• Gauss-Seidel: M = D + L (the lower triangular part of A).

Householder (an early giant in numerical linear algebra and
matrix theory) proved a very simple identity for (5.3) when A is
SPD.
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Lemma 269 (Householder lemma) Let A be SPD and let xn
be given by (5.3). With en = x− xn

etnAen − etn+1Aen+1 =
1

2
(xn+1 − xn)P (xn+1 − xn) (5.4)

where P = M +M t −A.

Proof. This is an identity: expand both sides and cancel to check
that is true. Next reverse the steps to give the proof.

Corollary 270 (Convergence of FOR, Jacobi, GS and SOR)
For A SPD, if P is positive definite (5.3) converges. The conver-
gence is monotonic in the A norm:

‖en‖A > ‖en+1‖A > . . . −→ 0 as n→ 0.

Proof. The proof is easy but there are so many tools at hand it
is also easy to start on the wrong track and get stuck there. Note
that ‖en‖A is monotone decreasing and bounded below by zero.
Thus it has a non-negative limit. Since it converges to something,
the Cauchy criteria implies that(

etnAen − etn+1Aen+1

)
→ 0.

Now reconsider the Householder Relation (5.4). Since the LHS→ 0
we must have the RHS → 0 too1. Since P > 0, this means

||xn+1 − xn||P → 0.

Finally the iteration itself,

M
(
xn+1 − xn

)
= b−Axn,

1This step is interesting to the study of human errors. Since we spend our
lifetime reading and writing L to R, top to bottom, it is common for our eyes
and brain to process the mathematics = sign as a one directional relation ⇒
when we are in the middle of a proof attempt.
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implies that if xn+1 − xn → 0 (the LHS), then the RHS does also:
b−Axn → 0, so convergence follows.

Let us apply this result to the above examples.

Theorem 271 (Convergence of FOR, GS, Jacobi, SOR)

• FOR converges monotonically in ‖ · ‖A if 2

P = M +M t −A = 2ρI −A > 0 if ρ >
1

2
λmax(A).

• Jacobi converges monotonically in the A-norm if diag(A) >
1
2A.

• Gauss-Seidel converges monotonically in the A norm for SPD
A in all cases.

• SOR converges monotonically in the A-norm if 0 < ω < 2.

Proof. This follows easily from Householder’s result as follows.
For Jacobi, M = diag(A), so

P = M +M t −A = 2diag(A)−A > 0 if diag(A) >
1

2
A.

For GS, since A = D+L+U where (since A is symmetric) U = Lt

and

P = M +M t −A = (D + L) + (D + L)t −A =

D + L+D + Lt − (D + L+ Lt) = D > 0

2Here A > B means (A− B) is positive definite, i.e. xtAx > xtBx for all
x 6= 0. Also, monotonic convergence in the A-norm means the errors satisfy
‖en+1‖A < ‖en‖A for all n.
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for SPD A. For SOR we calculate (as above using Lt = U)

P = M +M t −A = M +M t − (M −N) = M t +N

= ω−1D + Lt +
1− ω
ω

D − U =
2− ω
ω

D > 0,

for 0 < ω < 2. Convergence of FOR in the A-norm is left as an
exercise.

“WRITE. FINISH THINGS. KEEP WRITING.”
-Neil Gaiman

Exercise 272 Consider the 2d MPP on a uniform N ×N mesh.
Divide the domain in half Ω = Ω1 ∪ Ω2 (not through any mesh-
points) partitioning the mesh into two subsets of equal numbers.
This then partitions the solution and RHS accordingly as (if we
first order the mesh points in Ω1 then in Ω2 ) u = (u1, u2). Show
that the MPP then takes the block form[

A1 −C
−C A2

] [
u1

u2

]
=

[
f1

f2

]
Find the form of A1 and A2. Show that they are diagonally semi-
dominant. Look up the definition and show they are also irreducibly
diagonally dominant. Show that the entries in C are nonnegative.

Exercise 273 (Convergence of block Jacobi) Continuing the
last problem, consider the block Jacobi method given below[

A1 0
0 A2

]([
un+1

1

un+1
2

]
−
[
un1
un2

])
=[

f1

f2

]
−
[
A1 −C
−C A2

] [
un1
un2

]
Use Householders theorem to prove this converges.
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Exercise 274 Repeat the above for block FOR and for Block Gauss-
Seidel.

Exercise 275 (Red-Black block methods) Consider the 2d MPP
on a uniform N ×N mesh. Draw a representative mesh and color
the meshpoints by red-black like a typical checkerboard (chess play-
ers should think of greed and buff). Note that the 5 point star
stencil links red points only to black and black only to red. Order
the unknowns as first red then black, partitioning the mesh vertices
into two subsets of about equal numbers. This then partitions the
solution and RHS accordingly as u = (uRED, uBLACK). Show that
the MPP then takes the block form[

A1 −C
−C A2

] [
uRED
uBLACK

]
=

[
fRED
fBLACK

]
Find the form of A1,2. It will be best to do this for a fixed, e.g., 4×4
mesh before jumping to the general mesh. Analyze the structure of
the submatrices. Based on their structure, propose and analyze
convergence of a block iterative method. Again, try it on a 4 × 4
mesh first.

Exercise 276 Let A be N×N and SPD. Consider FOR for solving
Ax = b. Show that for optimal ρ we have

J(xn)− J(x) ≤
(
λmax(A)− λmin(A)

λmax(A) + λmin(A)

)(
J(xn−1)− J(x)

)
.

Express the multiplier λmax−λmin

λmax+λmin
in terms of cond2(A).

Exercise 277 Consider the proof of convergence when P > 0.
This proof goes back and forth between the minimization structure
of the iteration and the algebraic form of it. Try to rewrite the
proof entirely in terms of the functional J(x) and ∇J(x).
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Exercise 278 Give a complete and detailed proof of the House-
holder lemma. Give the details of the proof that P > 0 implies
convergence.

5.3 Application to Parameter Selection

“The NSA is a self-licking ice cream cone.”
- An anonymous senior official of the National Se-

curity Agency.

Consider Richardson’s method FOR for A an SPD matrix:

ρ(xn+1 − xn) = b−Axn, or xn+1 = xn + ρ−1rn

where rn = b−Axn. We have an idea of “optimal” value of ρ

ρoptimal = (λmax(A) + λmin(A)) /2

which minimizes the maximum error over all possible initial condi-
tions. It is, alas, hard to compute.

We consider here another idea of optimal:

Given xn, find ρ = ρn which will make xn+1 as accurate as
possible on that step.

The algorithm would be:

Algorithm 279 Given x0 and a maximum number of iterations,
itmax:

for n=0:itmax

Compute rn = b−Axn
Compute ρn via a few auxiliary calculations
xn+1 = xn + (ρn)−1rn

if converged, exit, end
end
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Lemma 280 In exact arithmetic, the residuals rn = b − Axn of
FOR satisfies

rn+1 = rn − ρ−1Arn.

Proof.

xn+1 = xn − ρ−1rn.

Multiply by “−A” and add b to both sides, This gives

b−Axn+1 = b−Axn − ρ−1Arn,

which is the claimed iteration.

Exercise 281 In Chapter 4, Exercise 200 (page 124) required a
computer program to FOR for the 2d MPP with ρ = 4 (the Jacobi
method). Modify this computer program so that it can use an ar-
bitrary ρ. The 2d analog of theorem 186 (page 110) in Chapter 3
shows that λmax

.
= 8 and λmin

.
= h2, so a reasonably good choice is

ρ = (8 + h2)/2.
Test your program by solving the 2d MPP with h = 1/10, RHS

f = 0, and with boundary conditions g(x, y) = x−y. Use as initial
guess the exact solution u = x−y. You should observe convergence
in a single iteration. If it takes more than five iterations, or if it
does not converge, you have an error in your program.

How many iterations are required to reach a convergence crite-
rion of 1.e− 4 when h = 1/100 and the initial guess is u(x, y) = 0
in the interior and u(x, y) = x− y on the boundary?

Different formulas for selecting ρ emerge from different inter-
pretations of what “as accurate as possible”means.
Option 1: Residual minimization: Pick ρn to minimize ‖rn+1‖2.
By the last lemma,

‖rn+1‖2 = ‖rn − ρ−1Arn‖2 = 〈rn − ρ−1Arn, rn − ρ−1Arn〉.
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Since rn is fixed, this is a simple function of ρ

J̃(ρ) = 〈rn − ρ−1Arn, rn − ρ−1Arn〉

or
J̃(ρ) = 〈rn, rn〉 − 2〈rn, Arn〉ρ−1 − 〈Arn, Arn〉ρ−2.

Taking J̃ ′(ρ) = 0 and solving for ρ = ρoptimal gives

ρoptimal =
〈Arn, Arn〉
〈rn, Arn〉

.

The cost of using this optimal value at each step: two extra dot
products per step.
Option 2: J minimization: Pick ρn to minimize J(xn+1). In
this case we define

φ(ρ) = J(xn+1) = J(xn + ρ−1rn) =

1

2
(xn + ρ−1rn)tA(xn + ρ−1rn)− (xn + ρ−1rn)tb.

Expanding, setting φ′(ρ) = 0 and solving, as before, gives

ρoptimal =
〈rn, Arn〉
〈rn, rn〉

.

Option 2 is only available for SPD A. However, for such A it is
preferable to Option 1. It gives the algorithm

Algorithm 282 Given x0 the matrix A and a maximum number
of iterations, itmax:

r1 = b−Ax1

for n=1:itmax

ρn = 〈Arn,rn〉
〈rn,rn〉

xn+1 = xn + (ρn)
−1
rn
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if satisfied, exit, end
rn+1 = b−Axn+1

end

Exercise 283 In Exercise 281 you wrote a computer program to
use FOR for the 2d MPP with arbitrary ρ, defaulting to the optimal
value for the 2d MPP. In this exercise, you will modify that program
to make two other programs: (a) One for Algorithm 282 for Option
2, and, (b) One for Option 1.

In each of these cases, test your program by solving the 2d MPP
with h = 1/10, RHS f = 0, and with boundary conditions g(x, y) =
x−y. Use as initial guess the exact solution u = x−y. You should
observe convergence in a single iteration. If it takes more than five
iterations, or if it does not converge, you have an error in your
program.

To implement Algorithm 282, you will have to write code defin-
ing the vector variable r for the residual rn and in order to compute
the matrix-vector product Arn, you will have write code similar to
the code for au (giving the product Au), but defining a vector vari-
able. This is best done in a separate loop from the existing loop.

To implement Option 1, the residual minimization option, all
you need to do is change the expression for ρ.

In each case, how many iterations are required for convergence
when h = 1/100 when the initial guess is u(x, y) = 0 in the interior
and u(x, y) = x− y on the boundary?

The connection between Options 1 and 2 is through the (cele-
brated) “normal” equations. Since Ae = r, minimizing ||r||22 = rtr
is equivalent to minimizing ||Ae||22 = etAtAe = ||e||2AtA. Since
AtA is SPD minimizing ||e||2AtA is equivalent to minimizing the
quadratic functional associated with (AtA)x = Atb.

J̃(x) =
1

2
xtAtAx− xtAtb.
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If we are solving Ax = b with A an N×N nonsingular matrix then
we can convert it to the normal equations by multiplication by At:

(AtA)x = Atb.

Thus, minimizing the residual is equivalent to passing to the nor-
mal equations and minimizing J(·). Unfortunately, the bandwidth
of AtA is (typically) double the bandwidth of A. Further, pass-
ing to the normal equations squares the condition number of the
associated linear system.

Theorem 284 (The Normal equations) Let A be N × N and
invertible. Then AtA is SPD. If A is SPD then λ(AtA) = λ(A)2

and

cond2(AtA) = [cond2(A)]
2
.

Proof. Symmetry: (AtA)t = AtAtt = AtA . Positivity: xt(AtA)x =
(Ax)tAx = |Ax|2 > 0 for x nonzero since A is invertible. If A is
SPD, then AtA = A2 and, by the spectral mapping theorem,

cond2(AtA) = cond2(A2) =
λmax(A2)

λmin(A2)
=

λmax(A)2

λmin(A)2
=

(
λmax(A)

λmin(A)

)2

=

= [cond2(A)]
2
.

The relation cond2(AtA) = [cond2(A)]
2

explains why Option 2
is better. Option 1 implicitly converts the system to the normal
equations and thus squares the condition number of the system
being solved then applies Option 2. This results in a very large
increase in the number of iterations.
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5.4 The Steepest Descent Method

A small error in the former will produce an enor-
mous error in the latter.

- Henri Poincaré
We follow two rules in the matter of optimization:
Rule 1. Don’t do it.
Rule 2 (for experts only). Don’t do it yet - that is,

not until you have a perfectly clear and unoptimized
solution.

– M. A. Jackson
“Libenter homines et id quod volunt credunt.” - an

old saying.

The steepest descent method is an algorithm for minimizing a
functional in which, at each step, the choice of descent direction is
made which makes the functional decrease as much as possible at
that step. Suppose that a functional J(x) is given. The direction
in which J(·) decreases most rapidly at a point xn is

(∗) d = −∇J(xn).

Consider the line L in direction d passing through xn. For α ∈ R,
L is given by the equation

x = xn + αd.

Steepest descent involves choosing α so that J(·) is maximally de-
creased on L,

(∗∗) J(xn + αnd) = min
α∈R

J(xn + αd)

When A is an SPD matrix and J(x) = 1
2x

tAx − xtb each step
can be written down explicitly. For example, simple calculations
show

dn := −∇J(xn) = rn = b−Axn,
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and for αn we solve for α = αn in

d

dα
J(xn + αdn) = 0

to give αn

αn =
〈dn, rn〉
〈dn, Adn〉

, in general,

and with dn = rn:

αn =
〈rn, rn〉
〈rn, Arn〉

=
||rn||2

||rn||2A
.

Algorithm 285 (Steepest Descent) Given an SPD A, x0, r0 =
b−Ax0 and a maximum number of iterations itmax

for n=0:itmax

rn = b−Axn
αn = 〈rn, rn〉/〈rn, Arn〉
xn+1 = xn + αnr

n

if converged, exit, end
end

Comparing the above with FOR with “optimal”parameter se-
lection we see that Steepest descent (Algorithm 282 corresponding
to Option 2) is exactly FOR with αn = 1/ρn where ρn is picked to
minimize J(·) at each step.

How does it really work? It gives only marginal improvement
over constant α. We conclude that better search directions are
needed. The next example shows graphically why Steepest Descent
can be so slow:
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Example 286 N = 2 i.e.
→
x = (x, y)t. Let A =

[
2 0
0 50

]
,

b =

[
2
0

]
. Then

J(
→
x) =

1

2
[x, y]

[
2 0
0 50

] [
x
y

]
− [x, y]

[
2
0

]
=

1

2
(2x2 + 50y2)− 2x = x2 − 2x+ 25y2︸ ︷︷ ︸

ellipse

+1− 1

=
(x− 1)2

12
+

y2

( 1
5 )2
− 1.

x
0 = (11, 1)

x
4 = (6.37, 0.54)

limit= (1, 0)

Figure 5.1: The first minimization steps for Example 286. The
points x0, . . . , x4, . . . are indicated with dots, the level curves of J
are ellipses centered at (1, 0) and construction lines indicate search
directions and tangents.

Convergence of Steepest Descent

The fundamental convergence theorem of steepest descent (given
next) asserts a worst case rate of convergence that is no better than
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that of FOR. Unfortunately, the predicted rate of convergence is
sharp.

Theorem 287 (Convergence of SD) Let A be SPD and κ =
λmax(A)/λmin(A).. The steepest descent method converges to the
solution of Ax = b for any x0. The error x− xn satisfies

‖x− xn‖A ≤
(
κ− 1

κ+ 1

)n
‖x− x0‖A

and

J(xn)− J(x) ≤
(
κ− 1

κ+ 1

)n (
J(x0)− J(x)

)
.

Proof. We shall give a short proof that for one step of steepest
descent

‖x− xn‖A ≤
(
κ− 1

κ+ 1

)
‖x− xn−1‖A.

If this holds for one step then the claimed result follows for n steps.
We observe that this result has already been proven! Indeed, since
steepest descent picks ρ to reduce J(·) maximally and thus the A
norm of the error maximally going from xn−1 to xn it must also
reduce it more than for any other choice of ρ including ρoptimal for
FOR. Let xnFOR be the result from one step from xn−1 of First
Order Richardson with optimal parameter. We have proven that

‖x− xnFOR‖A ≤
(
κ− 1

κ+ 1

)
‖x− xn−1‖A.

Thus

‖x− xn‖A ≤ ‖x− xnFOR‖A ≤
(
κ− 1

κ+ 1

)
‖x− xn−1‖A,

completing the proof for the error. The second result for J(xn) −
J(x) is left as an exercise.
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We note that κ−1
κ+1 = 1− 2

κ+1 . For the model Poisson problem,

typically λmax = O(1) while λmin = O(h2) and thus κ = O(h2) so
steepest descent requires O(h−2) directions to converge.

Theorem 288 The convergence rate κ−1
κ+1 of steepest descent is

sharp. It is exactly the rate of convergence when the initial er-
ror is e0 = φ1 + φ2 and when e0 = φ1 − φ2 where φ1,2 are the
eigenvectors of λmin(A) and λmax(A) respectively.

Proof. Let φ1,2 be the eigenvectors of λmin(A) and λmax(A) re-
spectively. Consider two possible selections of initial guesses: Pick

x0 = x− (φ1 + φ2) or x0 = x− (φ1 − φ2).

We proceed by direct calculations (which are not short but routine
step by step): if we choose x0 = x+ (φ1 + φ2) then e0 = φ1 + φ2.
We find

x1 = x0 + α0(b−Ax0) =

x1 = x0 + α0Ae
0 (since Ae = r)

x− x1 = x− x0 − α0Ae
0

e1 = e0 − α0Ae
0 = (φ1 + φ2)− α0A(φ1 + φ2)

e1 = (1− α0λmin)φ1 + (1− α0λmax)φ2.

Next calculate similarly

α0 =
〈r0, r0〉
〈r0, Ar0〉

=
〈Ae0, Ae0〉
〈Ae0, A2e0〉

=
〈A(φ1 + φ2), A(φ1 + φ2)〉
〈A(φ1 + φ2), A2(φ1 + φ2)〉

= · · ·· = 2

λmin + λmax
.
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We thus have

e1 = (1− 2λmin

λmin + λmax
)φ1 + (1− 2λmax

λmin + λmax
)φ2

= (rearranging) =

(
κ− 1

κ+ 1

)
(φ1 − φ2)

The rest of the calculations are exactly as above. These show
that in the two cases

e1 =

(
κ− 1

κ+ 1

)
(φ1 ∓ φ2)

e2 =

(
κ− 1

κ+ 1

)2

(φ1 ± φ2).

Proceeding by induction,

en =

(
κ− 1

κ+ 1

)n
(φ1 either± or ∓ φ2),

in the two cases, which is exactly the predicted rate of convergence.

Exercise 289 Suppose you must solve a very large sparse linear
system Ax = b by some iterative method. Often one does not care
about the individual millions of entries in the solution vector but
one only wants a few statistics [i.e., numbers] such as the average.
Obviously, the error in the averages can be much smaller than the
total error in every component or just as large as the total error.
Your goal is to try to design iterative methods which will produce
accurate statistics more quickly than an accurate answer.

To make this into a math problem, let the (to fix ideas) statistic
be a linear functional of the solution. Define a vector l and compute

L = ltx = 〈l, x〉
if,e.g., L = average(x) then

l = (1/N, 1/N, ..., 1/N)t.
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Problem:

Solve : Ax = b,

Compute : L = 〈l, x〉

or: Compute L = ... while solving Ax = b approximately. There are
many iterative methods you have studied. develop/adapt/optimize
one [YOUR CHOICE OF IDEAS] for this problem! You must ei-
ther [YOUR CHOICE] analyze it or give comprehensive numerical
tests. Many approaches are possible, e.g., note that this can be
written as a N + 1×N + 1 system for x, L:[

A 0
−lt 1

] [
x
L

]
=

[
b
0

]
.

You will have to negotiate with this problem as well. There is
no set answer! Every method can be adapted to compute L faster
and no method will always be best.

Exercise 290 The standard test problem for nonsymmetric sys-
tems is the 2d CDEqn = 2d model discrete Convection Diffusion
equation. Here ε is a small to very small positive parameter. (Re-
call that you have investigated the 1d CDEqn in Exercise 180, page
94).

−ε∆u+ ux = f, inside (0, 1)× (0, 1)

u = g, on the boundary

Discretize the Laplacian by the usual 5-point star and approximate
ux by

ux(xI , yJ) ' u(I + 1, J)− u(I − 1, J)

2h
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Find the associated difference stencil. This problem has 2 natural
parameters:

h =
1

N + 1
, the meshwidth; and,

Pe :=
h

2ε
, the “cell Péclet number.”

The interesting case is when the cell Péclet3 number Pe � 1, i.e.
when ε� h.
Hint: You have already written programs for the 2d MPP in Exer-
cises 281 and 283. You can modify one of those programs for this
exercise.

1. Debug your code using h = 1/5, g(x, y) = x−y, and f(x, y) =
1. The exact solution in this case is u(x, y) = x − y. Start-
ing from the exact solution, convergence to 1.e-3 should be
achieved in a single iteration of a method such as Jacobi
(FOR with ρ = 4).

2. Fix h = 1/50, f(x, y) = x+ y, and g(x, y) = 0. Pick three it-
erative methods (your choice). Solve the nonsymmetric linear
system for a variety of values4 of ε = 1, 1/10, 1/100, 1/1000,
1/10000, starting from u(x, y) = 0, to an accuracy of 10−3.
Report the results, consisting of convergence with the number
of iterations or nonconvergence. Describe the winners and
losers for small cell Pe and for large cell Pe.

3The Péclet number is named after the French physicist Jean Claude
Eugène Péclet. It is given by Length × Velocity / Diffusion coefficient. In
our simple example, the velocity is the vector (1,0) and the diffusion coeffi-
cient is ε. The cell Peclet number, also denoted by Pe, is the Peclet number
associated with one mesh cell so the length is taken to be the meshwidth.

4For ε = 1, your solution should appear much like the MPP2d solution
with the same right side and boundary conditions. For smaller ε, the peak of
the solution is pushed to larger x locations. Nonconvergence is likely for very
small ε.
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Exercise 291 For A a large, sparse matrix and ‖ · ‖ the euclidean
or l2 norm, consider a general iterative method below for solving
Ax = b, starting from a guess vector x0.

r0 = b−Ax0

for n=0:itmax

Choose dn

(∗) Pick αn to minimize ‖b−A(xn + αdn)‖2

xn+1 = xn + αnd
n

(∗∗) rn+1 = b−Axn+1

if converged, return, end
end

1. Show that step (∗∗) can be replaced by: (∗∗) rn+1 = rn −
αnAd

n.

2. Find an explicit formula for the optimal value of α in step
(∗).





Chapter 6

The Conjugate Gradient
Method

“The cook was a good cook,

as cooks go,

and as cooks go,

she went.”

- Saki

The conjugate gradient method was proposed by Hestenes and
Stiefel in 1952. Initially it was considered a direct method for
solving Ax = b for A SPD since (in exact arithmetic) it gives the
exact solution in N steps or less. Soon it was learned that often
a very good solution is obtained after many fewer than N steps.
Each step requires a few inner products, and one matrix multiply.
Like all iterative methods, its main advantage is when the matrix
vector multiply can be done quickly and with minimall storage of
A.

201
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6.1 The CG Algorithm

Why not the best? - Jimmy Carter

The conjugate gradient method is the best possible method1

for solving Ax = b for A an SPD matrix. We thus consider the
solution of

Ax = b, where A is large, sparse and SPD.

First we recall some notation.

Definition 292 Assume that A is an SPD matrix. 〈x, y〉 denotes
the Euclidean inner product:

〈x, y〉 = xty = x1y1 + x2y2 + . . .+ xnyn.

〈x, y〉A denotes the A-inner product

〈x, y〉A = xtAy =

N∑
i,j=1

xiAijyj .

The A-norm is

‖x‖A =
√
〈x, x〉A =

√
xtAx.

The quadratic functional associated with Ax = b is

J(x) =
1

2
xtAx− xtb.

1“Best possible” has a technical meaning here with equally technical quali-
fiers. We shall see that the kth step of the CG method computes the projection
(the best approximation) with respect to the A-norm into a k dimensional sub-
space.
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The conjugate gradient method (hereafter: CG) is a descent
method. Thus, it takes the general form

Algorithm 293 (Descent Method for solving Ax = b with A SPD)
Given an SPD A, x0 and a maximum number of iterations itmax

r0 = b−Ax0

for n=0:itmax

(∗)Choose a descent direction dn

αn := arg minα J(xn + αdn) = 〈dn, rn〉/〈dn, Adn〉
xn+1 = xn + αnd

n

rn+1 = b−Axn+1

if converged, stop, end
end

CG differs from the slow steepest descent method by step (∗) the
choice of search directions. In Steepest Descent dn = rn while in
CG dn is calculated by a two term recursion that A orthogonalizes
the search directions. The CG algorithm is very simple to write
down and easy to program.
It is given as follows:2

Algorithm 294 (Conjugate Gradient Algorithm) Given an SPD
A, x0 and a maximum number of iterations itmax

r0 = b−Ax0

d0 = r0

for n=1:itmax

αn−1 = 〈dn−1, rn−1〉/〈dn−1, Adn−1〉
xn = xn−1 + αn−1d

n−1

2We shall use fairly standard conventions in descent methods; we will use
roman letters with superscripts to denote vectiors, d, r, x, · · ·, and greek letters,
α, β, · · ·, with subscripts to denote scalars. For example, we denote the nth
descent direction vector dn and the nth scalar multiplier by αn. One exception
is that eigenvectors will commonly be denoted by φ.
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rn = b−Axn
if converged, stop, end
βn = 〈rn, rn〉/〈rn−1, rn−1〉
dn = rn + βnd

n−1

end

CG has the following features:

• In steepest descent, dn is chosen to be a locally optimal search
direction.

• In CG, dn is chosen to be a globally optimal search direc-
tion. The problem of finding dn is thus a global problem:
in principle, dn depends on all the previous search directions
d0, d1, d2, . . . , dn−2 and dn−1. CG, however, has an amazing
property:

• For SPD A, the dependence on d0, . . . , dn−3 drops out and
dn depends only on dn−1 and dn−2.

• CG is the fastest convergent iterative method in the A-norm.

• CG can be written as a three term recursion or a coupled two
term recursion.

• CG requires typically O
(√

cond(A)
)

iterations per signifi-

cant digit of accuracy.

• CG requires barely more work per step than steepest descent.
As stated above, it takes 2 matrix-vector multiplies per step
plus a few dot products and triads. If the residual is calcu-
lated using Lemma 277 by rn+1 = rn − αnAdn, then it only
requires one matrix-vector multiply per step.

• In exact arithmetic, CG reaches the exact solution of an N ×
N system in N steps or less.
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• The CG method has many orthogonality properties. Thus,
there are many ways to write the algorithm that are math-
ematically equivalent (in exact arithmetic) and an apparent
(not real) multitude of CG methods.

For general nonsymmetric matrices, there is no iterative method
with all the above good properties of CG. Two methods that are
popular now are GMRES which has a full recursion3 and thus
is very expensive when a lot of iterates are required, and CGN -
which is just CG for the normal equations

AtAx = Atb, AtA is SPD.

This typically requires O (cond(A)) iterates per significant digit of
accuracy sought.

Example 295 As a concrete example, consider solving the 2d model
Poisson problem on a 100× 100 mesh. Thus h = 1

101 and we solve

A
→
u = f where A is 10, 000× 10, 000.

Note that cond(A) ' O(h−2) = O(10, 000). Thus, we anticipate:

• Steepest descent requires ' 50, 000 to 100, 000 iterations to
obtain 6 significant digit of accuracy.

• CG will produce the exact solution in the absence of round
off error in ' 10, 000 iterations, however,

• Since
√
cond(A) ' 100, CG will produce an approximate

solution with 6 significant digits of accuracy in ' 500− 1000
iterations!

• With simple preconditioners (a topic that is coming) we get
6 digits in ' 30− 40 iterations!

3All previous dn must be stored and used in order to compute xn+1.
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Exercise 296 Write a computer program implementing Algorithm
294. Write the program so it can be applied to any given matrix
A, with any given initial guess x0 and right side b. Assume the
iteration is converged when both the conditions ‖rn‖ < ε‖b‖ and
‖un − un−1‖ < ε‖un‖ are satisfied for given tolerance ε. Consider
the matrix

A1 =


2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 .
1. Apply your program to the matrix A1 using the exact solu-

tion xexact = [1, 2, 3, 4, 5]t and b1 = A1xexact, starting with
x0 = xexact. Demonstrate convergence to xexact in a single
iteration with ε = 10−4.

2. Apply your program to A1 and b1 with tolerance ε = 10−4 but
with initial guess x0 = 0. Demonstrate convergence to xexact
in no more than five iterations.

3. Repeat the previous two cases with the matrix

A2 =


2 −1 0 −1 0
−1 3 −1 0 −1

0 −1 2 −1 0
−1 0 −1 3 −1

0 −1 0 −1 3

 .

Exercise 297 Recall that Exercises 281 (page 187) and 283 (page
189) had you wrote programs implementing iterative methods for
the 2d MPP.

Write a computer program to solve the 2d MPP using conju-
gate gradients algorithm 294. How many iterations does it take to
converge when N = 100 and ε = 1.e− 8?
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Recommendation: You have already written and tested a con-
jugate gradient code in Exercise 296 and a 2d MPP code in Exer-
cise 283. If you replace the matrix-vector products Axn appearing
in your conjugate gradient code with function or subroutine calls
that use 2d MPP code to effectively compute the product without
explicitly generating the matrix A, you can leverage your earlier
work and save development and debugging time.

Algorithmic Options

There are many algorithmic options (we will list two below) but
the above is a good, stable and efficient form of CG.

1. An equivalent expression for αn is

αn =
〈rn, rn〉
〈dn, Adn〉

.

2. The expression rn+1 = b − Axn+1 is equivalent to rn+1 =
rn − αnAdn in exact arithmetic. To see it is equivalent, we
note that the residuals satisfy their own iteration.

Lemma 298 In exact arithmetic, the CG residuals satisfy

rn+1 = rn − αnAdn.

Proof. Since xn+1 = xn + αnd
n, multiply by −A and add b

to both sides. This gives

b−Axn+1︸ ︷︷ ︸
rn+1

= b−Axn︸ ︷︷ ︸
rn

−αnAdn,

as claimed above.
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Thus, the residual can be calculated 2 ways: directly at the
cost of an extra matrix-vector multiply and via the above step.
Direct calculation doubles the number of matrix-vector multiplies
per step over rn+1 = rn − αnAdn. Some have reported that for
highly ill-conditioned systems, it can be preferable to calculate the
residual directly, possibly even in extended precision.

Exercise 299 Consider the CG method, Algorithm 294. Show
that it can be written as a three term recursion of the general form
xn+1 = αnx

n + βnx
n−1 + cn.

Exercise 300 In Exercise 296, you wrote a computer program to
implement Algorithm 294. Double-check it on the 5×5 SPD matrix
A1 from that exercise by choosing any vector b and verify that the
system Ax = b can be solved in five iterations.

Make a copy of your program and modify it to include the alter-
native expressions for αn and rn described above. Verify that the
modified program gives rise to the same sequence of coefficients αn
and βn, iterates xn and residuals rn as the original.

CG’s Two Main Convergence Theorems

“All sorts of computer errors are now turning up. You’d
be surprised to know the number of doctors who claim
they are treating pregnant men.”

- Anonymous Official of the Quebec Health Insur-
ance Board, on Use of Computers in Quebec Province’s
Comprehensive Medical-care system. F. 19, 4:5. In
Barbara Bennett and Linda Amster, Who Said What
(and When, and Where, and How) in 1971: December-
June, 1971 (1972), Vol. 1, 38.

The global optimality properties of the CG method depends on
a specific family of subspaces, the Krylov subspaces. First recall.
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Definition 301 Let z1, ···, zm be m vectors. Then span
{
z1, · · ·, zm

}
is the set of all linear combinations of z1, · · ·, zm, i.e., the subspace

span
{
z1, · · ·, zm

}
=

{
x =

m∑
i=1

αiz
i : αi ∈ R

}
.

It will be important to know the form of the CG iterates and
search directions. To find the correct subspaces, we step through
the algorithm:

d0 = r0

x1 = x0 + αr0 ∈ x0 + span{r0}.

From Lemma 298 we have

r1 = r0 − αAr0 ∈ r0 +A · span{r0},
so

d1 = r1 + βr0 = r0 − αAr0 + βr0 ∈ span{r0, Ar0}.

Thus

x2 = x1 + αd1 = x0 + αr0 + α̃{r0 − αAr0 + βr0}, so

x2 ∈ x0 + span{r0, Ar0}, and similarly

r1 ∈ r0 +A · span{r0, Ar0}.

Continuing, we easily find the following.

Proposition 302 The CG iterates xj, residuals rj and search di-
rections dj satisfy

xj ∈ x0 + span{r0, Ar0, · · ·, Aj−1r0},
rj ∈ r0 +A · span{r0, Ar0, · · ·, Aj−1r0}

and

dj ∈ span{r0, Ar0, · · ·, Aj−1r0}.
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Proof. Induction.
The subspace and affine subspaces, known as Krylov subspaces,

are critical to the understanding of the method.

Definition 303 Let x0 be given and r0 = b − Ax0. The Krylov
subspace determined by r0 and A is

Xn = Xn(A; r0) = span{r0, Ar0, . . . , An−1r0}

and the affine Krylov space determined by r0 and A is

Kn = Kn(A;x0) = x0 +Xn = {x0 + x : x ∈ Xn}.

The first important theorem of CG method is the following. It
explains the global error minimization linked to the choice of search
directions.

Theorem 304 Let A be SPD. Then the CG method satisfies the
following:

(i) The nth residual is globally optimal over the affine subspace
Kn in the A−1-norm

||rn||A−1 = min
r∈r0+AXn

||r||A−1

(ii) The nth error is globally optimal over Kn in the A-norm

||en||A = min
e∈Kn

||e||A

(iii) J(xn) is the global minimum over Kn

J(xn) = minx∈Kn
J(x).

(iv) Furthermore, the residuals are orthogonal and search direc-
tions are A-orthogonal:

rk · rl = 0 , for k 6= l,

〈dk, dl〉A = 0 , for k 6= l.
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These are algebraic properties of CG iteration, proven by in-
duction. Part (iv) already implies the finite termination property.

Exercise 305 Prove the theorem by induction, starting from Al-
gorithm 294. You may find Lemma 298 helpful.

Corollary 306 Let A be SPD. Then in exact arithmetic CG pro-
duces the exact solution to an N ×N system in N steps or fewer.

Proof. Since the residuals {r0, r1, . . . , rN−1} are orthogonal they
are linearly independent. Thus, rl = 0 for some l ≤ N .

Using the properties (i) through (iv), the error in the nth CG
step will be linked to an analytic problem: the error in Chebychev
interpolation. The main result of it is the second big convergence
theorem for CG.

Theorem 307 Let A be SPD. Given any ε > 0 for

n ≥ 1

2

√
cond(A) ln(

2

ε
) + 1

the error in the CG iterations is reduced by ε:

‖xn − x‖A ≤ ε‖x0 − x‖A.

6.2 Analysis of the CG Algorithm

Art has a double face, of expression and illusion,
just like science has a double face: the reality of error
and the phantom of truth.

— René Daumal
’The Lie of the Truth’. (1938) translated by Phil

Powrie (1989). In Carol A. Dingle, Memorable Quota-
tions (2000),
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The form of the CG algorithm presented in the last section is
quite computationally efficient. It has developed over some years as
many equivalences and identities have been derived for the method.
We give two different (but of course equivalent if you look deeply
enough) analytical developments of CG. The first is a straightfor-
ward application of the Pythagorean theorem. CG sums an orthog-
onal series and the orthogonal basis vectors are generated by a spe-
cial method, the Orthogonalization of Moments algorithm. Putting
these two together immediately gives a simplified CG method which
has the essential and remarkable features claimed for it.

The second approach is indirect and more geometric. In this
second approach, we shall instead define the CG method by (CG
as n dimensional minimization). This definition makes the global
optimization property obvious. However, it also suggests that the
nth step requires an n dimensional optimization calculation. Thus
the work in this approach will be to show that the n dimensional
optimization problem can be done by a 1 dimensional line search.
In other words, it will be to show that the n dimensional opti-
mization problem can be done by either one 3 term recursion or
two coupled 2-term recursions. This proves that (CG as n dimen-
sional minimization) can be written in the general form announced
in the introduction. The key to this second approach is again the
Orthogonalization of Moments algorithm.

Since any treatment will adopt one or the other, the Orthogo-
nalization of Moments algorithm will be presented twice.

6.3 Convergence by the Projection Theorem

Fourier is a mathematical poem.
- Thomson, [Lord Kelvin] William (1824-1907)

We begin with some preliminaries. The best approximation
under a norm given by an inner product in a subspace is exactly
the orthogonal projection with respect to that inner product. Thus
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we start by recalling some fundamental properties of these best
approximations. Let X ⊂ RN be an n (for n < N) dimensional
subspace and x ∈ RN . Given an inner product and associated

norm4 〈·, ·〉∗, ‖ · ‖∗ = 〈·, ·〉1/2∗ , the best approximation xn ∈ X
to x, is the unique xn ∈ X satisfying:

‖x− xn‖∗ = min
x̃∈X
‖x− x̃‖∗.

If K is the affine space K = x0 + X (where x0 is fixed), then the
best approximation in K is the solution to

‖x− xK‖∗ = min
x̃∈K
‖x− x̃‖∗.

The two best approximations are related. Given x, xK , the best
approximation in K, is given by xK = x0 + xX where xX is the
best approximation in X to x− x0.

Theorem 308 (Pythagorean or Projection Theorem) Let X
be a subspace of Rn and x ∈ RN . Then, the best approximation to
x in X, xn ∈ X

‖x− xn‖∗ = min
x̃∈X
‖x− x̃‖∗

is determined by

〈x− xn, x̃〉∗ = 0, ∀x̃ ∈ X.

Further, we have

‖x‖2∗ = ‖xn‖2∗ + ‖x− xn‖2∗.

Let x0 ∈ RN and let K be an affine sub-space K = x0 +X. Given
x ∈ RN there exists a unique best approximation xn ∈ K to x:

‖x− xn‖∗ = min
x̃∈K
‖x− x̃‖∗.

4The innerproduct is “fixed but arbitrary”. Think of the usual dot product
and the A-inner product for concrete examples.
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The error is orthogonal to X

〈x− xn, x̃〉∗ = 0, ∀x̃ ∈ X.

Proof. See any book on linear algebra!
The best approximation in K = x0 +X is determined by 〈x−

xn, x̃〉∗ = 0,∀x̃ ∈ X. Let e1, . . . , en be a basis for X. Expand
xn = x0 +

∑
cje

j ∈ K then the vector of undetermined coefficients
satisfies the linear system

Gc = f, Gij = 〈ei, ej〉∗, fj = 〈x− x0, ej〉∗,

Here G is called the “Gram matrix”or “Gramian”.

Definition 309 Let {φ1, φ2, . . . , φn} be a basis for X and 〈·, ·〉∗
an inner product on X. The associated Gram matrix G of the
basis is

Gij = 〈φi, φj〉∗

Thus, the general way to calculate the best approximation in
an n-dimensional affine subspace K = x0 + X is to pick a basis
for X, assemble the n× n Gram matrix and solve an n× n linear
system. Two questions naturally arise:

• How to calculate all the inner products fj if x is the sought
but unknown solution of Ax = b?

• Are there cases when the best approximation in K can be
computed at less cost than constructing a basis, assembling
G and then solving Gc = f?

For the first question there is a clever finesse that works when
A is SPD. Indeed, if we pick 〈·, ·〉∗ = 〈·, ·〉A then for Ax = b,

〈x, y〉A = xtAy = (Ax)ty = bty = 〈b, y〉
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which is computable without knowing x. For the second question,
there is a case when calculating the best approximation is easy:
when an orthogonal basis is known for X. This case is central to
many mathematical algorithms including CG.

Definition 310 (Orthogonal basis) Let {φ1, φ2, . . . , φn} be a ba-
sis for X and 〈·, ·〉∗ an inner produce on X. An orthogonal basis
for X is a basis {φ1, φ2, . . . , φn} satisfying additionally

〈φi, φj〉∗ = 0 whenever i 6= j.

If the basis {φ1, φ2, . . . , φn} is orthogonal then its Gram matrix
Gij is diagonal. The best approximation in X can then simply be
written down explicitly

xn+1 =

n∑
j=1

〈x, φj〉∗
〈φj , φj〉∗

φj .

Similarly, the best approximation in the affine subspace K can also
be written down explicitly as

xn+1 = y0 +

n∑
j=1

〈x− y0, φj〉∗
〈φj , φj〉∗

φj .

Summing this series for the best approximation in an affine sub-
space can be expressed as an algorithm that looks like (and is) a
descent method.

Algorithm 311 (Summing an orthogonal series) Given x ∈
RN , an n-dimensional subspace X, with orthogonal basis {φ1, · · ·, φn}
and a vector x0

x0 = y0

for j=0:n-1

dj = φj+1
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αj = 〈x− x0, dj〉∗/〈dj , dj〉∗
xj+1 = xj + αjd

j

end

The usual descent method (general directions) produces at each
step an approximation optimal in the (1−dimensional) line x =
xj + αdj , α ∈ R. Since the descent directions are orthogonal this
produces at the jth step an approximation that is optimal over the
j−dimensional affine subspace x0 + span{φ1, . . . , φj}.

Theorem 312 If {φ1, . . . , φj} are A-orthogonal and 〈·, ·〉∗ is the
A-inner product, then the approximations produced by the descent
method choosing {φ1, . . . , φj} for descent directions (i.e., if choos-

ing di = φi) are the same as those produced by summing the or-
thogonal series in Algorithm 311 above. Thus, with A-orthogonal
search directions, the approximations produced by the descent algo-
rithm satisfy

||x− xj ||A = min
x̃∈x0+span{φ1,...,φj}

‖x− x̃‖A,

J(xj) = arg min
x̃∈x0+span{φ1,...,φj}

J(x̃).

Proof. Thus, consider the claim of equivalence of the two methods.
The general step of each takes the form xj+1 = xj + αdj with the
same xj , dj . We thus need to show equivalence of the two formulas
for the stepsize:

descent : αj = 〈rj , φj〉/〈φj , φj〉A
orthogonal series: αj = 〈x− y0, φj〉A/〈φj , φj〉A.

Since the denominators are the same we begin with the first nu-
merator and show its equal to the second. Indeed,

〈rj , φj〉 = 〈b−Axj , φj〉 = 〈Ax−Axj , φj〉 =

= 〈x− xj , φj〉A.
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Consider the form of xj produced by the descent algorithm. We
have (both obvious and easily proven by induction) that xj takes
the general form

xj = x0 + a1φ
1 + · · ·+ aj−1φ

j−1.

Thus, by A-orthogonality of {φ1, . . . , φj}

〈xj , φj〉A = 〈x0 + a1φ
1 + · · ·+ aj−1φ

j−1, φj〉A = 〈x0, φj〉A.

Thus we have

〈rj , φj〉 = 〈x− xj , φj〉A = 〈x− x0, φj〉A,

which proves equivalence. The error estimate is just restating the
error estimate of the Pythagorean theorem. From the work on
descent methods we know that A-norm optimality of the error is
equivalent to minimization of J(·) over the same space. Hence the
last claim follows.

Thus:

• Algorithm 311 does 1 dimensional work at each jth step (a
1−dimensional optimization) and attains a j−dimensional
optimum error level;

• Equivalently, if the descent directions are chosenA-orthogonal,
a j−dimensional minimizer results.

The focus now shifts to how to generate the orthogonal basis.
The classic method is the Gram-Schmidt algorithm.

The Gram-Schmidt Algorithm

The Gram-Schmidt algorithm is not used in CG for SPD systems.
It is important for understanding the method actually used (or-
thogonalization of moments which is coming) and becomes impor-
tant in generalized conjugate gradient methods for nonsymmetric
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systems. For example, GS is used to generate search directions in
the method GMres.

Algorithm 313 (Gram-Schmidt orthogonalization) Given a
basis {e1, e2, . . . , eN} for RN ,

φ1 = e1

for j=1:n

for i=1:j

αi = 〈ej+1, φi〉∗/〈φi, φi〉∗
end

φj+1 = ej+1 −
∑j
i=1 αiφ

i

end

Theorem 314 Given a basis {e1, e2, . . . , eN} for RN , the Gram-
Schmidt algorithm 313 constructs a new, 〈·, ·〉∗−orthogonal basis
φ1, . . . , φN for RN so that:

1. span{e1, . . . , ej} = span{φ1, . . . , φj} for each j = 1, · · ·, N ;
and,

2. 〈φi, φj〉∗ = 0 whenever i 6= j.

The nth step of Gram-Schmidt obtains an orthogonal basis for
an n-dimensional subspace as a result of doing n-dimensional work
calculating the n coefficients αi, i = 1, · · ·, n. There is exactly one
case where this work can be reduced dramatically and that is the
case relevant for the conjugate gradient method. Since summing an
orthogonal series is globally optimal but has 1 dimensional work at
each step, the problem shifts to finding an algorithm for construct-
ing an A-orthogonal basis which, unlike Gram-Schmidt, requires 1
dimensional work at each step. There is exactly one such method
which only works in exactly one special case (for the Krylov sub-
space of powers of A times a fixed vector) called “Orthogonalization
of Moments”.
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Exercise 315 Prove that the Gram matrix Gij = 〈ei, ej〉∗ is SPD
provided e1, . . . , en is a basis for X and diagonal provided e1, . . . , en

are orthogonal.

Exercise 316 Give an induction proof that the Gram-Schmidt al-
gorithm 313 constructs a new basis with the two properties claimed
in Theorem 314.

Orthogonalization of Moments instead of
Gram-Schmidt

A great part of its [higher arithmetic] theories de-
rives an additional charm from the peculiarity that im-
portant propositions, with the impress of simplicity on
them, are often easily discovered by induction, and yet
are of so profound a character that we cannot find the
demonstrations till after many vain attempts; and even
then, when we do succeed, it is often by some tedious
and artificial process, while the simple methods may
long remain concealed.

- Gauss, Karl Friedrich (1777-1855),

In H. Eves Mathematical Circles Adieu, Boston:
Prindle, Weber and Schmidt, 1977.

The CG method at the nth step computes an A-norm optimal
approximation in a n-dimensional subspace. In general this re-
quires solving an N ×N linear system with the Gram matrix. The
only case, and the case of the CG method, when it can be done
with much less expense is when an A-orthogonal basis is known for
the subspace and this is known only for a Krylov subspace:

Xn : = span{r0, Ar0, A2r0, · · ·, An−1r0}
Kn : = x0 +Xn.
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CG hinges on an efficient method of determining an A-
orthogonal basis for Xn. With such a method, CG takes the
general form:

Algorithm 317 Given SPD A, initial guess x0, and maximum
number of iterations itmax,

r0 = b−Ax0

d0 = r0

for n=1:itmax

Descent step:
αn−1 = 〈rn−1, dn−1〉/〈dn−1, dn−1〉A
xn = xn−1 + αn−1d

n−1

rn = b−Axn
OM step:

Calculate new A-orthogonal search direction dn so that
span{d0, d1, . . . , dn} = span{r0, Ar0, A2r0, . . . , Anr0}

end

The key (OM step) is accomplished by the “Orthogonalization
of Moments”algorithm, so-called because moments of an operator
A are powers of A acting on a fixed vector. This algorithm takes a
set of moments {e1, e2, e3, · · · , ej} where ej = Aj−1e1 and gener-
ates an A-orthogonal basis {φ1, φ2, φ3, · · · , φj} spanning the same
subspace.

Algorithm 318 (Orthogonalization of Moments Algorithm)
Let A be SPD, and e1 ∈ RN be a given vector.

φ1 = e1

for n=1:N-1

α = 〈φn, Aφn〉A/〈φn, φn〉A
if n==1

φ2 = Aφ1 − αφ1

else
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β = 〈φn−1, Aφn〉A/〈φn−1, φn−1〉A
φn+1 = Aφn − αφn − βφn−1

end

end

In comparison with Gram-Schmidt, this algorithm produces an
A-orthogonal basis of the Krylov subspace through a three term
recursion.

Theorem 319 (Orthogonalization of Moments ) Let A be an
SPD matrix. The sequence {φj}Nj=1 produced by the Orthogonal-
ization of Moments Algorithm 318 is A-orthogonal. Further, for
ej = Aj−1e1, at each step 1 ≤ j ≤ N

span{e1, e2, e3, · · · , ej} = span{φ1, φ2, φ3, · · · , φj}.

Proof. Preliminary remarks: First note that the equation for
φn+1 takes the form

φn+1 = Aφn + αφn + βφn−1. (6.1)

Consider the RHS of this equation. We have, by the induction
hypothesis

Aφn ∈ span{e1, e2, e3, · · ·, en+1}
αφn + βφn−1 ∈ span{e1, e2, e3, · · ·, en},

and 〈φn, φn−1〉A = 0.

The step φn+1 = Aφn+αφn+βφn−1 contains two parameters. It is
easy to check that the parameters α and β are picked (respectively)
to make the two equations hold:

〈φn+1, φn〉A = 0,

〈φn+1, φn−1〉A = 0.
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Indeed

0 =
〈
φn+1, φn

〉
A

=
〈
Aφn + αφn + βφn−1, φn

〉
A

= 〈Aφn, φn〉A + α 〈φn, φn〉A + β
〈
φn−1, φn

〉
A

= 〈Aφn, φn〉A + α 〈φn, φn〉A
and the same for 〈φn+1, φn−1〉A = 0 gives two equations for α, β
whose solutions are exactly the values chosen on Orthogonalization
of Moments. The key issue in the proof is thus to show that

〈φn+1, φj〉A = 0, for j = 1, 2, · · · , n− 2. (6.2)

This will hold precisely because span{e1, e2, e3, · · · , ej} is a Krylov
subspace determined by moments of A.

Details of the proof: We show from (6.1) that (6.2) holds.
The proof is by induction. To begin, from the choice of α, β it
follows that the theorem holds for j = 1, 2, 3. Now suppose the
theorem holds for j = 1, 2, · · · , n. From (6.1) consider 〈φn+1, φj〉A.
By the above preliminary remarks, this is zero for j = n, n − 1.
Thus consider j ≤ n− 2. We have

〈φn+1, φj〉A = 〈Aφn, φj〉A + α〈φn, φj〉A + β〈φn−1, φj〉A
for j = 1, 2, · · ·, n− 2.

By the induction hypothesis

〈φn, φj〉A = 〈φn−1, φj〉A = 0

thus it simplifies to

〈φn+1, φj〉A = 〈Aφn, φj〉A.

Consider thus 〈Aφn, φj〉A. Note that A is self adjoint with respect
to the A-inner product. Indeed, we calculate

〈Aφn, φj〉A = (Aφn)
t
Aφj = (φn)tAtAφj = (φn)tAAφj =

〈φn, Aφj〉A.
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Thus, 〈Aφn, φj〉A = 〈φn, Aφj〉A. By the induction hypothesis (and
because we are dealing with a Krylov subspace): for j ≤ n− 2

φj ∈ span{e1, e2, e3, · · ·, en−2}
thus

Aφj ∈ span{e1, e2, e3, · · ·, en−2, en−1}.

Further, by the induction hypothesis

span{e1, e2, e3, · · · , en−1} = span{φ1, φ2, φ3, · · · , φn−1}.

Finally by the induction hypothesis {φ1, φ2, φ3, · · ·, φn} are A-
orthogonal, so

〈φn, something in span{φ1, φ2, φ3, · · ·, φn−1}〉A = 0.

Putting the steps together:

〈φn+1, φj〉A = 〈Aφn, φj〉A = 〈φn, Aφj〉A =

= 〈φn, something in span{φ1, φ2, φ3, · · · , φn−1}〉A = 0.

All that remains is to show that

span{e1, e2, e3, · · ·, en+1} = span{φ1, φ2, φ3, · · ·, φn+1}.

This reduces to showing en+1= Aen ∈ span{φ1, φ2, φ3, · · ·, φn+1}.
It follows from the induction hypothesis and (6.1) and is left as an
exercise.

The orthogonalization of moments algorithm is remarkable. Us-
ing it to find the basis vectors [which become the descent directions]
and exploiting the various orthogonality relations, we shall see that
the CG method simplifies to a very efficient form.

Exercise 320 (An exercise in looking for similarities in
different algorithms.) Compare the orthogonalization of mo-
ments algorithm to the one (from any comprehensive numerical
analysis book) which produces orthogonal polynomials. Explain their
similarities.
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Exercise 321 If A is not symmetric, where does the proof break
down? If A is not positive definite, where does it break down?

Exercise 322 Write down the Gram-Schmidt algorithm for pro-
ducing an A-orthogonal basis. Calculate the complexity of Gram-
Schmidt and Orthogonalization of moments (Hint: Count matrix-
vector multiplies and inner products, ignore other operations). Com-
pare.

Exercise 323 Complete the proof of the Orthogonalization of Mo-
ments Theorem.

A Simplified CG method

We can already present a CG method that attains the amazing
properties claimed of CG in the first section. The method is im-
provable in various ways, but let us first focus on the major ad-
vances made by just descent ( equivalent to summing an orthogonal
series) with the directions generated by orthogonalization of mo-
ments. Putting the two together in a very simple way gives the
following version of the CG method.

Algorithm 324 (A version of CG) Given SPD A and initial
guess x0,

r0 = b−Ax0

d0 = r0/‖r0‖
First descent step:

α0 =
〈d0,r0〉
〈d0,d0〉A

x1 = x0 + α0d
0

r1 = b−Ax1

First step of OM:

γ0 =
〈d0,Ad0〉

A

〈d0,d0〉A
d1 = Ad0 − γ0d

0
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d1 = d1/‖d1‖ (normalize5 d1)
for n=1:∞

Descent Step:

αn = 〈rn,dn〉
〈dn,dn〉A

xn+1 = xn + αnd
n

rn+1 = b−Axn+1

if converged, STOP, end
OM step:

γn =
〈dn,Adn〉A
〈dn,dn〉A

βn =
〈dn−1,Adn〉

A

〈dn−1,dn−1〉A
dn+1 = Adn − γndn − βndn−1

dn+1 = dn+1/‖dn+1‖ (normalize5 dn+1)
end

Algorithm 324, while not the most efficient form for computa-
tions, captures the essential features of the method. The differences
between the above version and the highly polished one given in the
first section, Algorithm 294, take advantage of the various orthog-
onality properties of CG. These issues, while important, will be
omitted to move on to the error analysis of the method.

Exercise 325 Consider the above version of CG. Show that it can
be written as a three term recursion of the general form xn+1 =
anx

n + bnx
n−1 + cn.

Exercise 326 In Exercise 297, you wrote a program implementing
CG for the 2d MPP and compared it with other iterative methods.
Make a copy of that program and modify it to implement the sim-
plified version of CG given in Algorithm 324. Show by example
that the two implementations are equivalent in the sense that they
generate essentially the same sequence of iterates.

5Normalizing d is not theoretically necessary, but on a computer, d could
grow large enough to cause the calculation to fail.
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6.4 Error Analysis of CG

“What we know is not much. What we do not know
is immense.”

Pierre-Simon de Laplace (1749 - 1827)(Allegedly his
last words.) from: DeMorgan’s Budget of Paradoxes.

But as no two (theoreticians) agree on this (skin
friction) or any other subject, some not agreeing today
with what they wrote a year ago, I think we might
put down all their results, add them together, and then
divide by the number of mathematicians, and thus find
the average coefficient of error.

— Sir Hiram Maxim
In Artificial and Natural Flight (1908), 3. Quoted in

John David Anderson, Jr., Hypersonic and High Tem-
perature Gas Dynamics (2000), 335.

“To err is human but it feels divine.”
- Mae West

We shall show that the CG method takes O(
√
cond(A)) steps

per significant digit (and, as noted above, at most N steps). This
result is built up in several steps that give useful detail on error
behavior. The first step is to relate the error to a problem in
Chebychev polynomial approximation. Recall that we denote the
polynomials of degree ≤ n by

Πn := {p(x) : p(x) is a real polynomial of degree ≤ n}.

Theorem 327 Let A be SPD. Then the CG method’s error en =
x− xn satisfies:

(i) en ∈ e0 + span{Ae0, A2e0, · · · , Ane0}
(ii) ||en||A = min{||e||A : e ∈ e0 +span{Ae0, A2e0, · · · , Ane0}}.
(iii) The error is bounded by

||x− xn||A ≤
(

min
pn∈Πn and p(0)=1

max
λmin≤x≤λmax

|p(x)|
)
||e0||A
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Proof. As Ae = r and

rn ∈ r0 + span{Ar0, A2r0, A3r0, · · ·, Anr0}
this implies

Aen ∈ A
(
e0 + span{Ae0, A2e0, A3e0, · · ·, Ane0}

)
,

which proves part (i). For (ii) note that since ||en||2A = 2(J(xn)−
J(x)) minimizing J(x) is equivalent to minimizing the A-norm of
e. Thus, part (ii) follows. For part (iii), note that part (i) implies

en = [I + a1A+ a2A
2 + · · ·+ anA

n]e0 = p(A)e0,

where p(x) is a real polynomial of degree ≤ n and p(0) = 1. Thus,
from this observation and part (ii),

||x− xn||A = min
pn∈Πn and p(0)=1

||p(A)e0||A

≤
(

min
pn∈Πn and p(0)=1

||p(A)||A
)
||e0||A.

The result follows by calculating using the spectral mapping theo-
rem that

‖p(A)‖A = max
λ∈spectrum(A)

|p(x)| ≤ max
λmin≤x≤λmax

|p(x)|.

To determine the rate of convergence of the CG method, the
question now is:

How big is the quantity:

min
pn ∈ Πn

p(0) = 1

max
λ∈spectrum(A)

|p(λ)| ?

Fortunately, this is a famous problem of approximation theory,
solved long ago by Chebychev.
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The idea of Chebychev’s solution is to pick points xj in the
interval λmin ≤ x ≤ λmax and let p̃n(x) interpolate zero at those
points; p̃n(x) solves the interpolation problem:

p̃n(0) = 1

p̃n(xj) = 0, j = 1, 2, . . . , n, where λmin ≤ xj ≤ λmax

By making p̃n(x) zero at many points on λmin ≤ x ≤ λmax we
therefore force p̃n(x) to be small over all of λmin ≤ x ≤ λmax. We
have then

min
pn ∈ Πn

p(0) = 1

max
λ∈spectrum(A)

|p(λ)| ≤ min
pn ∈ Πn

p(0) = 1

max
λmin≤x≤λmax

|p(x)|

≤ max
λmin≤x≤λmax

|p̃n(x)|.

The problem now shifts to finding the “best”points to interpolate
zero, best being in the sense of the min-max approximation error.
This problem is a classical problem of approximation theory and
was also solved by Chebychev, and the resulting polynomials are
called “Chebychev polynomials,”one of which is depicted in Figure
6.1.

Theorem 328 (Chebychev polynomials, min-max problem)
The points xj for which p̃n(x) attains

min
pn ∈ Πn

p(0) = 1

max
λmin≤x≤λmax

|p(x)|

are the zeroes on the Chebychev polynomial

Tn(
b+ a− 2x

b− a
)/Tn(

b+ a

b− a
).
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1

λmin

max p(x)

min p(x) λmax

p(x)

Figure 6.1: We make p(x) small by interpolating zero at points
on the interval. In this illustration, the minimum and maximum
values of p(x) are computed on the interval [λmin, λmax].

on [a, b] (where a = λmin, b = λmax ). We then have

min
pn ∈ Πn

p(0) = 1

max
a≤x≤b

|p(x)| = max
a≤x≤b

∣∣∣∣∣Tn( b+a−2x
b−a )

Tn( b+ab−a )

∣∣∣∣∣ =

= 2
σn

1 + σn
, σ :=

1−
√

a
b

1 +
√

a
b

Proof. For the proof and development of the beautiful theory of
Chebychev approximation see any general approximation theory
book.

To convert this general result to a prediction about the rate of
convergence of CG, simply note that

a

b
=
λmin

λmax
= cond(A).
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Thus we have the error estimate for CG:

Theorem 329 Let A be SPD. Then

1. The nth CG residual is optimal over Kn in the A−1 norm:

||rn||A−1 = min
r∈Kn

||r||A−1

2. The nth CG error is optimal over Kn in the A norm:

||en||A = min
e∈Kn

||e||A;

3. The nth CG energy functional is optimal over Kn:

J(xn) = min
x∈Kn

J(x);

4. We have the orthogonality relations

〈rk, rj〉 = 0, k 6= j,

〈dk, dj〉A = 0, k 6= j;

5. Given any ε > 0 for

n ≥ 1

2

√
cond(A) ln(

2

ε
) + 1

the error in the CG iterations is reduced by ε:

‖xn − x‖A ≤ ε‖x0 − x‖A.

Exercise 330 Construct an interpolating polynomial of degree ≤
N with p(0) = 1 and p(λj) = 0, 1 ≤ j ≤ N . Use this to give a
second proof that CG gives the exact answer in N steps or less.
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Exercise 331 Show that if A has M < N distinct eigenvalues then
the CG method converges to the exact solution in at most M(< N)
steps. Recall that

||x̂− xn||A =

 min
pn ∈ Πn

p(0) = 1

max
λ∈spectrum(A)

|p(x)|

 ||e0||A.

Then construct a polynomial p(x) of degree M with p(λ) = 0 for
all λ ∈ spectrum(A).

6.5 Preconditioning

“Oh, what a difficult task it was.
To drag out of the marsh
the hippopotamus”
- Korney Ivanovic’ Chukovsky

The idea of preconditioning is to “preprocess”the linear system
to reduce the condition number of A. We pick an SPD matrix M ,
for which it is very easy to solve My = f , and replace

Ax = b⇐M−1Ax = M−1b.

PCG for Ax = b is CG for M−1Ax = M−1b6. Of course we never
invert M explicitly; every time M−1 is written it means “solve a
linear system with coefficient matrix M”. A few simple examples
of preconditioners;

6To be very precise, A SPD and M SPD does not imply M−1A is SPD.
However, M−1A is similar to the SPD matrix M−1/2AM1/2. We think of
PCG for Ax = b as CG for M−1Ax = M−1b. Again, to be very picky, in
actual fact it is CG for the system

(
M−1/2AM1/2

)
y = M−1/2b with SPD

coefficient matrix M−1/2AM1/2. The first step is, after writing down CG for
this system to reverse the change of variable everywhere y ⇐ M−1/2x and
eliminate all the M±1/2.
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• M = a diagonal matrix with Mii =
∑N
j=1 |aij |,

• M = the tridiagonal part of A

Mij = aij for j = i, i− 1, i+ 1, and

Mij = 0 otherwise.

• If A = A0 +B where A0 is simpler than A and easy to invert,
then pick M = A0 . Instead of picking A0, we can also pick
B: the entries in A to discard to get the preconditioner M .

• M = L̃L̃t, a simple and cheap approximation to the LLt

decomposition of A.

• Any iterative method indirectly determines a preconditioner.
Indeed, since M approximates A the solution of Mρ = r
approximates the solution of Aρ = r. If some other iterative
method is available as a subroutine then an approximate so-
lution to Aρ = r can be calculated by doing a few steps of
some (other) iterative method for the equation Aρ = r. This
determines a matrix M (indirectly of course).

If we are given an effective preconditioner M , PCG can be sim-
plified to the following attractive form.

Algorithm 332 (PCG Algorithm for solving Ax = b)
Given a SPD matrix A, preconditioner M , initial guess vector x0,
right side vector b, and maximum number of iterations itmax

r0 = b−Ax0

Solve Md0 = r0

z0 = d0

for n=0:itmax

αn = 〈rn, zn〉/〈dn, Adn〉
xn+1 = xn + αnd

n
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rn+1 = b−Axn+1 (∗)
if converged, stop end

Solve Mzn+1 = rn+1

βn+1 = 〈rn+1, zn+1〉/〈rn, zn〉
dn+1 = zn+1 + βn+1d

n (∗∗)
end

Note that the extra cost is exactly one solve with M each step.
There is a good deal of art in picking preconditioners that are
inexpensive to apply and that reduce cond(A) significantly.

Exercise 333 Let Ax = b be converted to a fixed point problem
(I − T )x = f (associated with a simple iterative method). If I − T
is SPD we can apply CG to this equation resulting in using a simple
iterative method to precondition A. (a) Suppose ||T || < 1. Estimate
cond(I − T ) in terms of 1− ||T ||. (b) For the MPP pick a simple
iterative method and work out for that method (i) if I − T is SPD,
and (ii) whether cond(I − T ) < cond(A). (c) Construct a 2 × 2
example where ||T || > 1 but cond(I − T )� cond(A).

Exercise 334 (a) Find 2×2 examples where A SPD and M SPD
does not imply M−1A is SPD. (b) Show however M−1/2AM1/2

is SPD. (c) Show that if A or B is invertible then AB is simi-
lar to BA. Using this show that M−1/2AM1/2 and has the same
eigenvalues as M−1A.

Exercise 335 Write down CG for
(
M−1/2AM1/2

)
y = M−1/2b

. Reverse the change of variable everywhere y ⇐ M−1/2x and
eliminate all the M±1/2 to give the PCG algorithm as stated.

Exercise 336 In Exercise 296 (page 206), you wrote a program to
apply CG to the 2d MPP. Modify that code to use PCG, Algorithm
332. Test it carefully, including one test using the identity matrix
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as preconditioner, making sure it results in exactly the same results
as CG.

Choose as preconditioner (a) the diagonal part of the matrix A
(4 times the identity matrix); (b) the tridiagonal part of A (the
tridiagonal matrix with 4 on the diagonal and -1 on the super- and
sub-diagonals); and, (c) a third preconditioner of your choosing.
Compare the numbers of iterations required and the total computer
time required for each case.

6.6 CGN for non-SPD systems

You must take your opponent into a deep dark forest
where 2+2=5, and the path leading out is only wide
enough for one.

-Mikhail Tal

If A is SPD then the CG method is provable the best possible
one. For a general linear system the whole beautiful structure of the
CG method collapses. In the SPD case CG has the key properties
that

• it is given by one 3 term (or two coupled 2 term) recursion,

• it has the finite termination property producing the exact
solution in N steps for an N ×N system,

• the nth step produces an approximate solution that is optimal
over an n dimensional affine subspace,

• it never breaks down,

• it takes at most O(
√
cond(A)) steps per significant digit.

There is a three-step, globally optimal, finite terminating CG
method in the SPD case. In the non-symmetric case there is a
fundamental result of Farber and Manteuffel and Voevodin.
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Faber, V. and Manteuffel, T. , Necessary and Sufficient Condi-
tions for the Existence of a Conjugate Gradient Method, SIAM J.
Numer. Anal. 21, 315-339, 1984.

V. V. Voevodin, The problem of a non-self adjoint generaliza-
tion of the conjugate gradient method has been closed, U.S.S.R.
Computational Mathematics, 23:143-144 (1983).

They proved a nonexistence theorem that no general extension
of CG exists which retains these properties. The following is sum-
mary.

Theorem 337 (Faber, Manteuffel, and Voevodin) Let A be
an N ×N real matrix. An s term conjugate gradient method exists
for the matrix A if and only if either A is 3 by 3 or A is symmetric
or A has a complete set of eigenvectors and the eigenvalues of A
lie along a line in the complex plane.

Thus, in a mathematically precise sense CG methods cannot
exist for general nonsymmetric matrices. This means various ex-
tensions of CG to nonsymmetric systems seek to retain some of
the above properties by giving up the others. Some generalized
CG methods drop global optimality (and this means finite termi-
nation no longer holds) and some drop the restriction of a small
recursion length (e.g., some have full recursions- the nth step has
k = n). Since nothing can be a general best solution, there natu-
rally have resulted many generalized CG methods which work well
for some problems and poorly for others when A is nonsymmetric.
(This fact by itself hints that none work well in all cases.) Among
the popular ones today there are:

• biCG = biconjugate gradient method: biCG is based on an
extension of the Orthogonalization of Moments algorithm to
nonsymmetric matrices. It does not produce an orthogonal
basis but rather two, a basis and a so-called shadow basis:
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{φi : i = 1, · · ·, N} and {φ̃i : i = 1, · · ·, N}. The pair have the
bi-orthogonality property that

φ̃
t

iAφj = 0 for i 6= j.

• CGS = conjugate gradient squared (which does not require
At): CGS is an idea of Sonneveld that performed very well
but resisted rigorous understanding for many years. Moti-
vated by biCG, Sonneveld tried (loosely speaking) replacing
the use of At by A in the algorithm wherever it occurred.
This is of course very easy to test once biCG is implemented.
The result was a method that converged in practice twice as
fast as biCG.

• GMRes = generalized minimum residual method: GMRes
was based on two modifications to CG. First the residual min-
imized at each step is ||b−Axn+1||22. This produces a method
with no breakdowns at this step. Next orthogonalization of
moments is replaced by the full Gram-Schmidt algorithm.
The result is a memory expensive method which is optimal
and does not break down.

• CGNE and CGNR = different realizations of CG for the
normal equations

AtAx = Atb

Of course an explicit or implicit change to the normal equa-
tions squares the condition number of the system being solved
and requires At.

None in general work better than CGNE so we briefly describe
CGNE. Again, we stress that for nonsymmetric systems, the “best”
generalized CG method will vary from one system to another. We
shall restrict ourselves to the case where A is square (N ×N). The
following is known about the normal equations.
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Theorem 338 (The Normal equations) Let A be N × N and
invertible. Then AtA is SPD. If A is SPD then

cond2(AtA) = [cond2(A)]
2
.

Proof. Symmetry: (AtA)t = AtAtt = AtA . Positivity: xt(AtA)x =
(Ax)tAx = |Ax|2 > 0 for x nonzero since A is invertible. If A is
SPD, then AtA = A2 and

cond2(AtA) = cond2(A2) =
λmax(A2)

λmin(A2)
=

λmax(A)2

λmin(A)2
=

(
λmax(A)

λmin(A)

)2

=

= [cond2(A)]
2
.

Thus, any method using the normal equation will pay a large
price in increasing condition numbers and numbers of iterations
required. Beyond that, if A is sparse, forming AtA directly shows
that AtA will have roughly double the number of nonzero entries
per row as A. Thus, any algorithm working with the normal equa-
tions avoids forming them explicitly. Residuals are calculated by
multiplying by A and then multiplying that by At.

Algorithm 339 (CGNE = CG for the Normal Equations)
Given preconditioner M , matrix A, initial vector x0, right side vec-
tor b, and maximum number of iterations itmax

r0 = b−Ax0

z0 = Atr0

d0 = z0

for n=0:itmax

αn = 〈ρn, ρn〉/〈dn, At (Adn)〉 = 〈ρn, ρn〉/〈Adn, Adn〉
xn+1 = xn + αnd

n,
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rn+1 = b−Axn+1

if converged, exit, end
zn+1 = Atrn+1

βn+1 = 〈zn+1, zn+1〉/〈zn, zn〉
dn+1 = zn+1 + βn+1d

n

end

Applying the convergence theory of CG, we have that CGN
takes roughly the following number of steps per significant digit:

1

2

√
cond2(AtA) ' 1

2

√
[cond2(A)]

2 ' 1

2
cond2(A).

Since this is much larger than the SPD case of 1
2

√
cond2(A) steps,

preconditioning becomes much more important in the non SPD
case than the SPD case. Naturally, much less is known in the non
SPD case about construction of good preconditioners.

For the other variants, let us recall the good properties of CG
as a way to discuss in general terms some of them. CG for SPD
matrices A has the key properties that

• For A SPD CG is given by one 3 term recursion or,
equivalently, two coupled 2 term recursions: This is
an important property for efficiency. For A not SPD, GM-
Res drops this property and computes the descent directions
by Gram-Schmidt orthogonalization. Thus for GMRes it is
critical to start with a very good preconditioner and so limit
the number of steps required. CGS retains a 3 term recursion
for the search directions as does biCG and CGNE.

• For A SPD it has the finite termination property pro-
ducing the exact solution in at most N steps for an
N×N system: For A not SPD, biCG and full GMRes retain
the finite termination property while CGS does not.
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• For A SPD the nth step produces an approximate
solution that is optimal over a n dimensional affine
subspace: For A not SPD, biCG and full GMRes retain
this property while CGS does not.

• For A SPD it never breaks down: For A not SPD, break-
downs can occur. One method of dealing with them is to test
for zero denominators and when one appears the algorithm is
simply restarted taking the last approximation as the initial
guess. biCG and CGS can have breakdowns. Full GMRes is
reliable. Breakdowns can occur when, the full Gram-Schmidt
orthogonalization procedure is truncated to a fixed number
of steps.

• For A SPD it takes at most O(
√
cond(A)) steps per

significant digit: For A not SPD, the question of the num-
ber of steps required is very complex. On the one hard, one
can phrase the question (indirectly) that if method X is ap-
plied and A happens to be SPD then, does method X re-
duce to CG? Among the methods mentioned, only biCG has
this property. General (worst case) convergence results for
these methods give no improvement over CGNE: they pre-
dict O(cond2(A)) steps per significant digit. Thus the ques-
tion is usually studied by computational tests which have
shown that there are significant examples of nonsymmetric
systems for which each of the methods mentioned is the best
and requires significantly fewer than the predicted worst case
number of steps.

Among the generalized CG methods for nonsymmetric systems,
GMRes is the one currently most commonly used. It also seems
likely that CGS is a method that is greatly under appreciated and
under used.
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Exercise 340 The goal of this exercise is for you to design and
analyze (reconstruct as much of the CG theory as you can) your
own Krylov subspace iterative method that will possibly be better
than CG. So consider solving Ax = b where A is nonsingular.
Given xn, dn the new iterate is computed by

xn+1 = xn + αnd
n

αn = arg min ||b−Axn+1||22

a. Find a formula for αn. Can this formula ever break down? Is
there a zero divisor ever? Does the formula imply that xn+1 is a
projection [best approximation] with respect to some inner product
and norm? Prove it.

b. Next consider your answer to part (a) carefully. Suppose the
search directions are orthogonal with respect to this inner product.
Prove a global optimality condition for your new method.

c. What is the appropriate Krylov subspace to consider for the
new method? Reconsider the Orthogonalization of Moments algo-
rithm. Adapt it to give a algorithm and its proof for generating
such an orthogonal basis.

d. For this part you may choose: Either test the method and
compare it with CG for various h’s for the MPP or complete the
error estimate for the method adapting the one for CG.

Exercise 341 Consider the non symmetric, 2× 2 block system[
A1 C
−Ct A2

] [
x
y

]
=

[
b1
b2

]
Suppose A1 and A2 are SPD and all blocks are N × N . Check
a 2 × 2 example that the eigenvalues of this matrix are not real.
Consider preconditioning by the 2×2 block SPD system as follows:[

A1 0
0 A2

]−1 [
A1 C
−Ct A2

] [
x
y

]
=

[
A1 0
0 A2

]−1 [
b1
b2

]
.
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Show that the eigenvalues of the preconditioned matrix[
A1 0
0 A2

]−1 [
A1 C
−Ct A2

]
lie on a line in the complex plane.





Chapter 7

Eigenvalue Problems

“Why is eigenvalue like liverwurst?”
- C.A. Cullen

7.1 Introduction and Review of Eigenvalues

By relieving the brain of all unnecessary work, a
good notation sets it free to concentrate on more ad-
vanced problems, and, in effect, increases the mental
power of the race.

Whitehead, Alfred North (1861 - 1947), In P. Davis
and R. Hersh The Mathematical Experience, Boston:
Birkhäuser, 1981.

One of the three fundamental problems of numerical linear alge-
bra is to find information about the eigenvalues of an N×N matrix
A. There are various cases depending on the structure of A (large
and sparse vs. small and dense, symmetric vs. non-symmetric)

243
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and the information sought (the largest or dominant eigenvalue,
the smallest eigenvalue vs. all the eigenvalues).

Definition 342 (eigenvalue-eigenvector) Let A be an N × N
matrix. λ is an eigenvalue of A if there is a nonzero vector

−→
φ 6= 0

with
A
−→
φ = λ

−→
φ .

−→
φ is an eigenvector associated with the eigenvalue λ.

Eigenvalues are important quantities and often the figure of
interest in physical problems. A few examples:

Vibration problems: Let x(t) : [0,∞)→ RN satisfy

x′′(t) +Ax(t) = 0.

For such problems vibratory or oscillatory motions at a fundamen-
tal frequency ω are critical to the observed dynamics of x(t). Often
the problem is to design a system (the design results in the matrix
A) to fix its fundamental frequencies. Such an oscillatory solution
takes the form

x(t) = cos(ωt)
−→
φ .

Inserting this into the ODE x′′(t) +Ax(t) = 0 gives

−ω2 cos(ωt)
−→
φ +A cos(ωt)

−→
φ = 0

⇐⇒

A
−→
φ = ω2−→φ .

Thus, ω is a fundamental frequency (and the resulting motion is
nonzero and a persistent vibration) if and only if ω2 is an eigenvalue
of A. Finding fundamental frequencies means finding eigenvalues.

Buckling of a beam: The classic model for buckling of a thin
beam is a yard stick standing and loaded on its top. Under light
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loads (and carefully balanced) it will stand straight. At a critical
load it will buckle. The problem is to find the critical load. The
linear elastic model for the displacement is the ODE

y′′′′(x) + λy′′(x) = 0, 0 < x < b,

y(0) = 0 = y′′(0)

y(b) = 0 = y′′(b).

The critical load can be inferred from the smallest value of λ for
which the above has a nonzero solution1. If the derivatives in the
ODE are replaced by difference quotients on a mesh, this leads to
an eigenvalue problem for the resulting matrix. Finding the critical
load under which buckling happens means finding an eigenvalue.

Stability of equilibria: If x(t) is a function : [0,∞) → RN

satisfies

x′(t) = F (x(t)),

F : RN → RN

then an equilibrium solution is a vector x0 satisfying F (x0) = 0.
If x(t) is another solution near the equilibrium solution, we can
expand in a Taylor series near the equilibrium. The deviation from
equilibrium x(t)− x0 satisfies

(x(t)− x0)
′

= F (x(t))− F (x0) =

= F (x0) + F ′(x0)(x(t)− x0) +O(x(t)− x0)2

= F ′(x0)(x(t)− x0) + (small terms)2.

Thus whether x(t) approaches x0 or not depends on the real parts
of the eigenvalues of the N × N derivative matrix evaluated at

1This simple problem can be solved by hand using general solution of the
ODE. If the problem becomes 1/2 step closer to a real problem from science or
engineering, such as buckling of a 2d shell, it cannot be solved exactly. Then
the only recourse is to discretize, replace it by an EVP for a matrix and solve
that.
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the equilibrium. The equilibrium x0 is locally stable provided the
eigenvalues λ of F ′(x0) satisfy Re(λ) < 0. Determining stability of
rest states means finding eigenvalues.

Finding eigenvalues. Calculating λ, φ by hand (for small
matrices) is a two step process which is simple in theory but seldom
practicable.

Finding λ,
−→
φ for A an N ×N real matrix by hand:

• Step 1: Calculate exactly the characteristic polynomial of
A. p(λ) := det(A−λI) is a polynomial of degree N with real
coefficients.

• Step 2: Find the N (counting multiplicities) real or complex
roots of p(λ) = 0. These are the eigenvalues

λ1, λ2, λ3, · · ·, λN

• Step 3: For each eigenvalue λi, using Gaussian elimination
find a non-zero solution of

[A− λi]
−→
φ i = 0, i = 1, 2, · · ·, N

Example 343 Find the eigenvalues and eigenvectors of the 2× 2
matrix

A =

[
1 1
4 1

]
.

We calculate the degree 2 polynomial

p2(λ) = det(A− λI) = det

[
1− λ 1

4 1− λ

]
= (1− λ)2 − 4.

Solving p2(λ) = 0 gives

p2(λ) = 0⇔ (1− λ)2 − 4 = 0⇔ λ1 = 3, λ2 = −1.
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The eigenvector
−→
φ 1 of λ1 = 3 is found by solving

(A− λI)

[
x
y

]
=

[
−2 1
4 −2

] [
x
y

]
=

[
0
0

]
.

Solving gives (for any t ∈ R)

y = t, −2x+ y = 0, or x =
1

2
t.

Thus, (x, y)t = ( 1
2 t, t)

t for any t 6= 0 is an eigenvector. For exam-
ple, t = 2 gives

λ1 = +3,
−→
φ 1 =

[
1
2

]
.

Similarly, we solve for
−→
φ 2

(A− λI)

[
x
y

]
=

[
2 1
4 2

] [
x
y

]
=

[
0
0

]
.

or (x, y)t = (− 1
2 t, t)

t. Picking t = 2 gives

λ2 = −1,
−→
φ 2 =

[
−1
2

)
.

Example 344 (An example of Wilkinson) The matrices

A =

[
2 1
0 2

]
,

A(ε) =

[
2 1
−ε 2

]
are close to each other for ε small. However their eigenspaces
differ qualitatively. A has a double eigenvalue λ = 2 which only
has 1 eigenvector.(The matrix A and eigenvalue λ = 2 are called
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defective.) The other matrix A(ε) has distinct eigenvalues (and
thus a complete set of eigenvectors)

λ1(ε) = 2 +
√
ε

λ2(ε) = 2−
√
ε.

What is the sensitivity of the eigenvalues of A to perturbations?
We calculate

Sensitivity of λi(ε) :=
d

dε
λi(ε)|ε=0

= ±1

2
ε−1/2|ε=0 =∞.

Thus small changes of the coefficients of a defective matrix can
produce large relative changes of its eigenvalues.

Exercise 345 Analyze the sensitivity as ε→ 0 of the eigenvalues
of the two matrices

A =

[
2 0
0 2

]
, A(ε) =

[
2 ε
0 2

]
Exercise 346 Find the smallest in norm perturbation (A→ A(ε))
of the 2×2 diagonal matrix A = diag(λ1, λ2) that merges its eigen-
values to a double eigenvalue of A(ε) having value (λ1 + λ2)/2.

Properties of eigenvalues

Some important properties of eigenvalues and eigenvectors are given
below.

Proposition 347 If A is diagonal, upper triangular or lower tri-
angular, then the eigenvalues are on the diagonal of A.



7.1. INTRODUCTION AND REVIEW OF EIGENVALUES 249

Proof. Let A be upper triangular. Then, using ∗ to denote a
generic non-zero entry,

det [A− λI] = det


a11 − λ ∗ ∗ ∗

0 a22 − λ ∗ ∗

0 0
. . . ∗

0 0 0 ann − λ


= (a11 − λ)(a22 − λ) · . . . · (ann − λ) = pn(λ).

The roots of pn are obvious!

Proposition 348 Suppose A is N ×N and λ1, . . . , λk are distinct
eigenvalues of A. Then,

det(A− λI) = (λ1 − λ)p1(λ2 − λ)p2 · . . . · (λk − λ)pk

where p1 + p2 + . . .+ pk = n.

Each λj has at least one eigenvector φj and possibly as many
as pk linearly independent eigenvectors.

If each λj has pj linearly independent eigenvectors then all the
eigenvectors together form a basis for RN .

Proposition 349 If A is symmetric (and real) (A = At), then:

(i) all the eigenvalues and eigenvectors are real,

(ii) there exists N orthonormal2 eigenvectors
−→
φ 1, . . . ,

−→
φ N of

A:

〈
−→
φ i,
−→
φ j〉 =

{
1, if i = j,
0, if i 6= j.

2“Orthonormal” means orthogonal (meaning mutually perpendicular so
their dot products give zero) and normal (meaning their length is normalized
to be one).
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(iii) if C is the N × N matrix with eigenvector
−→
φ j in the jth

column then

C−1 = Ct and C−1AC =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λN

 .
Proposition 350 If an eigenvector

−→
φ is known, the correspond-

ing eigenvalue is given by the Rayleigh quotient

λ =

−→
φ∗A
−→
φ

−→
φ∗
−→
φ
, where

−→
φ∗ = conjugate transpose =

(−→
φ
)
tr.

Proof. If A
−→
φ = λ

−→
φ , we have

−→
φ∗A
−→
φ = λ

−→
φ∗
−→
φ

from which the formula for λ follows.

Proposition 351 If ‖·‖ is any matrix norm (induced by the vector
norm ‖ · ‖),

|λ| ≤ ‖A‖.

Proof. Since
λ
−→
φ = A

−→
φ

we have
|λ|‖
−→
φ ‖ = ‖λ

−→
φ ‖ = ‖A

−→
φ ‖ ≤ ‖A‖‖

−→
φ ‖.

Remark 352 The eigenvalues of A are complicated, nonlinear func-
tions of the entries in A. Thus, the eigenvalues of A+B have no cor-
relation with those of A and B. In general, λ(A+B) 6= λ(A)+λ(B).
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7.2 Gershgorin Circles

The question we consider in this section is:

What can we tell about the eigenvalues of A from the entries in
the matrix A?

Eigenvalues are very important yet they are complicated, non-
linear functions of the entries of A. Thus, results that allow us
to look at the entries of A and get information about where the
eigenvalues live are useful results indeed. We have seen two already
for N ×N real matrices:

• If A = At then λ(A) is real (and, by a similar argument, if
At = −A then the eigenvalues are purely imaginary)

• |λ| ≤ ‖A‖ for any norm ‖ · ‖; in particular this means |λ| ≤
min{‖A‖1, ‖A‖∞}.

Definition 353 The spectrum of A, σ(A), is

σ(A) := {λ|λ is an eigenvalue of A}

The numerical range R(A) := {x∗Ax| for all x ∈ CN , ||x||2 = 1}.

This question is often called “spectral localization”. The two
classic spectral localization results are σ(A) ⊂ R(A) and the Ger-
shgorin circle theorem.

Theorem 354 (Properties of Numerical Range) For A an N×
N matrix,

• σ(A) ⊂ R(A)

• R(A) is compact and convex (and hence simply connected).
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• If A is normal matrix (i.e., A commutes with At ) then R(A)
is the convex hull of σ(A).

Proof. The second claim is the celebrated Toeplitz-Hausdorff the-
orem. We only prove the first claim. Picking x = the eigenvector
of λ gives: x∗Ax = the eigenvalue λ.

Theorem 355 (The Gershgorin Circle Theorem)
Let A = (aij), i, j = 1, . . . , N. Define the row and column sums
which exclude the diagonal entry.

rk =

N∑
j=1,j 6=k

|akj |, ck =

N∑
j=1,j 6=k

|ajk|.

Define the closed disks in C:

Rk = {z ∈ C; |z − akk| ≤ rk}, Ck = {z ∈ C; |z − akk| ≤ ck}.

Then, if λ is an eigenvalue of A

1. λ ∈ Rk for some k.

2. λ ∈ Ck for some k.

3. If Ω is a union of precisely k disks that is disjoint from all
other disks then Ω must contain k eigenvalues of A.

Example 356

A3×3 =

 1 2 −1
2 7 0
−1 0 5

 .
We calculate

r1 = 2 + 1 = 3, r2 = 2 + 0 = 2, r3 = 1 + 0 = 1.

c1 = 2 + 1 = 3, c2 = 2 + 0 = 2, ck = 1 + 0 = 1.
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<
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3

Figure 7.1: Three Gershgorin disks in Example 356.

The eigenvalues must belong to the three disks in Figure 7.1. Since
A = At, they must also be real. Thus

−2 ≤ λ ≤ 8.

Exercise 357 If B is a submatrix of A (constructed by deleting
the same number of rows and columns), show that R(B) ⊂ R(A).

7.3 Perturbation theory of eigenvalues

Whatever method is used to calculate approximate eigenvalues,
in finite precision arithmetic what is actually calculated are the
eigenvalues of a nearby matrix. Thus, the first question is “How
are the eigenvalues changed under small perturbations?”It is known
that the eigenvalues of a matrix are continuous functions of the
entries of a matrix. However, the modulus of continuity can be
large; small changes in some matrices can produce large changes
in the eigenvalues. One class of matrices that are well conditioned
with respect to its eigenvalues is real symmetric matrices.
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Example 358 (An example of Forsythe) Let A,E be the N×
N matrices: for a > 0 and ε > 0 small:

A =


a 0 0 · · · 0
1 a 0 · · · 0
0 1 a 0
...

. . .
. . .

...
0 · · · 0 1 a

 ,

E =


0 0 · · · 0 ε
0 0 · · · 0 0
0 0 · · · 0 0

0 0 · · · 0 0


Then the characteristic equations of A and A+E are, respectively,

(a− λ)N = 0 and (a− λ)N + ε(−1)N+1 = 0.

Thus, the eigenvalues of A are λk = a, a, a, · · · while those of A+E
are

µk = a+ ωkε1/N , k = 0, 1, · · ·, N − 1

where ω is a primitive Nth root of unity. Thus A→ A+E changes
one, multiple, real eigenvalue into N distinct complex eigenvalues
about a with radius ε1/N . Now suppose that

• ε = 10−10, N = 10 then the error in the eigenvalues is 0.1.
It has been magnified by 109!

• ε = 10−100, N = 100 then the error in the eigenvalues is
0.1 = 1099×Error in A!

Perturbation bounds

For simplicity, suppose A is diagonalizable

H−1AH = Λ = diag(λ1, λ2, · · ·, λN )
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and let λ, µ denote the eigenvalues of A and A+ E respectively:

Ax = λx, (A+ E)y = µy.

Theorem 359 Let A be diagonalizable by the matrix H and let λi
denote the eigenvalues of A. Then, for each eigenvalue µ of A+E,

min
i
|µ− λi| ≤ ||H||2||H−1||2||E||2 = cond2(H)||E||2

Proof. The eigenvector y of A+ E satisfies the equation

(µI −A)y = Ey

If µ is an eigenvalue of A the the result holds since the LHS is zero.
Otherwise, we have

H−1(µI −A)HH−1y = H−1EHH−1y, or

(µI − Λ)w =
(
H−1EH

)
w, where w = H−1y.

In this case (µI − Λ) is invertible. Thus

w = (µI − Λ)−1
(
H−1EH

)
w.

So that

||w||2 ≤ ||(µI − Λ)−1||2||H−1||2||E||2||H||2||w||2.

The result follows since

||(µI − Λ)−1||2 = max
i

1

|µ− λi|
=
(

min
i
|µ− λi|

)−1

.

Definition 360 Let λ, µ denote the eigenvalues of A and A + E
respectively. The eigenvalues of the real, symmetric matrix A are
called “well conditioned”when

min
i
|µ− λi| ≤ ||E||2.
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Proof. In this case note that H is orthogonal and thus ||H||2 =
||H−1||2 = 1.

Other results are known such as.

Theorem 361 Let A be real and symmetric. There is an ordering
of eigenvalues of A and A+ E under which

max
i
|µi − λi| ≤ ||E||2,∑

i=1,N

|µi − λi|2 ≤ ||E||2Frobenius. (7.1)

For more information see the book of Wilkinson.
J. Wilkinson, The Algebra Eigenvalue Problem, Oxford Univ.

Press, 1965.

7.4 The Power Method

The power method is used to find the dominant (meaning the
largest in complex modulus) eigenvalue of a matrixA. It is specially
appropriate when A is large and sparse so multiplying by A is cheap
in both storage and in floating point operations. If a complex
eigenvalue is sought, then the initial guess in the power method
must also be complex. In this case the inner product of complex
vectors is the conjugate transpose:

〈x, y〉 := x∗y := xT y =

N∑
i=1

xiyi.

Algorithm 362 (Power Method for Dominant Eigenvalue)
Given a matrix A, an initial vector x0 6= 0, and a maximum num-
ber of iterations itmax,

for n=0:itmax

x̃n+1 = Axn
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xn+1 = x̃n+1/‖x̃n+1‖
% estimate the eigenvalue by
(∗) λ = (xn+1)∗Axn+1

if converged, stop, end
end

Remark 363 The step (∗) in which the eigenvalue is recovered
can be rewritten as

λn+1 = (x̃n+2)∗xn+1.

since x̃n+2 = Axn+1. Thus it can be computed without additional
cost.

Convergence of the Power Method

In this section we examine convergence of the power method for
the case that the dominant eigenvalue is simple. First we note that
the initial guess must have some component in the direction of the
eigenvector of the dominant eigenvalue. We shall show that the
power method converges rapidly when the dominant eigenvalue is
well separated from the rest:

|λ1| � |λj |, j = 2, . . . , N.

In order to illuminate the basic idea, we shall analyze its conver-
gence under the additional assumption that A has N linearly inde-
pendent eigenvectors and that the dominant eigenvector is simple
and real.

With x0 ∈ RN and eigenvectors
−→
φ 1,
−→
φ 2 of A (A

−→
φ j = λj

−→
φ j)

we can expand the initial guess in terms of the eigenvectors of A
as follows:

x0 = c1
−→
φ 1 + c2

−→
φ 2 + . . .+ cN

−→
φ N .



258 CHAPTER 7. EIGENVALUE PROBLEMS

If the initial guess has some component in the first eigenspace then

c1 6= 0.

Then we calculate the normalized3 iterates x̃1 = Ax̃0, x̃2 = Ax̃1 =
A2x̃0, etc.:

x̃1 = Ax̃0 = c1A
−→
φ 1 + . . .+ cnA

−→
φ n

= c1λ1
−→
φ 1 + c2λ2

−→
φ 2 + . . .+ cNλN

−→
φ N ,

x̃2 = Ax̃1 = c1λ1A
−→
φ 1 + . . .+ cnλNA

−→
φ n

= c1λ
2
1

−→
φ 1 + c2λ

2
2

−→
φ 2 + . . .+ cNλ

2
N

−→
φ N ,

...

x̃k = Ax̃k−1 = Ak−1x̃0

= c1λ
k
1

−→
φ 1 + c2λ

k
2

−→
φ 2 + . . .+ cNλ

k
N

−→
φ N .

Since |λ1| > |λj | the largest contribution to ||x̃k|| is the first term.
Thus, normalize x̃k by the size of the first term so that

1
λk
1
x̃k = c1

−→
φ 1 + c2

(
λ2

λ1

)k −→
φ 2 + . . .+ cN

(
λN

λ1

)k −→
φ N .

↓ ↓ ↓
0 0 0

Each term except the first → 0 since
∣∣∣λ2

λ1

∣∣∣ < 1. Thus,

1

λk1
x̃k = c1

−→
φ 1 + ( terms that→ 0 as k →∞) ,

or,

x̃k ' c1λk1
−→
φ 1,

−→
φ 1 = eigenvector of λ1,

3The x̃ here are different from those in the algorithm because the normal-
ization is different.
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so Ax̃k ' A(c1λ
k
1

−→
φ 1) = c1λ

k+1
1

−→
φ 1 or

Ax̃k ' λ1x̃
k

and so we have found λ1,
−→
φ 1 approximately.

Example 364 A =

[
2 4
3 13

]
, x0 =

[
1
0

]
. Then

x̃1 = Ax0 =

[
2 4
3 13

] [
1
0

]
=

[
2
3

]
,

x1 =
x̃1

‖x̃1‖
=

[2, 3]t√
22 + 32

=

[
.5547
.8321

]
.

x̃2 = Ax1 =

[
4.438
12.48

]
.

x2 =
x̃2

‖x̃2‖
= . . . , and so on

Exercise 365 Write a computer program to implement the power
method, Algorithm 362. Regard the algorithm as converged when
|Axn+1−λxn+1| < ε, with ε = 10−4. Test your program by comput-
ing x̃1, x1 and x̃2 in Example 364 above. What are the converged
eigenvalue and eigenvector in this example? How many steps did
it take?

Symmetric Matrices

The Power Method converges twice as fast for symmetric matrices
as for non-symmetric matrices because of some extra error can-
cellation that occurs due to the eigenvalues of symmetric matrices
being orthogonal. To see this, suppose A = At and calculate

x̃k+1 = Ax̃k(= . . . = Akx0).
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Then the kth approximation to λ is µk given by

µk =
(x̃k)tAx̃k

(x̃k)tx̃k
= (x̃k)tx̃k+1/(x̃k)tx̃k.

If x0 = c1
−→
φ 1 + c2

−→
φ 2 + . . .+ cN

−→
φ N then, as in the previous case

x̃k = c1λ
k
1

−→
φ 1 + . . .+ cNλ

k
N

−→
φ N , and thus

x̃k+1 = c1λ
k+1
1

−→
φ 1 + . . .+ cNλ

k+1
N

−→
φ N .

In the symmetric case the eigenvectors are mutually orthogonal:

−→
φ ti
−→
φ j = 0, i 6= j.

Using orthogonality we calculate

(xk)txk+1 =(
c1λ

k
1

−→
φ 1 + . . .+ cNλ

k
N

−→
φ N

)t (
c1λ

k+1
1

−→
φ 1 + . . .+ cNλ

k+1
N

−→
φ N

)
= . . . = c21λ

2k+1
1 + c22λ

2k+1
2 + . . .+ c2Nλ

2k+1
N .

Similarly
(xk)txk = c21λ

2k
1 + . . .+ c2Nλ

2k
N

and we find

µk =
c21λ

2k+1
1 + . . .+ c2Nλ

2k+1
N

c21λ
2k
1 + . . .+ c2Nλ

2k
N

=

=
c21λ

2k+1
1

c21λ
2k
1

+O

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)

=

= λ1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)
,

which is twice as fast as the non-symmetric case!
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Exercise 366 Take A2×2 given below. Find the eigenvalues of A.
Take x0 = (1, 2)t and do 2 steps of the power method. If it is
continued, to which eigenvalue will it converge? Why?

A =

[
2 −1
−1 2

]

7.5 Inverse Power, Shifts and Rayleigh
Quotient Iteration

The idea behind variants of the power method is to replace A by a
matrix whose largest eigenvalue is the one sought, find that by the
power method for the modified matrix and then recover the sought
eigenvalue of A.

The Inverse Power Method

Although this may seem a paradox, all exact science is
dominated by the idea of approximation.

- Russell, Bertrand (1872-1970), in W. H. Auden
and L. Kronenberger (eds.) “The Viking Book of Apho-
risms,” New York: Viking Press, 1966.

The inverse power method computes the eigenvalue of A closest
to the origin - the smallest eigenvalue of A. The inverse power
method is equivalent to the power method applied to A−1 (since
the smallest eigenvalue of A is the largest eigenvalue of A−1).

Algorithm 367 (Inverse Power Method) Given a matrix A,
an initial vector x0 6= 0, and a maximum number of iterations
itmax,

for n=0:itmax

(∗) Solve Ax̃n+1 = xn
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xn+1 = x̃n+1/‖x̃n+1‖
if converged, break, end

end

% The converged eigenvalue is given by
µ = (x̃n+1)∗xn

λ = 1/µ

For large sparse matrices step (∗) is done by using some other
iterative method for solving a linear system with coefficient matrix
A. Thus the total cost of the inverse power method is:

(number of steps of the inverse power method)*(number of
iterations per step required to solve Ax̃n+1 = xn)

This product can be large. Thus various ways to accelerate the
inverse power method have been developed. Since the number of
steps depends on the separation of the dominant eigenvalue from
the other eigenvalues, most methods do this by using shifts to get
further separation. If α is fixed, then the largest eigenvalue of
(A− αI)−1 is related to the eigenvalue of A closest to α, λα by

λmax(A− αI) =
1

λα(A)− α
.

The inverse power method with shift finds the eigenvalue closest to
α.

Algorithm 368 (Inverse Power Method with Shifts) Given a
matrix A, an initial vector x0 6= 0, a shift α, and a maximum num-
ber of iterations itmax,

for n=0:itmax

(∗) Solve (A− αI)x̃n+1 = xn

xn+1 = x̃n+1/‖x̃n+1‖
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if converged, break, end
end

% The converged eigenvalue is given by
µ = (x̃n+1)∗xn

λ = α+ 1/µ

Rayleigh Quotient Iteration

Thomson, [Lord Kelvin] William (1824-1907)
Fourier is a mathematical poem.

The Power Method and the Inverse Power Method are related
to (and combine to form) Rayleigh Quotient Iteration. Rayleigh
Quotient Iteration finds very quickly the eigenvalue closest to the
initial shift for symmetric matrices. It is given by:

Algorithm 369 (Rayleigh quotient iteration) Given a matrix
A, an initial vector x0 6= 0, an initial eigenvalue λ0, and a maxi-
mum number of iterations itmax,

for n=0:itmax

(∗) Solve (A− λnI)x̃n+1 = xn

xn+1 = x̃n+1/‖x̃n+1‖
λn+1 = (xn+1)tAxn+1

if converged, return, end
end

It can be shown that for symmetric matrices

‖xn+1 −
−→
φ 1‖ ≤ C‖xn −

−→
φ 1‖3,

i.e., the number of significant digits triples at each step in Rayleigh
quotient iteration.
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Remark 370 The matrix A − λnI will become ill-conditioned as
the iteration converges and λn approaches an eigenvalue of A. This
ill-conditioning helps the iteration rather than hinders it because
roundoff errors accumulate fastest in the direction of the eigenvec-
tor.

7.6 The QR Method

“But when earth had covered this generation also, Zeus
the son of Cronos

made yet another, the fourth, upon the fruitful earth,
which was nobler

and more righteous, a god-like race of hero-men who
are called demi-gods,

the race before our own, throughout the boundless earth.
Grim war and

dread battle destroyed a part of them, some in the land
of Cadmus at

seven-gated Thebe when they fought for the flocks of
Oedipus, and some,

when it had brought them in ships over the great sea
gulf to Troy for

rich-haired Helen’s sake: there death’s end enshrouded
a part of them.

But to the others father Zeus the son of Cronos gave a
living and an abode

apart from men, and made them dwell at the ends of
earth. And they live

untouched by sorrow in the islands of the blessed along
the shore of deep

swirling Ocean, happy heroes for whom the grain-giving
earth bears
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honey-sweet fruit flourishing thrice a year, far from the
deathless

gods. . . ”

– Hesiod, Works and Days

The QR algorithm is remarkable because if A is a small, possibly
dense matrix the algorithm gives a reliable calculation of all the
eigenvalues of A. The algorithm is based on the observation that
the proof of existence of a QR factorization is constructive. First
we recall the theorem of existence.

Theorem 371 Let A be an N ×N matrix, Then, there exists

• a unitary matrix Q and

• an upper triangular matrix R

such that

A = QR.

Moreover, R can be constructed so that the diagonal entries satisfy
Rii ≥ 0. If A is invertible then there is a unique factorization with
Rii ≥ 0.

Proof. Sketch of proof: Suppose A is invertible then the columns
of A span RN . Let ai, qi denote the column vectors of A and
Q respectively. With R = rij upper triangular, writing out the
equation A = QR gives the following system:

a1 = r11q1

a2 = r12q1 + r22q2

· · ·
aN = r1nq1 + r2nq2 + · · ·+ rNNqN
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Thus, in this form, the QR factorization takes a spanning set
ai, i = 1, · · · , N and from that constructs an orthogonal set qi, i =
1, · · · , N with

span{a1, a2, · · · , ak} = span{q1, q2, · · · , qk} for every k.

Thus the entries in R are just the coefficients generated by the
Gram-Schmidt process! This proves existence when A is invertible.

Remark 372 We remark that the actual calculation of the QR
factorization is done stably by using Householder transformations
rather than Gram-Schmidt.

The QR algorithm to calculate eigenvalues is built upon re-
peated construction of QR factorizations. Its cost is

cost of the QR algorithm ' 1 to 4 LU decompositions ' 4
3N

3

FLOPs

Algorithm 373 (Simplified QR algorithm) Given a square
matrix A1 and a maximum number of iterations itmax,

for n=1:itmax

Factor An = QnRn
Form An+1 = RnQn
if converged, return, end

end

This algorithm converges in an unusual sense:

• Ak is similar to A1 for every k, and

• (Ak)ij → 0 for i > j,

• diagonal(Ak)→ eigenvalues of A
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• (Ak)ij for i < j does not necessarily converge to anything.

Various techniques are used to speed up convergence of QR
such as using shifts.

Exercise 374 Show that Ak is similar to A1 for every k.

Exercise 375 Show that if A is real and A = QR then so are Q
and R.

Exercise 376 Show A = QDS for invertible A with Q unitary
and D diagonal and positive and S upper triangular with diagonal
entries all 1.

Exercise 377 Show that if A = QR and A is real then so are Q
and R.

Exercise 378 Find the QR factorization of 2 −1 0
−1 2 −1
0 −1 2


For more information see [W82].
D S Watkins, Understanding the QR algorithm, SIAM Review,

24(1982) 427-440.

Walton, Izaak
Angling may be said to be so like mathematics that

it can never be fully learned.
The Compleat Angler, 1653.
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Appendix A

An omitted proof

Whatever regrets may be, we have done our best.

- Sir Ernest Shackleton, January 9, 1909, 88◦ 23′
South

The proof of theorem 210 depends on the well-known Jordan
canonical form of the matrix.

Theorem 379 (Jordan canonical form) Given a N × N ma-
trix T , an invertible matrix C can be found so that

T = CJC−1

where J is a block diagonal matrix

J =


J1

J2

. . .

JK

 (A.1)
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and each of the ni × ni diagonal blocks Ji has the form

Ji =


λi 1

λi 1
. . .

. . .

λi 1
λi

 (A.2)

where λi is an eigenvalue of T . The λi need not be distinct eigen-
values.

The proof of this theorem is beyond the scope of this text, but
can be found in any text including elementary linear algebra, such
as the beautiful book of Herstein [H64].

Theorem 210 is restated here:

Theorem 380 Given any N × N matrix T and any ε > 0 there
exists a matrix norm ‖ · ‖ with ‖T‖ ≤ ρ(T ) + ε.

Proof. Without loss of generality, assume ε < 1. Consider the
matrix

Eε =


1

1/ε
1/ε2

. . .

1/εN−1


and the product EεJE

−1
ε . The first block of this product can be

seen to be 
λ1 ε

λ1 ε
. . .

. . .

λ1 ε
λ1
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and each of the other blocks is similar. It is clear that ‖EεJE−1
ε ‖∞ ≤

ρ(T ) + ε. Defining the norm ‖T‖ = ‖EεJE−1
ε ‖∞ completes the

proof.

Remark 381 If it happens that each of the eigenvalues with |λi| =
ρ(T ) is simple, then each of the corresponding Jordan blocks is 1×1
and ‖T‖ = ρ(T ).





Appendix B

Tutorial on basic Matlab
programming

. . . Descartes, a famous philosopher, author of the
celebrated dictum, Cogito ergo sum—whereby he was
pleased to suppose he demonstrated the reality of hu-
man existence. The dictum might be improved, how-
ever, thus: Cogito cogito ergo cogito sum—“I think that
I think, therefore I think that I am”; as close an ap-
proach to certainty as any philosopher has yet made.

Ambrose Bierce, “The Devil’s Dictionary”

B.1 Objective

The purpose of this appendix is to introduce the reader to the
basics of the Matlab programming (or scripting) language. By
“basics” is meant the basic syntax of the language for arithmetical
manipulations. The intent of this introduction is twofold:

1. Make the reader sufficiently familiar with Matlab that the
pseudocode used in the text is transparent.
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2. Provide the reader with sufficient syntactical detail to expand
pseudocode used in the text into fully functional programs.

In addition, pointers to some of the very powerful Matlab
functions that implement the algorithms discussed in this book are
given.

The Matlab language was chosen because, at the level of detail
presented here, it is sufficiently similar to other languages such as
C, C++, Fortran, and Java, that knowledge of one can easily be
transferred to the others. Except for a short discussion of array
syntax and efficiency, the programming constructs discussed in this
appendix can be simply1 translated into the other programming
languages.

Matlab is available as a program of the same name from
The Mathworks, Natick, MA. The company operates a web site,
http://www.mathworks.com, from which purchasing information
is available. Many institutions have Matlab installed on com-
puters in computer laboratories and often make Matlab licenses
available for their members’ use on personally owned computers.
At the level of detail described and used here, a computer pro-
gram called “GNU Octave,” conceived and written by John W.
Eaton (and many others), is freely available on the internet at
(http://www.gnu.org/software/octave/index.html). It can be
used to run Matlab programs without modification.

B.2 Matlab files

For our purposes, the best way to use Matlab is to use its scripting
facility. With sequences of Matlab commands contained in files,
it is easy to see what calculations were done to produce a certain

1For example, if the variable A represents a matrix A, its components Aij

are represented by A(i,j) in Matlab and Fortran but by A[i][j] in C, C++
and Java.



B.2. MATLAB FILES 277

result, and it is easy to show that the correct values were used in
producing a result. It is terribly embarrassing to produce a very
nice plot that you show to your teacher or advisor only to discover
later that you cannot reproduce it or anything like it for similar
conditions or parameters. When the commands are in clear text
files, with easily read, well-commented code, you have a very good
idea of how a particular result was obtained. And you will be able
to reproduce it and similar calculations as often as you please.

The Matlab comment character is a percent sign (%). That is,
lines starting with % are not read as Matlab commands and can
contain any text. Similarly, any text on a line following a % can
contain textual comments and not Matlab commands.

A Matlab script file is a text file with the extension .m. Mat-
lab script files should start off with comments that identify the
author, the date, and a brief description of the intent of the calcu-
lation that the file performs. Matlab script files are invoked by
typing their names without the .m at the Matlab command line
or by using their names inside another Matlab file. Invoking the
script causes the commands in the script to be executed, in order.

Matlab function files are also text files with the extension .m,
but the first non-comment line must start with the word function

and be of the form

function output variable = function name (parameters)

This defining line is called the “signature” of the function. More
than one input parameter requires they be separated by commas. If
a function has no input parameters, they, and the parentheses, can
be omitted. Similarly, a function need not have output variables.
A function can have several output variables, in which case they
are separated by commas and enclosed in brackets as

function [out1,out2,out3]=function name(in1,in2,in3,in4)
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The name of the function must be the same as the file name.
Comment lines can appear either before or after the signature line,
but not both, and should include the following.

1. The first line following the signature (or the first line of the
file) should repeat the signature (I often leave out the word
“function”) to provide a reminder of the usage of the function.

2. Brief description of the mathematical task the function per-
forms.

3. Description of all the input parameters.

4. Description of all the output parameters.

Part of the first of these lines is displayed in the “Current direc-
tory” windowpane, and the lines themselves comprise the response
to the Matlab command help function name.

The key difference between function and script files is that

• Functions are intended to be used repetitively,

• Functions can accept parameters, and,

• Variables used inside a function are invisible outside the func-
tion.

This latter point is important: variables used inside a func-
tion (except for output variables) are invisible after the function
completes its tasks while variables in script files remain in the
workspace.

The easiest way to produce script or function files is to use
the editor packaged with the Matlab program. Alternatively, any
text editor (e.g., emacs, notepad) can be used. A word processor
such as Microsoft Word or Wordpad is not appropriate because
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it embeds special formatting characters in the file and Matlab
cannot interpret them.

Because function files are intended to be used multiple times, it
is a bad idea to have them print or plot things. Imagine what hap-
pens if you have a function that prints just one line of information
that you think might be useful, and you put it into a loop that is
executed a thousand times. Do you plan to read those lines?

Matlab commands are sometimes terminated with a semicolon
(;) and sometimes not. The difference is that the result of a cal-
culation is printed to the screen when there is no semicolon but no
printing is done when there is a semicolon. It is a good idea to put
semicolons at the ends of all calculational lines in a function file.
When using pseudocode presented in this book to generate Mat-
lab functions or scripts, you should remember to insert semicolons
in order to minimize extraneous printing.

B.3 Variables, values and arithmetic

Values in Matlab are usually2 double precision numbers. When
Matlab prints values, however, it will round a number to about
four digits to the right of the decimal point, or less if appropri-
ate. Values that are integers are usually printed without a decimal
point. Remember, however, that when Matlab prints a number,
it may not be telling you all it knows about that number.

When Matlab prints values, it often uses a notation similar to
scientific notation, but written without the exponent. For example,
Avogadro’s number is 6.022 · 1023 in usual scientific notation, but
Matlab would display this as 6.022e+23. The e denotes 10. Sim-
ilarly, Matlab would display the fraction 1/2048=4.8828e-04.
You can change the number of digits displayed with the format

command. (See help format for details.)

2It is possible to have single precision numbers or integers or other formats,
but requires special declarations.
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Matlab uses variable names to represent data. A variable
name represents a matrix containing complex double-precision data.
Of course, if you simply tell Matlab x=1, Matlab will understand
that you mean a 1 × 1 matrix and it is smart enough to print x

out without its decimal and imaginary parts, but make no mistake:
they are there. And x can just as easily turn into a matrix.

A variable can represent some important value in a program,
or it can represent some sort of dummy or temporary value. Im-
portant quantities should be given names longer than a few letters,
and the names should indicate the meaning of the quantity. For
example, if you were using Matlab to generate a matrix contain-
ing a table of squares of numbers, you might name the table, for
example, tableOfSquares or table of squares.

Once you have used a variable name, it is bad practice to re-
use it to mean something else. It is sometimes necessary to do so,
however, and the statement

clear varOne varTwo

should be used to clear the two variables varOne and varTwo before
they are re-used. This same command is critical if you re-use a
variable name but intend it to have smaller dimensions.

Matlab has a few reserved names. You should not use these
as variable names in your files. If you do use such variables as i

or pi, they will lose their special meaning until you clear them.
Reserved names include

ans: The result of the previous calculation.

computer: The type of computer you are on.

eps: The smallest positive number ε that can be represented on
the computer and that satisfies the expression 1 + ε > 1. Be
warned that this usage is different from the use of eps in the
text.
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i, j: The imaginary unit (
√
−1). Using i or j as subscripts or

loop indices when you are also using complex numbers can
generate incorrect answers.

inf: Infinity (∞). This will be the result of dividing 1 by 0.

NaN: “Not a Number.” This will be the result of dividing 0 by 0,
or inf by inf, multiplying 0 by inf, etc.

pi: π

realmax, realmin: The largest and smallest real numbers that
can be represented on this computer.

version: The version of Matlab you are running. (The ver

command gives more detailed information.)

Arithmetic operations can be performed on variables. These
operations include the following. In each case, the printed value
would be suppressed if a semicolon were used.

Some Matlab operations
= Assignment x=4 causes variable x to have value 4.

+ Addition x+1 prints the value 5.

- Subtraction x-1 prints the value 3.

* Multiplication 2*x prints the value 8.

/ Division 6/x prints the value 1.5.

^ Exponentiation x^3 prints the value 64.

() Grouping (x+2)/2 prints the value 3.

Matlab has a vast number of mathematical functions. Mat-
lab functions are called using parentheses, as in log(5).

Exercise 382 Start up Matlab or Octave and use it to answer
the following questions.
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1. What are the values of the reserved variables pi, eps, realmax,
and realmin?

2. Use the “format long” command to display pi in full preci-
sion and “format short” to return Matlab to its default,
short, display.

3. Set the variable a=1, the variable b=1+eps, the variable c=2,
and the variable d=2+eps. What is the difference in the way
that Matlab displays these values?

4. Do you think the values of a and b are different? Is the way
that Matlab formats these values consistent with your idea
of whether they are different or not?

5. Do you think the values of c and d are different? Explain
your answer.

6. Choose a value and set the variable x to that value.

7. What is the square of x? Its cube?

8. Choose an angle θ and set the variable theta to its value (a
number).

9. What is sin θ? cos θ? Angles can be measured in degrees or
radians. Which of these has Matlab used?

B.4 Variables are matrices

Matlab treats all its variables as though they were matrices. Im-
portant subclasses of matrices include row vectors (matrices with
a single row and possibly several columns) and column vectors
(matrices with a single column and possibly several rows). One
important thing to remember is that you don’t have to declare the
size of your variable; Matlab decides how big the variable is when
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you try to put a value in it. The easiest way to define a row vec-
tor is to list its values inside of square brackets, and separated by
spaces or commas:

rowVector = [ 0, 1, 3, 6, 10 ]

The easiest way to define a column vector is to list its values inside
of square brackets, separated by semicolons or line breaks.

columnVector1 = [ 0; 1; 3; 6; 10 ]

columnVector2 = [ 0

1

9

36

100 ]

(It is not necessary to line the entries up, but it makes it look
nicer.) Note that rowVector is not equal to columnVector1 even
though each of their components is the same.

Matlab has a special notation for generating a set of equally
spaced values, which can be useful for plotting and other tasks.
The format is:

start : increment : finish

or

start : finish

in which case the increment is understood to be 1. Both of these
expressions result in row vectors. So we could define the even values
from 10 to 20 by:

evens = 10 : 2 : 20

Sometimes, you’d prefer to specify the number of items in the
list, rather than their spacing. In that case, you can use the
linspace function, which has the form
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linspace( firstValue, lastValue, numberOfValues )

in which case we could generate six even numbers with the com-
mand:

evens = linspace ( 10, 20, 6 )

or fifty evenly-spaced points in the interval [10,20] with

points = linspace ( 10, 20, 50 )

As a general rule, use the colon notation when the increment is an
integer or when you know what the increment is and use linspace

when you know the number of values but not the increment.
Another nice thing about Matlab vector variables is that they

are flexible. If you decide you want to add another entry to a
vector, it’s very easy to do so. To add the value 22 to the end of
our evens vector:

evens = [ evens, 22 ]

and you could just as easily have inserted a value 8 before the other
entries, as well.

Even though the number of elements in a vector can change,
Matlab always knows how many there are. You can request this
value at any time by using the numel function. For instance,

numel ( evens )

should yield the value 7 (the 6 original values of 10, 12, ... 20,
plus the value 22 tacked on later). In the case of matrices with
more than one nontrivial dimension, the numel function returns
the product of the dimensions. The numel of the empty vector is
zero. The size function returns a vector containing two values: the
number of rows and the number of columns (or the numbers along
each of the dimensions for arrays with more than two dimensions).
To get the number of rows of a variable v, use size(v,1) and to get
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the number of columns use size(v,2). For example, since evens

is a row vector, size( evens, 1)=1 and size( evens, 2)=7, one
row and seven columns.

To specify an individual entry of a vector, you need to use index
notation, which uses round parentheses enclosing the index of an
entry. The first element of an array has index 1 (as in Fortran,
but not C and Java). Thus, if you want to alter the third element
of evens, you could say

evens(3) = 7

Exercise 383 Start up Matlab or Octave and use it to do the
following tasks:

1. Use the linspace function to create a row vector called
meshPoints containing exactly 500 values with values evenly
spaced between -1 and 1. Do not print all 500 values!

2. What expression will yield the value of the 55th element of
meshPoints?

3. Use the numel function to confirm the vector has length 500.

4. Produce a plot of a sinusoid on the interval [−1, 1] using the
command

plot(meshPoints,sin(2*pi*meshPoints))

In its very simplest form, the signature of the plot function
is

plot(array of x values, array of y values)

The arrays, of course, need to have the same numbers of
elements. The plot function has more complex forms that
give you considerable control over the plot. Use doc plot for
further documentation.
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B.5 Matrix and vector Operations

Matlab provides a large assembly of tools for matrix and vector
manipulation. The following exercise illuminates the use of these
operations by example.

Exercise 384 Open up Matlab or Octave and use it to perform
the following tasks.

Define the following vectors and matrices:

rowVec1 = [ -1 -4 -9]

colVec1 = [ 2

9

8 ]

mat1 = [ 1 3 5

7 -9 2

4 6 8 ]

1. You can multiply vectors by constants. Compute

colVec2 = (pi/4) * colVec1

2. The cosine function can be applied to a vector to yield a
vector of cosines. Compute

colVec2 = cos( colVec2 )

Note that the values of colVec2 have been overwritten.

3. You can add vectors and multiply by scalars. Compute

colVec3 = colVec1 + 2 * colVec2

4. Matlab will not allow you to do illegal operations! Try to
compute
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illegal = colVec1 + rowVec1;

Look carefully at the error message. You must recognize from
the message what went wrong when you see it in the future.

5. You can do row-column matrix multiplication. Compute

colvec4 = mat1 * colVec1

6. A single quote following a matrix or vector indicates a (Her-
mitian) transpose.

mat1Transpose = mat1’

rowVec2 = colVec3’

Warning: The single quote means the Hermitian adjoint or
complex-conjugate transpose. If you want a true transpose
applied to a complex matrix you must use “.’”.

7. Transposes allow the usual operations. You might find uTv
a useful expression to compute the dot (inner) product u · v
(although there is a dot function in Matlab).

mat2 = mat1 * mat1’ % mat2 is symmetric

rowVec3 = rowVec1 * mat1

dotProduct = colVec3’ * colVec1

euclideanNorm = sqrt(colVec2’ * colVec2)

8. Matrix operations such as determinant and trace are avail-
able, too.

determinant = det( mat1 )

traceOfMat1 = trace( mat1 )
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9. You can pick certain elements out of a vector, too. Use the
following command to find the smallest element in a vector
rowVec1.

min(rowVec1)

10. The min and max functions work along one dimension at a
time. They produce vectors when applied to matrices.

max(mat1)

11. You can compose vector and matrix functions. For example,
use the following expression to compute the max norm of a
vector.

max(abs(rowVec1))

12. How would you find the single largest element of a matrix?

13. As you know, a magic square is a matrix all of whose row
sums, column sums and the sums of the two diagonals are
the same. (One diagonal of a matrix goes from the top left
to the bottom right, the other diagonal goes from top right to
bottom left.) Show by direct computation that if the matrix
A is given by

A=magic(100); % do not print all 10,000 entries.

Then it has 100 row sums (one for each row), 100 column
sums (one for each column) and two diagonal sums. These
202 sums should all be exactly the same, and you could verify
that they are the same by printing them and “seeing” that
they are the same. It is easy to miss small differences among
so many numbers, though. Instead, verify that A is a magic
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square by constructing the 100 column sums (without print-
ing them) and computing the maximum and minimum values
of the column sums. Do the same for the 100 row sums, and
compute the two diagonal sums. Check that these six val-
ues are the same. If the maximum and minimum values are
the same, the flyswatter principle says that all values are the
same.
Hints:

• Use the Matlab min and max functions.

• Recall that sum applied to a matrix yields a row vector
whose values are the sums of the columns.

• The Matlab function diag extracts the diagonal of a
matrix, and the composition of functions
sum(diag(fliplr(A))) computes the sum of the other
diagonal.

14. Suppose we want a table of integers from 0 to 9, their squares
and cubes. We could start with

integers = 0 : 9

but now we’ll get an error when we try to multiply the entries
of integers by themselves.

squareIntegers = integers * integers

Realize that Matlab deals with vectors, and the default mul-
tiplication operation with vectors is row-by-column multipli-
cation. What we want here is element-by-element multipli-
cation, so we need to place a period in front of the operator:

squareIntegers = integers .* integers



290 APPENDIX B. BASIC MATLAB PROGRAMMING

Now we can define cubeIntegers and fourthIntegers in a
similar way.

cubeIntegers = squareIntegers .* integers

fourthIntegers = squareIntegers .* squareIntegers

Finally, we would like to print them out as a table. integers,
squareIntegers, etc. are row vectors, so make a matrix
whose columns consist of these vectors and allow Matlab to
print out the whole matrix at once.

tableOfPowers=[integers’, squareIntegers’, ...

cubeIntegers’, fourthIntegers’]

(The “. . . ” tells Matlab that the command continues on
the next line.)

15. Compute the squares of the values in integers alternatively
using the exponentiation operator as:

sqIntegers = integers .^ 2

and check that the two calculations agree with the command

norm(sqIntegers-squareIntegers)

that should result in zero.

16. You can add constants to vectors and matrices. Compute

squaresPlus1=squareIntegers+1;
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17. Watch out when you use vectors. The multiplication, divi-
sion and exponentiation operators all have two possible forms,
depending on whether you want to operate on the arrays, or
on the elements in the arrays. In all these cases, you need
to use the period notation to force elementwise operations.
Fortunately, as you have seen above, using multiplication or
exponentiation without the dot will often produce an error.
The same cannot be said of division. Compute

squareIntegers./squaresPlus1

and also

squareIntegers/squaresPlus1

This latter value uses the Moore-Penrose pseudo-inverse and
is almost never what you intend. You have been warned! Re-
mark: Addition, subtraction, and division or multiplication
by a scalar never require the dot in front of the operator,
although you will get the correct result if you use one.

18. The index notation can also be used to refer to a subset of
elements of the array. With the start:increment:finish no-
tation, we can refer to a range of indices. Two-dimensional
vectors and matrices can be constructed by leaving out some
elements of our three-dimensional ones. For example, sub-
matrices an be constructed from tableOfPowers. (The end

function in Matlab means the last value of that dimension.)

tableOfCubes = tableOfPowers(:,[1,3])

tableOfOddCubes = tableOfPowers(2:2:end,[1,3])

tableOfEvenFourths = tableOfPowers(1:2:end,1:3:4)

19. You have already seen the Matlab function magic(n). Use
it to construct a 10× 10 matrix.
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A = magic(10)

What commands would be needed to generate the four 5× 5
matrices in the upper left quarter, the upper right quarter,
the lower left quarter, and the lower right quarter of A?

Repeated Warning: Although multiplication of vectors is illegal
without the dot, division of vectors is legal! It will be interpreted
in terms of the Moore-Penrose pseudo-inverse. Beware!

B.6 Flow control

It is critical to be able to ask questions and to perform repetitive
calculations in m-files. These topics are examples of “flow con-
trol” constructs in programming languages. Matlab provides two
basic looping (repetition) constructs: for and while, and the if

construct for asking questions. These statements each surround
several Matlab statements with for, while or if at the top and
end at the bottom.

Remark 385 It is an excellent idea to indent the statements be-
tween the for, while, or if lines and the end line. This inden-
tation strategy makes code immensely more readable. Code that is
hard to read is hard to debug, and debugging is hard enough as it
is.

The syntax of a for loop is
for control-variable=start : increment : end

Matlab statement . . .
. . .

end
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The syntax of a while loop is
Matlab statement initializing a control variable
while logical condition involving the control variable

Matlab statement . . .
. . .
Matlab statement changing the control variable

end

The syntax of a simple if statement is
if logical condition

Matlab statement . . .
. . .

end

The syntax of a compound if statement is
if logical condition

Matlab statement . . .
. . .

elseif logical condition
. . .

else

. . .
end

Note that elseif is one word! Using two words else if changes
the statement into two nested if statements with possibly a very
different meaning, and a different number of end statements.

Exercise 386 The “max” or “sup” or “infinity” norm of a vector
is given as the maximum of the absolute values of the components
of the vector. Suppose {vn}n=1,...,N is a vector in RN , then the
infinity norm is given as

‖v‖∞ = max
n=1,...,N

|vn| (B.1)
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If v is a Matlab vector, then the Matlab function numel gives its
number of elements, and the following code will compute the infinity
norm. Note how indentation helps make the code understandable.
(Matlab already has a norm function to compute norms, but this
is how it could be done.)

% find the infinity norm of a vector v

N = numel(v);

nrm = abs(v(1));

for n=2:N

if abs(v(n)) > nrm

nrm=abs(v(n)); % largest value up to now

end

end

nrm % no semicolon: value is printed

1. Define a vector as

v=[ -5 2 0 6 8 -1 -7 -10 -10];

2. How many elements does v have? Does that agree with the
result of the numel function?

3. Copy the above code into the Matlab command window and
execute it.

4. What is the first value that nrm takes on? (5)

5. How many times is the statement with the comment “largest
value up to now” executed? (3)

6. What are all the values taken by the variable nrm? (5,6,7,10)

7. What is the final value of nrm? (10)
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B.7 Script and function files

Exercise 387 If you have to type everything at the command line,
you will not get very far. You need some sort of scripting capabil-
ity to save the trouble of typing, to make editing easier, and to
provide a record of what you have done. You also need the capa-
bility of making functions or your scripts will become too long to
understand. In this exercise, you will write a script file.

1. Copy the code given above for the infinity norm into a file
named infnrm.m. Recall you can get an editor window from
the File→New→M-file menu or from the edit command in
the command windowpane. Don’t forget to save the file.

2. Redefine the vector

v = [-35 -20 38 49 4 -42 -9 0 -44 -34];

3. Execute the script m-file you just created by typing just its
name (infnrm) without the .m extension in the command
windowpane. What is the infinity norm of this vector? (49)

4. The usual Euclidean or 2-norm is defined as

‖v‖2 =

√√√√ N∑
1

v2
n (B.2)

Copy the following Matlab code to compute the 2-norm into
a file named twonrm.m.

% find the two norm of a vector v

% your name and the date

N = numel(v);

nrm = v(1)^2;
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for n=2:N

nrm = nrm + v(n)^2;

end

nrm=sqrt(nrm) % no semicolon: value is printed

5. Using the same vector v, execute the script twonrm. What
are the first four values the variable norm takes on? (1625,
3069, 5470, 5486) What is its final value? (102.0931)

6. Look carefully at the mathematical expression (B.2) and the
Matlab code in twonrm.m. The the way one translates a
mathematical summation into Matlab code is to follow the
steps:

a) Set the initial value of the sum variable (nrm in this case)
to zero or to the first term.

b) Put an expression adding subsequent terms inside a loop.
In this case it is of the form nrm=nrm+something.

Exercise 388 Script files are very convenient, but they have draw-
backs. For example, if you had two different vectors, v and w, for
which you wanted norms, it would be inconvenient to use infnrm

or twonrm. It would be especially inconvenient if you wanted to
get, for example, ‖v‖2 + 1/‖w‖∞. This inconvenience is avoided
by using function m-files. Function m-files define your own func-
tions that can be used just like Matlab functions such as sin(x),
etc.

1. Copy the file infnrm.m to a file named infnorm.m. (Look
carefully, the names are different! You can use “save as” or
cut-and-paste to do the copy.) Add the following lines to the
beginning of the file:

function nrm = infnorm(v)
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% nrm = infnorm(v)

% v is a vector

% nrm is its infinity norm

2. The first line of a function m-file is called the “signature” of
the function. The first comment line repeats the signature
in order to explain the “usage” of the funciton. Subsequent
comments explain the parameters (such as v) and the output
(such as norm) and, if possible, briefly explain the methods
used. The function name and the file name must agree.

3. Place a semicolon on the last line of the file so that nothing
will normally be printed by the function.

4. Use the Matlab “help” command:

help infnorm

This command will repeat the first lines of comments (up to
a blank line or a line of code) and provides a quick way to
refresh your memory of how the function is to be called and
what it does.

5. Invoke the function in the command windowpane by typing

infnorm(v)

6. Repeat the above steps to define a function named twonorm.m

from the code in twonrm.m. Be sure to put comments in.

7. Define two vectors

a = [ -43 -37 24 27 37 ];

b = [ -5 -4 -29 -29 30 ];
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and find the value of infinity norm of a and the two norm of
b with the commands

aInfinity = infnorm(a)

bTwo = twonorm(b)

Note that you no longer need to use the letter v to denote the
vector, and it is easy to manipulate the values of the norms.

B.8 Matlab linear algebra functionality

Matlab was originally conceived as a “matrix laboratory” and has
considerable linear algebra functionality available. This section
presents a small sample of those Matlab functions that imple-
ment algorithms similar to those discussed in this book. Detailed
instructions on use and implementation can be found in the Mat-
lab “help” facility that is part of the distribution package or on
the Mathworks web site.

Solving matrix systems in Matlab

Matlab provides a collection of direct solvers for matrix systems
rolled into a single command: “\”. If a Matlab variable A is an
N×N matrix and b is a N×1 vector, then the solution of the sys-
tem Ax = b is computed in Matlab with the command x=A\b.
Although this looks unusual to a person used to mathematical no-
tation, it is equivalent to x = A−1b and it respects the order of
matrix operations. There is a named function, mldivide (“matrix
left divide”) that is equivalent to the symbolic operation: x=A\b is
the identical to x=mldivide(A,b). In informal speech, this capa-
bility is often called simply “backslash.”

Warning 389 (mldivide is very general)
The command mldivide is more general than ordinary matrix in-
version. If the matrix A is not N×N or if b is not an N-vector,
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mldivide provides a least-squares best approximate solution, and
no warning message is given. Care must be taken that typing errors
do not lead to incorrect numerical results.

The underlying numerical methods for the mldivide command
currently come from umfpack [D13]. They work for both dense and
sparse matrices and are among the most efficient methods known.

In addition to mldivide (backslash), Matlab provides imple-
mentations of several iterative solution algorithms, only two of
which are mentioned here.

pcg uses the CG and preconditioned CG methods.

gmres uses the generalized minimum residual method.

Condition number of a matrix

Matlab has three functions to find the condition number of a
matrix, using three different methods.

1. The function cond computes the condition number of a ma-
trix as presented in Definition 132.

2. The function condest is an estimate of the 1-norm condition
number.

3. The function rcond is an estimate of the reciprocal of the
condition number.

Matrix factorizations

Matlab has functions to compute several standard matrix factor-
izations, as well as “incomplete” factorizations that are useful as
preconditioners for iterative methods such as conjugate gradients.
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chol computes the Cholesky factorization, an LLt factorization
for symmetric positive definite matrices.

ichol computes the incomplete Cholesky factorization.

lu computes the LU factorization as discussed in Section 1.6.

ilu computes the incomplete LU factorization.

qr computes the QR factorization as discussed in Section 7.6.

Eigenvalues and singular values

eig computes all the eigenvalues and eigenvectors of a matrix, as
discussed in Chapter 7. It can handle the “generalized eigen-
value” problem also. It is primarily used for relatively small
dense matrices.

eigs computes some of the largest or smallest eigenvalues and
eigenvectors, or those nearest a shift, σ. It is most appro-
priate for large, sparse matrices.

svd computes the singular value decomposition of a matrix (Defi-
nition 29).

svds computes some of the largest singular values or those nearest
a shift. It is most appropriate for large, sparse matrices.

B.9 Debugging

A programming error in a computer program is called a “bug.”
It is commonly believed that the use of the term “bug” in this
way dates to a problem in a computer program that Rear Admiral
Grace Hopper, [GH], was working with. It turned out that a moth
had become trapped in a relay in the early computer, causing it
to fail. This story is true and pictures of the deceased moth taped
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into her notebook can be found on the internet. The term “bug” in
reference to errors in mechanical devices had been in use for many
years at the time, but the story is so compelling that people still
believe it was the source of the term.

Finding and elmininating bugs in computer programs is called
“debugging.” Debugging is on of the most difficult, time consuming
and least rewarding activities you are likely to engage in. Software
engineers teach that absolutely any programming habit you de-
velop that reduces the likelihood of creating a bug is worth the
trouble in saved debugging time. Among these habits are indent-
ing loops, long descriptive variable names, shorter functions with
fewer branches, and never reusing the same variable for two dif-
ferent quantities. You are urged to adopt these and any other
practices that you find help you avoid bugs.

One of the most powerful debugging tools a programmer has
is a “source-level debugger,” or just “debugger.” Matlab, like
all other modern programming environments, incudes such a de-
bugger, integrated into its window environment. This tool can be
used to follow the execution of a Matlab function or script line
by line, by which you can understand how the code works, thereby
helping to find errors. Matlab provides an excellent tutorial on
its debugger. Search the documentation for “Debugging Process
and Features.” If you are using another programming language,
you should learn to use an appropriate debugger: the time spent
learning it will be paid back manyfold as you use it.

It is beyond the scope of this book to provide tutorials on the
various debuggers available for various languages. It is true, how-
ever, that there is a core functionality that all debuggers share.
Some of those core functions are listed below, using Matlab ter-
minology. Other debuggers may have other terminology for similar
functions.

Values All debuggers allow you to query the current value of vari-
ables in the current function. In Matlab and in several other
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debuggers, this can be accomplished by placing the cursor
over the variable and holding it stationary.

Step Execute one line of source code from the current location.
If the line is a function call, complete the function call and
continue in the current function.

Step in If the next line of source code is a function call, step into
that function, so that the first line of the function is the line
that is displayed. You would normally use this for functions
you suspect contribute to the bug but not for Matlab func-
tions or functions you are confident are correct.

Breakpoints It is usually inconvenient to follow a large program
from its beginning until the results of a bug become apparent.
Instead, you set “breakpoints,” which are places in the code
that cause the program to stop and display source code along
with values of variables. If you find a program stopping in
some function, you can set a breakpoint near the beginning
of that function and then track execution from that point on.

Matlab provides for breakpoints based on conditions. For
example, numerical programs sometimes fail because the val-
ues3 inf or NaN is generated. Matlab allows a breakpoint
to be set that will be activated as soon as such a value is
generated, no matter what line of code is involved. It is also
possible to set a breakpoint based on a condition such as x

becoming equal to 1.

Continue Continue from the current line until the next break-
point, or until it loops back to this breakpoint.

3Division by zero results in a special illegal value denoted inf. The result
of 0/0 and most arithmetic performed on inf results in a different illegal value
denoted NaN for “Not a Number.”
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Call stack Most programs call many functions and often call the
same function from different places. If, for example, your
debugger shows that the program has just computed inf in-
side log(x) with x=0, you need to know where the call to
log(x) ocurred. The call stack is the list of function calls
culminating with the current one.

Finally, one remarkably effective strategy to use with a debug-
ger is to examine the source code, querying the current values of
relevant variables. Then it is possible to predict the effect of the
next line of code. Stepping the debugger one line will confirm your
prediction or surprise you. If it surprises you, you probably have
found a bug. If not, go on to the following line.

B.10 Execution speed in Matlab

The remarks in this section are specific to Matlab and, to some
extent, Octave. These remarks cannot be generalized to languages
such as C, C++ and Fortran, although Fortran shares the array
notation and use of the colon with Matlab.

It is sometimes possible to substantially reduce execution times
for some Matlab code by reformulating it in a mathematically
equivalent manner or by taking advantage of Matlab’s array no-
tation. In this section, a few strategies are presented for speeding
up programs similar to the pseudocode examples presented in this
book.

The simplest timing tools in Matlab are the tic and toc com-
mands. These commands are used by calling tic just before the
segment of code or function that is being timed, and toc just after
the code is completed. The toc call results in the elapsed time
since the tic call being printed. Care must be taken to place them
inside a script or function file or on the same line as the code to
be timed, or else it will be your typing speed that is measured. A
second point to remember is that the first time a function is called
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it must be read from disk, a slow process. If you plan to measure
the speed of a function, you should do it twice. You will find that
the second value is much more reliable (and often much smaller)
than the first.

Initializing vectors and matrices

Matlab vectors are not fixed in length, but can grow dynamically.
They do not shrink. The first time Matlab encounters a vector, it
allocates some amount of storage. As soon as Matlab enounters
an index larger than it has already allocated, it stops, allocates
a new, longer, vector and (if necessary) copies all old information
into the new vector. This operation involves calls to the operating
system for the allocation and then (possibly) a copy. All this work
can take a surprising amount of time. Passing through an array in
reverse direction can avoid some of this work.

For example, on a 2012-era computer running Kubuntu Linux,
the following command

tic; for i=1:2000;for j=1:2000;G(i,j)=i+j;end;end;toc

takes about 4.65 seconds. Executing the command a second time,
so G has already been allocated, takes only 0.37 seconds. Similarly,
executing the command (typed on a single line)

tic; for i=2000:-1:1; for j=2000:-1:1;

G(i,j)=i+j;end;end;toc

(passing through the array in reverse order) takes 0.40 seconds.
(The difference between 0.37 seconds and 0.40 seconds is not sig-
nificant.)

In many computer languages, you are required to declare the
size of an array before it is used. Such a declaration is not required
in Matlab, but a common strategy in Matlab is to initialize a
matrix to zero using the zeros command. It turns out that such
a strategy carries a substantial advantage in computer time:
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tic;G=zeros(2000,2000);

for i=1:2000;for j=1:2000;G(i,j)=i+j;end;end;toc

(typed on a single line) takes only 0.08 seconds!

Array notation and efficiency in Matlab

Matlab allows arithmetic and function evaluation to be done on
entire matrices at once instead of using loops. Addition, subtrac-
tion, and (row-column) multiplication can be represented in the
usual manner. In addition, componentwise multiplication, division,
exponentiation and function calls can also be done on matrices.
These are summarized in Table B.1.

(A)ij = aij for 1 ≤ i ≤ NA and 1 ≤ j ≤MA, similarly for B and C.

Operation Interpretation Restrictions

C=A+B cij = aij + bij NA = NB = NC , MA = MB = MC

C=A-B cij = aij − bij NA = NB = NC , MA = MB = MC

C=A*B cij =
∑MA

k=1 aikbkj NC = NA, MC = MB , MA = NB

C=A^n C=A*A*A*· · · *A A is square

C=A.*B cij = aij ∗ bij NA = NB = NC , MA = MB = MC

C=A./B cij = aij/bij NA = NB = NC , MA = MB = MC

C=A.^n cij = (aij)
n NA = NC , MA = MC

C=n.^A cij = naij NA = NC , MA = MC

C=f(A) cij = f(aij) NA = NC , MA = MC , f a function

Table B.1: Selected Matlab array operations.
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Warning 390 A careful examination of Table B.1 shows that the
expression exp(A) is not the same as e^A (=

∑∞
n=0A

n/n!).

The array operations described in Table B.1 are generally faster
than the equivalent loops. When the matrices are large, the speed
improvement for using array operations can be dramatic. On a
2012-era computer running Kubuntu Linux, a loop for adding two
4000× 4000 matrices took 41 seconds, but the same matrix opera-
tion took less than 0.06 seconds!

It is often possible to optain a speedup simply by replacing a
loop with equivalent array operations, even when the operations
are not built-in Matlab operations. For example, consider the
following loop, for N=4000*4000.

g=zeros(N,1);

for i=1:N

g(i)=sin(i);

end

This loop takes about 3.93 seconds on the computer mentioned
above. A speedup of almost a factor of two is available with the
simple trick of creating a vector, i=(1:N), consisting of the con-
secutive integers from 1 to N, as in the following code.

g=zeros(N,1);

i=1:N; % i is a vector

g(i)=sin(i); % componentwise application of sin

This code executes in 2.04 seconds. Once the loop has been elimi-
nated, the code can be streamlined to pick up another 10%.

g=sin(1:N);

and this code executes in 1.82 seconds, for a total improvement of
more than a factor of two.
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Sometimes dramatic speed improvements are available through
careful consideration of what the code is doing. The MPP2d ma-
trix is available in Matlab through the gallery function. This
function provides a “rogues gallery” of matrices that can be used
for testing algorithms. Recall that the MPP2d matrix is tridiago-
nal, and hence quite sparse. An LU factorization is available using
Matlab’s lu function, and, given a right hand side vector b, the
forward and backward substitutions can be done using mldivide

(the “\” operator).
Consider the following code

N=4000;

A=gallery(’tridiag’,N);

[L,U]=lu(A);

b=ones(N,1);

tic;x=U\L\b;toc

tic;y=U\(L\b);toc

On the same computer mentioned above, the computation of x

takes 1.06 seconds, dramatically slower than the 0.0005 seconds
needed to compute y. The reason is that U\L\b means the same
as (U\L)\b. In this case, both U and L are bidiagonal, but (U\L)
has nonzeros everywhere above the diagonal and also on the lower
subdiagonal. It is quite large and it takes a long time to compute.
Once it is computed, multiplying by b reduces it back to a vector.
In contrast, U\(L\b) first computes the vector L\b by a simple bidi-
agonal multiplication and then computes the vector y with another
bidiagonal multiplication.
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