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Linear transformations are a basic model of change.

Linear Algebra

• Mathematical models often are formed using linear algebraic equations;
• The numpy function np.linalg.solve() solves a linear system.
• The numpy function np.linalg.lstsq() solves least squares problems.
• The numpy function np.linalg.eig() solves eigenvalue problems.
• The numpy function np.linalg.svd() computes the singular value decomposition.

1 A boundary value problem

To appreciate linear algebra, let’s start with a problem involving a differential equation, reformulate it as a
discrete numerical problem, and discover that we have created a system of coupled linear equations, whose
solution will give us our desired answer. Along the way, we learn, or be reminded of, how Python creates
and manipulates the vectors and matrices that are the subject of linear algebra.

Consider the following boundary value problem (often abbreviated to “BVP), in which a scalar function u(x)
is defined over the interval [a, b], and satisfies the following second order differential equation:

−d2u

dx2
= f(x) for a < x < b

along with the boundary conditions:

u(a) = gleft

u(b) = gright
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Our task is to discover a formula for u(x) from this information. For certain textbook problems, it is possible
to determine the solution, but in general, an analytic formula for the solution u(x) cannot be determined.

However, for every problem of this sort, we can apply a numerical method that may be able to estimate
the shape of the solution. Here, we will do so uing a simple version of the finite difference method, which
replaces analytic derivative expressions by differences of the function value at discrete points.

Given an interval [a, b], we specify an equally spaced grid of n points, or nodes, with spacing h = b−a
n−1 , so

that a typical discrete point is:

xi =
(n− i) · a + i · b

n− 1

Instead of seeking a formula for a function u(x), we now are only interested in the value ui at each node xi.
Since our original equation involves the second derivative of u(x), we need to translated this into an expression
in terms of the discrete values. To do so, we rely on the following centered difference approximation to the
second derivative at the point xi, which is valid for data at equal spacings h:

d2u(x)

dx2
(xi) =

ui−1 − 2ui + ui+1

h2
+ O(h2) ≈ ui−1 − 2ui + ui+1

h2

Now it turns out that, at every node xi, we can write a boundary condition or a discrete version of the
original differential equation, involving only the discrete values ui:

Node 0: u0 = gleft

Node 1:
−u0 + 2u1 − u2

h2
= f(x1)

Node 2:
−u1 + 2u2 − u3

h2
= f(x2)

...

Node n-2:
−un−3 + 2un−2 − un−1

h2
= f(xn−2)

Node n-1: un−1 = gright

It is easy to see that we have created a system of n linear equations in the variables ui, which we can rephrase
in matrix-vector notation as:

1 0 0 0 0 ... 0
−u0

h2
2u1

h2
−u2

h2 0 0 ... 0
0 −u1

h2
2u2

h2
−u3

h2 0 ... 0
0 0 −u2

h2
2u3

h2
−u4

h2 ... 0
... ... ... ... ... ... ...

0 0 0 0 0 ... −un−1

h2

0 0 0 0 0 ... 1


·



u0

u1

u2

u3

...
un−2
un−1


=



gleft
f(x1)
f(x2)
f(x3)
...
f(xn−2)
gright


Now, we think of this linear system in the form A · x = b, and we need to find some linear algebra software
to get our answer. Since we are using Python, we use the function np.linalg.solve():

x = np . l i n a l g . s o l v e ( A, b )

Listing 1: Solving a linear system with np.linalg.solve().

Now that we have an idea of how a BVP is turned into a linear system and solved, we will look at a specific
example. Our interval will be [0, 1], and the differential equation is:

−d2u

dx2
= x · (x + 3) · ex
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along with the boundary conditions:

u(0) = 0

u(1) = 0

Here is a code to discretize the geometry, set up the linear system, and solve it:

def bvp ( n ) :
import numpy as np
x = np . l i n s p a c e ( 0 . 0 , 1 . 0 , n )
h = 1 .0 / ( n − 1 )

A = np . z e r o s ( [ n , n ] )
b = np . z e r o s ( n )

for i in range ( 0 , n ) :
i f ( i == 0 )

A[ i , i ] = 1 .0
b [ i ] = 0 .0

e l i f ( i < n − 1 ) :
A[ i , i −1] = − 1 .0 / h∗∗2
A[ i , i ] = 2 .0 / h∗∗2
A[ i , i +1] = − 1 .0 / h∗∗2
b [ i ] = x [ i ] ∗ ( x [ i ] + 3 .0 ) ∗ np . exp ( x [ i ] )

else
A[ i , i ] = 1 .0
b [ i ] = 0 .0

u = np . l i n a l g . s o l v e ( A, b )

return u

Listing 2: Exact solution for bvp.

There is an exact solution for this problem:

u(x) = −x · (x− 1) · ex

which we will program as the function bvp exact(), and now we can solve our problem for a given value of
n and compare our discrete and exact solutions:

for n in [ 5 , 9 , 17 ] :
x1 = np . l i n s p a c e ( 0 . 0 , 1 . 0 , n )
u1 = bvp ( n )
p l t . p l o t ( x1 , u1 , ’ o− ’ )

x2 = np . l i n s p a c e ( 0 . 0 , 1 . 0 , 101 )
u2 = bvp exact ( x2 )
p l t . p l o t ( x2 , u2 , ’b− ’ )
p l t . show ( )

Listing 3: Exact solution for bvp.
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Three approximations and the exact solution to the BVP.

At this point, it is worth looking back at our work and seeing the ways in which Python enabled us to carry
out our linear algebra computations.

First, note that the numpy library allows us to create vectors and matrices, and to operate on them efficiently.
We used np.linspace() to create the BVP grid, and to help us in setting up the plot. Because x is a numpy

array, the bvp exact() function was able to evaluate the exact solution at all the points using a single
statement, rather than a loop. The np.zeros() function allowed us to set space for the matrix A and vector
b that we needed in order to define our linear system. And the function np.linalg.solve(), of course,
returned our solution u as another numpy array.

2 Approximating data

Suppose that we have collected n samples of data (xi, yi). After examining a plot of this data, we suspect
that it can be approximated by some linear function y = m · x + b:

A set of 15 data pairs that suggest a linear relationship.

Any two pairs of data could be used to solve for a value for m and b. The resulting formula will go exactly
through those two pairs. But we’d much rather use all the data to estimate our line, and we’d like the
approximation error to be more evenly spread out.
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To do so, we can suppose that if we pick any values for m and b, we can write the corresponding errors as
a vector whose components are ei = m · xi + b− yi. Then we can try to minimize the function E(b,m), the
sum of the squares of these errors:

E(b,m) =
1|
2

i<n∑
i=0

(m · xi + b− yi)
2

The minimum can be found by solving ∂E
∂b = 0 and ∂E

∂m = 0.

∂E

∂b
=

i<n∑
i=0

(m · xi + b− yi) = 0

∂E

∂m
=

i<n∑
i=0

(m · xi + b− yi) · xi = 0

This results in the following linear system:(
n

∑i<n
i=0 xi∑i<n

i=0 xi

∑i<n
i=0 x2

i

)
·
(

b
m

)
=

( ∑i<n
i=0 yi∑i<n
i=0 yi · xi

)
And once again, we have a square (2 × 2) linear system of the form A · x = rhs which we can solve using
np.linalg.solve().

Here is how we would program this computation for our set of data.

import numpy as np

ndata = 15

xdata = np . array ( [ \
1 . 47 , 1 . 50 , 1 . 52 , 1 . 55 , 1 . 57 , \
1 . 60 , 1 . 63 , 1 . 65 , 1 . 68 , 1 . 70 , \
1 . 73 , 1 . 75 , 1 . 78 , 1 . 80 , 1 .83 ] )

ydata = np . array ( [ \
52 .21 , 54 .12 , 54 .48 , 55 .84 , 56 .20 , \
56 .57 , 59 .93 , 61 .29 , 63 .11 , 66 .47 , \
66 .28 , 67 .10 , 70 .92 , 72 .19 , 74 .46 ] )

n = 2
A = np . z e r o s ( [ n , n ] )
rhs = np . z e r o s ( n )

A[ 0 , 0 ] = ndata
A[ 0 , 1 ] = np .sum ( xdata )
rhs [ 0 ] = np .sum ( ydata )

A[ 1 , 0 ] = np .sum ( xdata )
A[ 1 , 1 ] = np .sum ( xdata ∗∗2 )
rhs [ 1 ] = np .sum ( ydata ∗ xdata )

x = np . l i n a l g . s o l v e ( A, rhs )

Listing 4: Solving a linear least squares problem.

which returns the results b = x[0] = -40.50758429, m = x[1] = 62.1479711. Now, we can replot our
original data, and the line y = m · x + b, to verify our results:

5



The least squares linear approximation to 15 data pairs.

Again, we have used some features of Python and numpy to carry out our linear algebra tasks. We created
and valued xdata and ydata using the np.array() function. Because these were row vectors, we simply
created a list of values, enclosed in square brackets and separated by commas. Because we had to compute
the entries of matrix A and vector rhs, we first used the np.zeros() function to allocate space. We then
used square brackets to designate the indices of the array or vector into which we wanted to store each
computed value. Finally, the np.sum() function enabled us to compute the sum of various vectors easily,
without having to create a loop that would sum the entries one by one.

3 The Midnight Museum

You stayed too late at the museum and were accidentally locked in. The museum comprises 16 rooms, labeled
A through P. Normally, visitors enter room A and wander around, eventually reaching room P after which
they can only proceed to room A where they can exit. But tonight you have no exit, and are doomed to
wander through the museum. Fortunately, you’ve had a lot of coffee, and just can’t stop walking from room
to room. If you have several choices of the next room to visit, you pick one at random. By the morning, you
have entered 1600 rooms.
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A museum with 16 rooms, and one-way doors. Your tour starts in room A.

Here are some peculiar questions:

• Can we create a model of the layout of the museum?
• Can we model the process by which you are wandering through the museum?
• Was every room visited about the same number of times?
• Given that you started in room A, where are you now, most likely?

To turn our museum map into something that the computer can deal with, we start by creating the incidence
matrix for the map. Every room of the museum appears as a row and as a column of the matrix A. If there
is a door that leads from room i to room j, then Ai,j = 1. Thus, from room H (#8) there are passages to

7



rooms G (#7), I (#9), and J (#10) and so in row #8, we see 1’s in just those columns.

A B C D E F G H I J K L M N O P
A . 1 1 1 . . . . . . . . . . . .
B . . . . 1 . . . . . . . . . . .
C . . . . 1 1 . . . . . . . . . .
D . . . . . 1 1 . . . . . . . . .
E . . . . . 1 . . . . . . . . . .
F . . . . . . 1 1 . . . . . . . .
G . . . . . . . . . . . . . . 1 .
H . . . . . . 1 . 1 1 . . . . . .
I . . . . . . . . . 1 . . . . . .
J . . . . . . 1 . . . 1 1 1 1 . .
K . . . . . . . . . . . . . . 1 .
L . . . . . . . . . . . . . . 1 .
M . . . . . . . . . . . . . . 1 .
N . . . . . . . . . . . . . . 1 .
O . . . . . . . . . . . . . . . 1
P 1 . . . . . . . . . . . . . . .


Another way to describe the incidence matrix is that it lists the number of ways that you can get from room
i to room j in a single step. (This is either 0 or 1). The reason for rephrasing the description in this way is
the surprising fact that if we compute the matrix A2 = A ·A, then entries report the number of ways to get
from i to j using exactly 2 steps; looking at higher powers of A gives us reports for journeys of 3, 4, 5 steps
and so on.

This is such an amazing “free gift” from linear algebra that it’s worth glancing at A2 and checking the
museum map to see that the report is correct. Note in particular that there are now 5 ways to get from J
to O in 2 steps. 

A B C D E F G H I J K L M N O P
A . . . . 2 2 1 . . . . . . . . .
B . . . . . 1 . . . . . . . . . .
C . . . . . 1 1 1 . . . . . . . .
D . . . . . . 1 1 . . . . . . 1 .
E . . . . . . 1 1 . . . . . . . .
F . . . . . . 1 . 1 1 . . . . 1 .
G . . . . . . . . . . . . . . . 1
H . . . . . . 1 . . 1 1 1 1 1 . .
I . . . . . . 1 . . . 1 1 1 1 . .
J . . . . . . . . . . . . . . 5 .
K . . . . . . . . . . . . . . . 1
L . . . . . . . . . . . . . . . 1
M . . . . . . . . . . . . . . . 1
N . . . . . . . . . . . . . . . 1
O 1 . . . . . . . . . . . . . . 1
P . 1 1 1 . . . . . . . . . . . .


In order to answer the questions that we posed about the midnight museum wanderer, we have to modify
our incidence matrix to take into account the probabilistic choice of the next room to visit. To do so, we will
create the transition matrix, which we will represent by T , which will help us analyze the likely paths. We
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create T by transposing the incidence matrix, and normalizing each row so that its entries sum to 1. Now ...

A B C D E F G H I J K L M N O P
A . . . . . . . . . . . . . . . 1
B 1

3 . . . . . . . . . . . . . . .
C 1

3 . . . . . . . . . . . . . . .
D 1

3 . . . . . . . . . . . . . . .
E . 1 1

2 . . . . . . . . . . . . .
F . . 1

2
1
2 1 . . . . . . . . . . .

G . . . 1
2 . 1

2 . 1
3 . 1

5 . . . . . .
H . . . . . 1

2 . . . . . . . . . .
I . . . . . . . 1

3 . . . . . . . .
J . . . . . . . 1

3 1 . . . . . . .
K . . . . . . . . . 1

5 . . . . . .
L . . . . . . . . . 1

5 . . . . . .
M . . . . . . . . . 1

5 . . . . . .
N . . . . . . . . . 1

5 . . . . . .
O . . . . . . 1 . . . 1 1 1 1 . .
P . . . . . . . . . . . . . . 1 .


Now the amazing thing about this matrix is that if we start with a vector x which is zero except for a 1 in
the first entry, then the i-th entry of vector T · x gives us the probability that, after 1 step, we are in room
i. This vector is, of course [0, 1

3 ,
1
3 ,

1
3 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Then T 2 · x gives us the probabilities after

two random steps, and so on. Here is how these probabilities develop over the first ten random steps:

A B C D E F G H I J K L M N O P

0: 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1: 0.00 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2: 0.00 0.00 0.00 0.00 0.50 0.33 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3: 0.00 0.00 0.00 0.00 0.00 0.50 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00

4: 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.25 0.06 0.06 0.00 0.00 0.00 0.00 0.17 0.17

5: 0.17 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.08 0.14 0.01 0.01 0.01 0.01 0.31 0.17

6: 0.17 0.06 0.06 0.06 0.00 0.00 0.03 0.00 0.00 0.08 0.03 0.03 0.03 0.03 0.14 0.31

7: 0.31 0.06 0.06 0.06 0.08 0.06 0.04 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.14 0.14

8: 0.14 0.10 0.10 0.10 0.08 0.14 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.14

9: 0.14 0.05 0.05 0.05 0.15 0.19 0.13 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.06 0.11

10: 0.11 0.05 0.05 0.05 0.07 0.20 0.14 0.09 0.02 0.03 0.00 0.00 0.00 0.00 0.13 0.06

This means that, if you told me you had just taken 10 random steps starting at room A, I have my best
chance of finding you in room F, although the probability is only 20% of actually finding you precisely there.

It might seem like, as you continue to wander randomly, you will be equally likely to be in any room. But
this is not the case. In fact, if we take 100 random steps, and then 101, and 102, here is what the probability
table looks like now:

A B C D E F G H I J K L M N O P

100: 0.139 0.046 0.046 0.046 0.069 0.116 0.108 0.058 0.019 0.038 0.007 0.007 0.007 0.007 0.139 0.139

101: 0.139 0.046 0.046 0.046 0.069 0.116 0.108 0.058 0.019 0.038 0.007 0.007 0.007 0.007 0.139 0.139

102: 0.139 0.046 0.046 0.046 0.069 0.116 0.108 0.058 0.019 0.038 0.007 0.007 0.007 0.007 0.139 0.139

Mathematically, the system has reached a sort of steady state. Some rooms (A and P) are as much as 20
times more “popular’ than others ( K, L, M, and N).

9



It turns out that by the time we have taken 100 steps, the vector x has the interesting property that taking
one nore step makes no difference, in other words, T · x = x. This is just another way of saying that x is an
eigenvector of matrix T with eigenvalue 1.

Was this just a trick, a peculiar feature of the museum map, or does a random walker always end up
eventuially defining a fixed distribution of visiting times? There is actually more mathematics behind this
story than we want to discuss right now. However, the exercises suggest a few experiments for further
exploration. If you are intrigued, you might look up the Perron-Frobenius theorem, and then try to decide
why the museum problem satisfies the necessary conditions.

4 Spinning

When an object undergoes spinning, its behavior depends strongly on its shape, and the direction of the
axis about which it spins. The equations of motion involve what is known as the moment of inertia tensor,
which has the form:

M =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz


where Iij records the moment of inertia about the i axis when the object is rotated about the j axis. Although
physicists call M a tensor, for good reasons, we can be excused for thinking of it as just another matrix.

If we suppose that the rigid object is actually composed of n discrete point masses, each with mass mk and
coordinates (xk, yk, zk), then the formulas for the entries of the first row of the inertia matrix are:

Ixx =

k<n∑
k=0

mk (y2k + z2k) Diagonal entry

Ixy = −
k<n∑
k=0

mk xk yk Off-diagonal entry

Ixz = −
k<n∑
k=0

mk xk zk Off-diagonal entry

with similar formulas for the y and z rows.

This representation of the inertia matrix assumes we are using the standard Cartestian coordinate system.
It turns out that every rigid body has a preferred coordinate system in which the inertial matrix becomes
diagonal. This coordinate system can be written as an orthogonal matrix Q, whose columns are the axes
of the coordinate system. Because of the structure of Q, these axis vectors each have Euclidean length 1,
and are pairwise perpendicular. Physically, the Q axis vectors align themselves to three natural rotation
directions for the object. Mathematically, multiplying by Q can be regarded as simply twisting the original
Cartesian axis system to a more favorable arrangement.

This process can be described as seeking Q such that QT ∗M ∗Q becomes a diagonal matrix. As long as M
is a symmetric matrix (and you can see that this is true!), we can solve the eigenvalue problem for M , with
Q an orthogonal matrix of eigenvectors and Λ a diagonal matrix containing the real eigenvalues of M . That
is:

M ·Q = Q · Λ

which we can rewrite as
QT ·M ·Q = Λ
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This tells us that in the Q coordinate system, the equations of motion are simplified, because rotations
along each of the coordinate axes have become decoupled. The columns of Q are called the principal axes
of rotation, and the diagonal entries of Λ the principal moments of inertia.

The behavior of a rotating body is strongly affected by the principal moments of inertia. If we sort these
values from smallest to largest, and label them Ia, Ib, Ic, we have:

• Ia = Ib = Ic: the spherical top, spins like a ball;
• Ia = Ib < Ic: the oblate top, spins like a pancake;
• Ia < Ib = Ic: the prolate top, spins like a football;
• Ia < Ib < Ic: the asymmetric top, no nice spinning pattern;

An individual molecule can be regarded as a discrete construction of k point masses (atoms), held together
rigidly by chemical bonds. As mentioned above, this means that the moment of inertia matrix M can be
constructed using a finite sum over the k atoms. Once we have M , an eigenvalue analysis will give us the
principal moments of intertia, Ia, Ib, Ic, which tells us how the molecule can rotate in response to an applied
force.. Spectral analysis of a molecule bombards it with energy, to which it responds in part by rotation.
The modes of rotation depend on the principal moments of inertia.

As an example, the following data defines the five atoms of CH4, where the (x,y,z) coordinates are in atomic
units:

m x y z

12 0 0 0

1.0079 0.6276 0.6276 0.6276

1.0079 0.6276 -0.6276 -0.6276

1.0079 -0.6276 0.6276 -0.6276

1.0079 -0.6276 -0.6276 0.6276

From this data, we can construct M , and then the principal moments of inertia:

Ia=5.307906, Ib=5.307906, Ic=5.307906

and hence CH4 rotates like a spherical top. This tells the spectral analyst what modes of energy absorption
to study during the experiment.

The exercises ask you to try to carry out a similar analysis for a few other simple molecules.

This example is taken from Christian Hill, Learning Scientific Programming with Python.

5 Matrix compression

Consider the following 11 × 6 array of data A. It comes from a physical example, so the values are not
“random”. There is, presumably, some pattern in them.

A =

10.0000 8.0400 9.1400 7.4600 8.0000 6.5800

8.0000 6.9500 8.1400 6.7700 8.0000 5.7600

13.0000 7.5800 8.7400 12.7400 8.0000 7.7100

9.0000 8.8100 8.7700 7.1100 8.0000 8.8400

11.0000 8.3300 9.2600 7.8100 8.0000 8.4700

14.0000 9.9600 8.1000 8.8400 8.0000 7.0400

6.0000 7.2400 6.1300 6.0800 8.0000 5.2500

4.0000 4.2600 3.1000 5.3900 19.0000 12.5000
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12.0000 10.8400 9.1300 8.1500 8.0000 5.5600

7.0000 4.8200 7.2600 6.4200 8.0000 7.9100

5.0000 5.6800 4.7400 5.7300 8.0000 6.8900

Even for a rectangular matrix like this, we can compute a norm, namely, the Frobenius or “square root of
the sum of the squares of all the entries” norm.

value = np . l i n a l g . norm ( A, ’ f r o ’ )

so that we get a size estimate for A of 68.13.

Now let’s compute the singular value decomposition of this matrix, which has the form

A = U · S · V

where U is an m×m orthogonal matrix, S is an m×n diagonal matrix, and V is an n×n orthogonal matrix.

U, S , V = np . l i n a l g . svd ( A )

[number=none] U and V tell us something about the input and output coordinate systems preferred by
the matrix A, but S tells us how important each component is. So for now, we will ignore U and V , and
concentrate on the diagonal values in S, usually called the singular values.

S =


65.9197 0 0 0 0 0
0 15.6834 0 0 0 0
0 0 4.8767 0 0 0
0 0 0 3.9058 0 0
0 0 0 0 2.8167 0
0 0 0 0 0 2.0286


For our matrix A, the first two diagonal entries are much larger than the later ones. This leads us to suspect
that a very large proportion of the information in A can be found in the first two components of the singular
value decomposition. That is, it might be the case that we can approximate A as follows, (using 1-based
indexing for the moment!):

A ≈ A2 = U(1 : m, 1 : 2) · S(1 : 2, 1 : 2) · V (1 : 2, 1 : n)

Let’s actually start with a Python calculation that just uses the first, largest component:

A1 = U[ 0 :m, 0 : 1 ] ∗ S [ 0 : 1 , 0 : 1 ] ∗ V[ 0 : 1 , 0 : n ]

which produces the following approximation to A:

A1 =

10.2141 8.1324 8.1899 8.0390 7.7625 6.8756

8.6104 6.9678 6.9782 6.9562 7.5758 6.4772

12.5272 9.8381 9.9548 9.6424 8.2723 7.6088

9.8335 7.9801 7.9842 7.9802 8.8580 7.5333

10.8390 8.6607 8.7113 8.5800 8.5208 7.4833

12.4329 9.7068 9.8420 9.4783 7.6832 7.2039

7.0947 5.8846 5.8444 5.9605 7.5581 6.2056

3.3005 4.3875 3.8085 5.4085 18.6737 12.8913

11.9884 9.3333 9.4727 9.0971 7.1656 6.7859

7.2596 6.1177 6.0439 6.2530 8.6192 6.9342

5.7494 5.0153 4.8990 5.2242 8.3904 6.5241

We can measure the Frobenius norm of the difference:
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np . l i n a l g . norm ( A−A1 , ’ f r o ’ ) = 17 .23

Now let’s go for the next possible approximation, using the first two components:

A2 = U[ 0 :m, 0 : 2 ] ∗ S [ 0 : 2 , 0 : 2 ] ∗ V[ 0 : 2 , 0 : n ]

A2 =

10.2141 8.1324 8.1899 8.0390 7.7625 6.8756

8.6104 6.9678 6.9782 6.9562 7.5758 6.4772

12.5272 9.8381 9.9548 9.6424 8.2723 7.6088

9.8335 7.9801 7.9842 7.9802 8.8580 7.5333

10.8390 8.6607 8.7113 8.5800 8.5208 7.4833

12.4329 9.7068 9.8420 9.4783 7.6832 7.2039

7.0947 5.8846 5.8444 5.9605 7.5581 6.2056

3.3005 4.3875 3.8085 5.4085 18.6737 12.8913

11.9884 9.3333 9.4727 9.0971 7.1656 6.7859

7.2596 6.1177 6.0439 6.2530 8.6192 6.9342

5.7494 5.0153 4.8990 5.2242 8.3904 6.5241

We can measure the Frobenius norm of the difference:

np . l i n a l g . norm ( A−A2 , ’ f r o ’ ) = 7 .14

A third attempt at approximation is:

A3 = U[ 0 :m, 0 : 3 ] ∗ S [ 0 : 3 , 0 : 3 ] ∗ V[ 0 : 3 , 0 : n ]

which produces

A3 =

10.0525 8.5868 8.3993 7.5761 7.8396 6.7830

8.4444 7.4347 7.1933 6.4806 7.6550 6.3822

13.4295 7.3008 8.7857 12.2273 7.8420 8.1255

9.5482 8.7824 8.3539 7.1628 8.9940 7.3699

10.7867 8.8079 8.7791 8.4301 8.5458 7.4533

12.4866 9.5558 9.7725 9.6321 7.6576 7.2346

6.8006 6.7118 6.2256 5.1178 7.6984 6.0371

3.3802 4.1632 3.7051 5.6370 18.6357 12.9369

11.5959 10.4370 9.9812 7.9727 7.3527 6.5611

7.4222 5.6604 5.8332 6.7189 8.5417 7.0273

5.7201 5.0978 4.9371 5.1401 8.4044 6.5073

np . l i n a l g . norm ( A−A3 , ’ f r o ’ ) = 5 .22

Let’s try to be cheap, and imagine that we want to settle for A2 as our approximation to A. We can compare
A and A2 in Column 0 and in Column 3:

Column 0 Column 3

A A2 A A2

10.00 10.21 7.46 8.03

8.00 8.61 6.77 6.95

13.00 12.52 12.74 9.64

9.00 9.83 7.11 7.98
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11.00 10.83 7.81 8.58

14.00 12.43 8.84 9.47

6.00 7.09 6.08 5.96

4.00 3.30 5.39 5.40

12.00 11.98 8.15 9.09

7.00 7.25 6.42 6.25

5.00 5.74 5.73 5.22

Agreement isn’t perfect, but we can certainly recognize that A2 is trying hard to approximate, and not doing
a bad job.

The singular value decomposition (SVD) is a powerful linear algebra tool. This example has demonstrated
how the SVD can detect that a given set of m× n data (a matrix) has a pattern that can be approximated
in a way that uses a significantly smaller amount of information.

In this small example, we approximated the 11 × 6 entries of A by a rank k = 2 approximation using 2*11
entries in U , 2 entries in S, and 2*6 entries of V , dropping from an exact representation using 66 numbers to
an approximate representation that uses 36 numbers. In real applications, the data sizes are in the thousands
and millions. Using a typical approximation of rank k = 10 or k = 20 can result in enormous reductions in
storage and efficiency.

The behavor of the set of singular values produced by the SVD indicates whether a matrix is strongly
patterned. If the first few singular values are much larger than later ones, then the information in the array
can be greatly compressed. On the other hand, if the data is unpatterned or random, then usually most of
the singular values will have roughly the same value, meaning that it is not possible to drop some of the
later components and still have a good approximation.

6 Image compression

In a black and white image, (actually a “gray scale” image) a single number records the brightness of each
pixel. Such an image is an m× n numeric array A. m and n are typically of the order of 1,000

We will think of the image as a collection of n columns, each containing m values. Since this is a gray scale
image, the values will be numbers between 0 and 1. Now imagine two consecutive columns of the image. It
is very likely that the pair of values in the same row will be close, since they represent neighboring parts of
the picture. So it’s also likely that the values in column j and j + 1 are very similar. We are not dealing
with random data, and so we may have a good chance of compressing our image, by approximating several
similar columns by scaled copies of a single column.

For any value k, we can ask the SVD to find Ak, the best rank k approximation of A. The storage of Ak

can be much less than A requires, while Ak preserves most of the information in A.

Let’s take a sample image, think of it as a matrix A, compute its SVD, and then look at some typical
approximating images, just like we did for the little matrix example in the previous discussion.
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The original image, which uses n = 460 columns of data.

The original image is a still photo from the movie Casablanca. Now we compute the singular value decom-
position, and create an approximate image A1 based on a single component of the SVD factorization. We
can’t expect much, but there is a tiny bit of light/dark information that is preserved:

Approximation A1. The top of the image is bright, the bottom dark. There are a few columns of darkness.

When we move to using two components of the SVD, we still can’t expect to get much. Nonetheless, the
approximation can start to focus on some areas of the picture which are heavily bright or dark.
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Approximation A2. The men’s suits are showing up dark; The piano music is light.

Surprisingly, using just five components, the window, a feature from the original photo, seems to pop out.
Since it represents a rectangle of brightness, it’s not hard to imagine that the SVD noticed this regular
structure.

Approximation A5. We can see the window! We can almost make out three people.

The 10-component approximation is still terrible, but we can actually start to see the shapes of the three
characters, the piano, and the general setting.
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Approximation A10. There are three people, although they look ghostly.

The 20, 40 and 80 component approximations all seem to present the information from the original photo,
but with somewhat fuzzy outlines. If we were trying to be efficient, we might simply opt for the 40 component
version.

Approximation A20. Looks like a badly printed photograph. But we can see all the important objects
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Approximation A40. Now the image is grainy.

Approximation A80. It’s hard to see anything wrong here. And yet we have used 80 columns of data and
omitted 380.

Each singular value represents the size of the next addition to the approximation. For the photographic
image, these values drop rapidly, suggesting that a low rank approximation gets most of the information.
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The singular values of the image.

Assumptions:

• Choose the pixels of the image as our data items.
• Neighboring pixel values are usually related, not random.
• Groups of similar pixels have low information, and can be approximated.

Approximations:

• Rank 5 approximation shows light / dark patterns in the room;
• Rank 10 approxmation made 2 1

2 people visible;
• Rank 40 approximation shows all important features;

Conclusions:

• The photograph is a combination of information and minor details;
• SVD approximations expose important information first;
• Importance decreases with singular value size;
• A low rank SVD approximation may store all information we need;

7 Exercises

1. Consider a boundary value problem in the interval [0.0, 5.0], of the form

−u′′(x) = −(2x + 5) ex

with boundary conditions

u(0.0) = 1

u(5.0) = 11 e5 ≈ 1632.5

for which the exact solution is
uexact(x) = (2x + 1) ex

Solve this problem using n=21 nodes, and plot your estimated solution against the exact solution.

2. Our linear least squares problem can be solved directly, as a 15 × 2 overdetermined system of linear
equations A · x = rhs. Here, for example, the first entries of A and rhs will be 1, x0 and y0. The
numpy function np.linalg.lstsq(A,b) will set up the corresponding least squares system and return
the solution. For “technical” reasons, you will want use a call statement like

19



x , , , = np . l i n a l g . l s t s q ( A, rhs , rcond = None )

where the three underscores allow you to ignore extra output. The array x will return the two values
b, m that we are seeking. If you try this approach, you should get exactly the same values we got
previously. This approach is much more convenient when the number of variables n increases.

3. Suppose we are trying to find an approximate formula for data, but plotting the data values produces
a graph that is too curved to be approximated by a straight line. Then we could consider higher order
models, starting with a quadratic of the form y = c0 + c1 · x+ c2 · x2. What would be the form for the
3× 3 matrix A and right hand side rhs then? Consider the following data:

x = [ 0 , 2 , 3 , 5 , 6 , 8 , 9 , 11 , 12 , 14 , 15 ]
y = [ 0 , 10 , 10 , 10 , 10 , 10 , 10 . 5 , 15 , 50 , 60 , 85 ]

Use the least squares approach to compute the linear and quadratic approximations to this data. Show
the data and the two approximating functions on a single plot.

4. In the museum problem, the only passage leaving room K goes to room O. Investigate what happens
if this passage is locked, so that room K becomes a dead end. Adjust the transition matrix T, and
simulate 10, 20, and then 100 steps. What do you observe?

5. In the museum problem, from any starting room, you can reach any other room. Alter the museum
map as follows: remove the path from A to B, from C to F, and from E to F. Add a path from C to B.
Reverse the direction of the path from C to E, so that it becomes a path from E to C. Your map now has
an isolated loop C -¿ B -¿ E -¿ C, which is inaccessible to room A. Update the transition matrix for this
new situation, and call w, v = np.linalg.eig ( T ) to compute the eigenvalues w and eigenvectors
v. You should notice that you now have two eigenvalues equal to 1. Their corresponding eigenvectors
describe wandering walks around the big loop (that includes room A) and the little loop, involving
just C, B, and E. Because the map is now disconnected into two separate regions, it no longer satisfies
the “irreducible” condition of the Perron-Frobenius theorem, and hence we no longer can guarantee a
single dominant eigenvalue equal to 1.

6. Compute the principal moments of inertia for the molecule CH3Cl, whose atomic information is

m x y z

12 0 0 0

34.9689 0 0 1.7810

1.0079 1.0424 0 -0.3901

1.0079 -0.5212 0.9027 -0.3901

1.0079 -0.5212 -0.9027 -0.3901

7. Compute the principal moments of inertia for the molecule NH3, whose atomic information is

m x y z

14.0031 0 0 0

1.0079 0 -0.9377 -0.3816

1.0079 0.8121 0.4689 -0.3816

1.0079 -0.8121 0.4689 -0.3816

8. Compute the principal moments of inertia for the molecule O3, whose atomic information is

m x y z

15.9949 0 0 0

15.9949 0 1.0885 0.6697

15.9949 0 -1.0885 0.6697

9. We have suggested that matrices with random data are hard to compress. Carry out an example
similar to the compression of the 11 × 6 matrix, but this time, initialize A to random values. What

20



are your singular values in the S matrix? Print the successive values of the Frobenius norm of the
difference of A and A1, A2, ..., A6.

10. We have suggested that matrices with patterned data can sometimes be efficiently compressed. Let
A be a 10 × 10 magic matrix, generated using the file magic matrix.py. Compute the singular value
decomposition of this matrix. What are your singular values in the S matrix? Print the successive
values of the Frobenius norm of the difference of A and A1, A2, ..., A10. At what point is your relative
approximation error less than 10%?
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