Wed Jun 22 22:02:41 2022 babylonian_test(): Python version: 3.6.9 babylonian() demonstrates some Babylonian arithmetic. babylonian_sqrt_test(): babylonian_sqrt() estimates square roots using a method known to the Babylonians. 0 2.0 1.0 2.0 1 1.5 1.3333333333333333 0.25 2 1.4166666666666665 1.411764705882353 0.006944444444444198 3 1.4142156862745097 1.41421143847487 6.007304882427178e-06 4 1.4142135623746899 1.4142135623715002 4.510614104447086e-12 Seek sqrt ( 2.0 ) Estimate = 1.4142135623746899 sqrt(r) = 1.4142135623730951 Err = 1.5947243525715749e-12 Tolerance = 1e-06 Iterations = 4 digits_decimal_to_r8_test(): digits_decimal_to_r8() converts base 10 digits of a number into a real value; Given decimal digits: [1 2 0 3 4] and "decimal place" p = -2 corresponding value is r8 = 0.012034000000000001 Given decimal digits: [9 8 7 6 5 4 3] and "decimal place" p = 3 corresponding value is r8 = 9876.543000000001 Given decimal digits: [3 1 4 1 5 9 2 6 5] and "decimal place" p = 0 corresponding value is r8 = 3.14159265 digits_sexagesimal_print_test(): digits_sexagesimal_print() prints a real number as a sexagesimal quantity; Sexagesimal digit vector: [11 12 0 14 15] p = -5: 00.00,00,00,00,11,12,00,14,15 p = -4: 00.00,00,00,11,12,00,14,15 p = -3: 00.00,00,11,12,00,14,15 p = -2: 00.00,11,12,00,14,15 p = -1: 00.11,12,00,14,15 p = 0: 11.12,00,14,15 p = 1: 11,12.00,14,15 p = 2: 11,12,00.14,15 p = 3: 11,12,00,14.15 p = 4: 11,12,00,14,15. p = 5: 11,12,00,14,15,00. digits_sexagesimal_to_r8_test(): digits_sexagesimal_to_r8() converts base 60 digits of a number into a real value; Given sexagesimal digits: [ 4 37 46 40] and sexagesimal "decimal place" p = 3 corresponding value is r8 = 1000000.0 Given sexagesimal digits: [ 3 8 29 44 0 47 25] and sexagesimal "decimal place" p = 0 corresponding value is r8 = 3.141592653570816 Given sexagesimal digits: [ 1 24 51 10 7 46 6 4] and sexagesimal "decimal place" p = 0 corresponding value is r8 = 1.4142135623728282 r8_to_digits_decimal_test(): r8_to_digits_decimal() converts a real number to its representation in base 10; 8 decimal digits of 0.01 0 1 0.01 1 0 0.001 2 0 0.0001 3 0 1e-05 4 0 1e-06 5 0 1e-07 6 0 1e-08 7 0 1e-09 8 decimal digits of 1.4142135623730951 0 1 1 1 4 0.1 2 1 0.01 3 4 0.001 4 2 0.0001 5 1 1e-05 6 3 1e-06 7 5 1e-07 8 decimal digits of 3.141592653589793 0 3 1 1 1 0.1 2 4 0.01 3 1 0.001 4 5 0.0001 5 9 1e-05 6 2 1e-06 7 6 1e-07 8 decimal digits of 1000000.0 0 1 1000000 1 0 100000 2 0 10000 3 0 1000 4 0 100 5 0 10 6 0 1 7 0 0.1 r8_to_digits_sexagesimal_test(): r8_to_digits_sexagesimal() converts a real number to its representation in base 60; 8 sexagesimal digits of 0.01 0 36 0.0002777777777777778 1 0 4.6296296296296296e-06 2 0 7.71604938271605e-08 3 0 1.286008230452675e-09 4 0 2.1433470507544583e-11 5 0 3.5722450845907634e-13 6 0 5.9537418076512724e-15 7 0 9.922903012752122e-17 8 sexagesimal digits of 1.4142135623730951 0 1 1 1 24 0.016666666666666666 2 51 0.0002777777777777778 3 10 4.6296296296296296e-06 4 7 7.71604938271605e-08 5 46 1.286008230452675e-09 6 6 2.1433470507544583e-11 7 4 3.5722450845907634e-13 8 sexagesimal digits of 3.141592653589793 0 3 1 1 8 0.016666666666666666 2 29 0.0002777777777777778 3 44 4.6296296296296296e-06 4 0 7.71604938271605e-08 5 47 1.286008230452675e-09 6 25 2.1433470507544583e-11 7 53 3.5722450845907634e-13 8 sexagesimal digits of 1000000.0 0 4 216000 1 37 3600 2 46 60 3 40 1 4 0 0.016666666666666666 5 0 0.0002777777777777778 6 0 4.6296296296296296e-06 7 0 7.71604938271605e-08 babylonian_test(): Normal end of execution. Wed Jun 22 22:02:41 2022