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Gradient descent goes downhill to reduce error.

optimization; least squares error; the basis gradient descent method; stochastic gradient descent. Gradient
descent in higher dimensions; the learning rate; stepsize control.

Gradient Descent

• Optimization of a function seeks its extreme values (minimums or maximums);
• The least squares approach minimizes the norm of a vector of function values;
• Gradient descent updates the function arguments “down” the gradient of the least squares norm

;
• A stochastic version of gradient descent greatly decreases the storage and complexity;
• Gradient descent works in higher dimensions as well.
• Stepsize control is a significant problem.
• Very small steps converge slowly; steps too big may cause the function to increase.
• The user can vary the iteration limit, learning rate, and stepsize control.

1 Optimization

The mathematical and computational field of the optimization studies scalar-valued functions h(x), whose
argument x might be either a scalar or a vector. Optimization tries to determine the existence and location of
the arguments x which result in maximum or minimum values of h(x). Often, the function is a measurement
of reward, cost, or error, quantities which it is natural to try to maximize or minimize.

If the function is a polynomial, for which we have a formula, we might start by computing its derivative
h′(x), but then, unless we have a very simple polynomial, we are faced with the not much simpler task of
finding the roots of h′(x). And if our function has some more complicated structure, we will want a general
algorithmic approach to optimization.

2 The method of least squares

An interesting class of optimization problems actually starts by considering the solution of equations involving
a vector-valued function. Such equations might come from a linear algebra problem Ax = b, or have the
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general nonlinear form f(x) = b. In either case, it is customary to rewrite these equations as an expression
for the “residual function”, r(x), so that the right hand side is zero if x is an exact solution:

r(x) = Ax− b the linear case

r(x) = f(x)− b the nonlinear case

Now both the argument x and function f(x) represent vector quantities.

In order to perform optimization, we need a scalar function. The natural choice is to define a new function
s(x), which is the sum of the squares of the components of r(x), which is actually the square of the Euclidean
norm of r(x):

s(x) =
1

2
(
∑
i

(
∑
j

Ai,jxj)− bi)2 =
1

2
||Ax− b||22 the linear case

s(x) =
1

2
(
∑

fi(x)− bi)2 =
1

2
||f(x)− b||22 the nonlinear case

where we include the 1
2 multiplier to make our next calculation convenient.

We now plan to determine our solution x to the original problem by trying to minimize the value of s(x).
For any x, it must be the case that 0 ≤ s(x). Let us suppose that x∗ is a local minimizer of s′(x∗), so that
s′(x∗) = 0. It is natural to hope that this x∗ is a solution to our original problem, and that it is unique.
Neither of these hopes is quite certain!

The first question is one of existence. Actually, we can assert that there is always at least one argument
x∗ for which s′(x∗) = 0, so we have existence ... of a solution to the least squares minimization. But if x∗

minimizes s(x), that doesn’t mean that s(x∗) = 0. In particular, the original set of equations might have no
solution, in which case it is impossible for the norm of the error to be zero. So when we apply least squares
to our problem, we are going to get a result, but it is up to us to figure out what this result is. Usually, if
our problem does not have a solution, we will still be very happy to have a result that minimizes the error.

The question of uniqueness is also a bit complicated. For the linear case, as long as the matrix A has full
column rank, x∗ will be the only local minimizer of s(x) (and hence it is called the global minimizer, or simply
the minimizer). For the nonlinear case, there may be several, or even infinitely many local minimizers. Thus,
the least squares approach doesn’t by itself answer the question of uniqueness. Having found x∗ through a
least squares approach, there may actually be other values x∗1, x∗2... which also are local minimizers, and it
may be the case that s(x∗1) < s(x∗), so that we could find better minimizers of our error if only we knew to
keep on looking!

3 Going downhill with gradient descent

Now we know that our scalar-valued function s(x) to be minimized might come from a vector-valued function
to which we have applied the least squares approach. Thus, our task becomes

Find x∗ which minimizes the scalar function s(x).

As an example, let us start by considering the function named quartic() whose formula is:

f(x) = 2x4 − 4x2 + x+ 20

Suppose f(x) measures a cost and we seek a value x which minimizes it. Suppose we suspect that this
minimizing value x is somewhere between -2 and +2. How do we proceed?
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Because of the special fact that quartic() is a polynomial, we might suppose that there are methods available
to determine the local maximum, or to report the location of zeros of the derivative f ′(x). However, because
we will soon see more difficult and complicated problems, let’s try to solve this on our own.

We might begin by simply picking a starting point x0 somewhere in [−2,+2], that we suspect is close to the
minimizer. Most likely, our guess is not perfect, but now we have an interesting piece of information that
suggests what we could do next. Our new clue is the value f ′(x0), the derivative at x0. From its value, we
know:

• if 0 < f ′(x0), then f(x) decreases to the left: ↙;
• if f ′(x0) < 0, then f(x) decreases to the right: ↘;

For our quartic function, the derivative is

f ′(x) = 8x3 − 8x+ 1

If we started our investigation at x = 1.5, then f(1.5) = 22.625, and f ′(1.5) = 16.0. Figuratively speaking,
we are standing on a mountain at a point where it slopes up to the right, and down to the left. So our next
guess should be somewhere to the left of our current position.

The quartic() function

The derivative tells us which direction to move, but not how far. It is natural to base our stepsize as some
multiple α of the derivative. Typically, α is chosen as a small value, like 0.005. If the method moves too
slowly, we can try increasing α, but if it misbehaves (typically, by producing values that are too large, or
that oscillate) we can try decreasing α.
So, starting at x0, our proposed method will compute the next iterate x1 by

x1 = x0 − αs′(x0)

and then keep doing this until we are satisfied. We might simply run the iteration for it max iterations. A
more sophisticated method would watch the size of s′(x), which should go to zero as we get very close to a
minimizer. For now, we will stick with just running for a fixed number of iterations.

4 Gradient descent pseudocode for 1D case

Pseudocode for a gradient descent method might look like this,
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g rad i en t de s c en t 1d ( f , df , x , itmax , alpha )

for i t from 1 to it max
x = x − alpha ∗ df ( x ) ∗ f ( x )

end

return x

Listing 1: Pseudocode for gradient descent in 1D.

5 Minimizing the quartic() function

For our quartic function, we define the functions f() and df() as follows:

def qua r t i c ( x ) :
va lue = 2 .0 ∗ x∗∗4 − 4 .0 ∗ x∗∗2 + x + 20 .0
return value

Listing 2: quartic.py defines f(x).

and

def qua r t i c d f ( x ) :
va lue = 8 .0 ∗ x∗∗3 − 8 .0 ∗ x + 1 .0
return value

Listing 3: quartic df.m defines f’(x)

We call gradient descent 1d() with a starting guess x0 in our chosen interval of [−2,+2], and we try it max=40

and alpha=0.0.

x0 = 1 . 5 ;
itmax = 40 ;
alpha = 0 . 0 0 5 ;
x = grad i en t de s c en t 1d ( quart i c , qua r t i c d f , x0 , it max , alpha )

Listing 4: Calling gradient descent for the quartic function.

Our first 10 results are:

it x f(x) f’(x)
0 1.5 22.625 16
1 -0.31 19.32407 3.241672
2 -0.62321149 18.124916 4.0492863
3 -0.99017635 17.010588 1.1548698
4 -1.0884014 16.979766 -0.60750508
5 -1.036825 16.974427 0.37785531
6 -1.0688943 16.971738 -0.21883987
7 -1.0503239 16.970968 0.13301854
8 -1.0616111 16.970656 -0.078751722
9 -1.0549288 16.970553 0.047401121

10 -1.0589509 16.970514 -0.028258733

It is interesting to observe in the last column of this table how the derivative keeps changing sign. That’s
because the iteration is near the minimizer, and keeps moving back and forth over it, with smaller and
smaller steps. After the full 40 iterations that we allow, the derivative has decreased to about 10−10 and we
can assume we have got a good approximation to a local minimizer.
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6 Gradient descent for a vector argument

Now let’s consider what happens if we have a scalar function f(x) of multiple variables, and again, for
simplicity, we will assume we have just 2 variables, and write f(x, y) as our function. Now when we differ-
entiate, our result is called the gradient vector, and in this case contains the components [∂f∂x ,

∂f
∂y ]. When we

evaluate the gradient vector at a particular point (x, y), it again points in the direction in which the function
increases most strongly. Because we are interested in minimizing the function value, we will want to move
in the direction of the negative gradient.

To implement the gradient descent method for this case, we just have to keep in mind that x is a vector,
f(x) is a scalar, and f ′(x) is a vector. We end up with code that looks the same as before (assuming our
computing language supports vector operations in a natural way), but actually there is much more going on
now when we execute out commands.

g r ad i e n t d e s c en t v e c t o r x ( f , df , x , it max , alpha )

for i t from 1 to it max
x = x − alpha ∗ df ( x ) ∗ f ( x )

end

return x

Listing 5: Pseudocode for gradient descent with vector x.

7 Gradient descent for the hex2(x,y) function

An example of a scalar function of a vector argument is named hex2(), and has the form

f(x, y) = 2x2 − 1.05x4 + x6/6 + xy + y2

We can ask for a minimizer of this function, which we suspect is somewhere in the range −3 ≤ x, y ≤ +3.
As before, we will use derivative information, known as the gradient, symbolized by ∇f . For our problem,

this information is
[
∂f
∂x ,

∂f
∂y

]
with values:

∂f

∂x
= 4x− 4.2x3 + x5 + y

∂f

∂y
= x+ 2y

A contour plot of the hex2(x,y) function suggests that there are three minimizers in the range −2 ≤ x, y ≤ +2.
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Contour plot of the hex2() function

We define the functions hex2(xy) and hex2 df(xy).

def hex2 ( xy ) :
x = xy [ 0 ]
y = xy [ 1 ]
va lue = 2 .0 ∗ x∗∗2 − 1 .05 ∗ x∗∗4 + x∗∗6 / 6 .0 + x ∗ y + y∗∗2
return value

Listing 6: Definitions of f(x) for hex2().

def hex2 df ( xy ) :
import numpy as np
x = xy [ 0 ]
y = xy [ 1 ]
va lue = np , array ( [ 4 . 0 ∗ x − 4 .2 ∗ x∗∗3 + x∗∗5 + y , x + 2 .0 ∗ xy ] )
return value

Listing 7: Definitions of f’(x) for hex2().

We call gradient descent vector x() with a starting point x0 inside our interval, and tentative values for
it max and alpha:

x0 = np . array ( [ 1 . 0 , 1 . 5 ] )
it max = 10000
alpha = 0.15

x = g r ad i e n t d e s c en t v e c t o r x ( hex2 , hex2 df , x0 , it max , alpha )

Listing 8: Calling gradient descent vector x for hex2().

It takes a long time for this problem to converge, and so we only give the first and last results:

it [ x, y ] f(x) [dfdx,dfdy]
0 [1.0 1.5 ] 4.866666666666667 [2.3 4.0 ]

10000 [ 0.00634006, -0.01481108] 0.0002058559054571092 [ 0.0105481 -0.02328209]

Here the results look pretty unsatisfactory. It’s tempting to try a larger learning rate; however, increasing
alpha to 0.20 causes the iteration to blow up. The learning rate is the problem, however, and we can cure it
if we are willing to adjust it as we go along. One of the exercises suggests a way to get the hex2() function
minimized faster and better by an intelligent control of the value of alpha.

8 Gradient descent for a vector function

Up until now, we have been interested in finding the minimizer of a scalar function f(x), with x allowed to
be a scalar or vector. Now we are interested in cases in which f(x) represents a vector of m functions. We
will assume that x is an n vector, and the values m and n might not be equal.

We express our goal as the minimization of the sum of the squares of the components of f(x):

Minimize
1

2
||f ||22 =

1

2
f ′ ∗ f

Once again, we will need to rely on derivative information, but now, our information will come to us in the
form of the Jacobian matrix, for which a typical entry is

Ji,j(x) =
∂fi(x)

∂xj
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and now the gradient descent method becomes

x = x− α · J ′(x) · f(x)

We see that the algorithm has the same form as the previous versions, although the derivative information
is now a matrix, and the function is a vector.

9 Minimize the wiki3() function

The Wikipedia article on gradient descent considers the following function, which we will call wiki3():

f(x) =

 3x0 − cos(x1x2)− 3
2

4x20 − 625x21 + 2x1 − 1
exp(−x0x1) + 20x2 + 10π−3
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The Jacobian matrix of f(x) is

J(x) =

 3 sin(x1x2)x2 sin(x1x2)x1
8x0 −1250x1 + 2 0
−x1 exp(−x0x1) −x0 exp(x0x1) 20


The article uses a starting point x=[0,0,0], a value of it max=83, and a small learning rate of alpha=0.001,
which means that convergence will be slow. Here are the results for the first and last few steps of the iteration:

it ||x|| ||f(x)|| ||J(x)||

0 0 58.456136 20.322401

1 0.2095833 23.306394 20.230019

2 0.33545194 10.616628 20.224202

3 0.41113662 6.013408 20.227599

4 0.45674602 4.3216981 20.230302

5 0.48434855 3.6785445 20.234899

... ... ... ...

80 0.71486413 0.5418691 20.600946

81 0.7171265 0.53099798 20.606056

82 0.71934267 0.52064216 20.611077

83 0.7215126 0.51078342 20.616007

The 83rd x iterate is (0.496451,0.001604,-0.52356) but we are still far from a minimizer. We can run the
iteration longer, or try to increase the value of alpha, to see how much lower we can go.

10 Stochastic gradient descent

When our function f(x) involves multiple independent variables x, the standard procedure is to use the
derivative information to compute an update for all components. Sometimes, for reasons of storage or speed,
it can be more convenient to only update one component of the current solution. This is somewhat like a
skier wanting to go downhill, whose steps can only go North/South or East/West. It is most likely that the
skier can still descend, although at a slower or less efficient rate.

The method of stochastic gradient descent is applied to a problem with m independent variables x. It
randomly chooses a component index 0 ≤ j < m, and then updates only that component, as follows:

xj = xj − α · J [:, j]′ · f(x)
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It seems natural to assume that, to get a similar reduction in function value with stochastic gradient descent,
we would need to take roughly m times as many steps that update 1 component at a time, as when we update
all m components of x at a time.

11 Minimize the wiki3() function with stochastic gradient descent

Using the same input as we did for the full gradient descent method, here is what we see when using stochastic
gradient method on the wiki3() function:

it j ||x|| ||f(x)|| ||J(x)||

0 0 58.456136 20.322401

1 2 0.002 58.454637 20.229928

2 3 0.20944906 23.36271 20.229928

3 1 0.20958375 23.3063 20.230019

4 1 0.20998675 23.250004 20.230291

5 1 0.2106557 23.193825 20.230743

... ... ... ... ...

80 3 0.56241181 2.1187147 20.291414

81 2 0.56241181 2.1187147 20.291414

82 2 0.56241181 2.1187147 20.291414

83 1 0.56501108 2.0696339 20.296107

The encouraging thing is that the function norm is decreasing. However, as we suspected, the rate of decrease
is noticeably slower than before. In fact, for small problems like this, stochastic gradient descent doesn’t
really offer much of an advantage. Its payoff occurs when the number of variables x is very large, and the
Jacobian is a constant, which can occur when we try to find a linear function that approximately fits a very
large dataset. Such problems arise very frequently in machine learning.

12 Exercises

1. For the quartic function, there are two local mimimums and one local maximum, which occur in
the interval [−2,+2]. Each of these represents a zero of the derivative function that we defined with
quartic df(). From the plot, you can roughly estimate the location of each of these values. For instance,
the leftmost minimum is near -1, somewhere in the interval [-1.1, -0.9]. Use the fsolve() function to
try to get an accurate estimate of this root with commands like:

from s c ipy . opt imize import f s o l v e
root = f s o l v e ( qua r t i c d f , [ −1.1 , −0.9] )

Use similar commands to find the local maximizer, and the rightmost local minimizer.

2. If you use a value of alpha that is too large, the iteration can sometimes rapidly diverge to infinity, so
that all your subsequent results are printed as NaN, or “Not A Number”. So we could be cautious and
just keep making alpha smaller and smaller until we get a result. But instead of finding a single tiny
value of alpha that works for every step, we could instead start every step with an ambitious value of
alpha, and reduce it if necessary until our new iterate has a lower function value than the previous
iterate. Do you see how this would work? The iteration starts with x0 and alpha. We compute f(x0),
and we double alpha and compute x1. If f(x1) ¡ f(x0), then we finish the first step. Otherwise, we
divide alpha by 2 and try again. We keep dividing alpha until we satisfy f(x1) ¡ f(x0). Thus, at the
end of step 1, we might have doubled alpha (if we were lucky), but in any case we reduced f. And on
every subsequent step, we try to increase alpha in this way, but always back off if it causes the function
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value to rise instead of fall. Try this approach on the quartic() function, starting with x0 = 2.0 and
alpha = 0.1. See if you can print the value of alpha that ends up being used on each step.

3. The function sag(x) has the definition:

f(x) = x2 cos(
x+ 3π

4
)

A plot suggests that there is a minimizer between 0 and 10. Use the gradient descent 1d() function to
estimate the location of the minimizer, and the value of f(x) there. Make a plot to convince yourself
of your results.

4. The minimization of the hex2(x,y) function takes a long time and returns a not very satisfactory result.
It is suggested that the value of alpha is too small, at least once the iteration gets near the minimizer.
A possible approach is to double alpha whenever it seems safe. Here is some pseudocode with this
idea:

x1 = x − alpha ∗ df ( x ) ∗ f ( x )
x2 = x − 2 .0 ∗ alpha ∗ df ( x ) ∗ f ( x )
i f f ( x2 ) < f ( x1 ) then

x = x2
alpha = 2 .0 ∗ alpha

else
x = x1

end

Rerun the hex2() minimization, using the same starting values of x0, it max and alpha, and decide
whether this approach works.

5. The Rosenbrock function is defined by:

f(x, y) = 100(y − x2)2 + (1− x)2

A contour plot suggests that there is a minimizer in the range 0.0 ≤ x, y ≤ 3.0. However, the contour
plot also suggests that this function will be difficult to minimize. The lines of descent defined by the
gradient vectors twist very sharply, and so only small steps can be taken reliably. Try starting at
x0=[1.50,1.25], it max=100 and alpha=0.0025. We want to try to find (x, y) for which f(x, y) <
0.00001. If your first 100 iterations don’t satisfy this goal, use the output of the computation as the
starting point for another 100 iterations, and repeat this process (no more than 10 times) and see if
you can eventually come close enough to the minimizer.

6. Minimize the norm of mini2(), a vector function of vector arguments, using gradient descent, as
previously applied to the wiki3() function. This function has the form

f(x, y) =

[
x2 − 10x+ y2 + 8
xy2 + x− 10y + 8

]
Use the starting point (3,−2). Experiment with choices for it max and alpha until you can drive the
value of 0.5||f ||22 to less than 0.00001.
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