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A system of differential equations models predation.

Differential Equations

• Differential equations describe change from an initial state over infinitesimal steps;
• Numerical methods approximate this evolution using a sequence of finite steps;
• Time and phase plots are important graphical tools to analyze numerical solutions.
• Numerical methods reduce higher-order differential equations to a first order system;
• A differential equation may include a hidden conservation law.
• Some numerical methods can preserve such conserved quantities.
• The accuracy of a numerical solution generally decreases over time ;
• Using smaller steps, adaptivity, or a higher order method, can improve accuracy;
• The scipy() function solve ivp() is a powerful differential equation solver.

1 A differential equation

An ordinary differential equation (abbreviated as “ODE”) describes the change, over time, of some quantity
y(t), and is usually written as

dy

dt
= f(t, y)

Usually, there is an additional item of information, known as an initial condition, specifying the value of y(t)
at some starting time:

y(t0) = y0

Together, this information poses an initial value problem.

In textbooks, there are techniques for solving certain initial value problems, producing a formula for y(t).
However, these methods apply to a limited set of problems, and for the remainder we must try numerical
methods.

A numerical method will generally produce an approximate solution of the problem, giving a sequence of
values (ti, yi) that predict the behavior of the solution over some time interval [t0, tstop].
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We will look at a variety of simple initial value problems, show how to write a Python code that can make a
rough estimate of the solution, make plots that can illustrate feeatures of the solution, and present a Python
function that does an excellent job of producing accurate solutions automatically.

2 The logistic equation

As long as there is plenty of nutrients and other resources, a colony of living organisms will increase in
population. It is natural to assume that each member of the colony has a natural rate r of reproduction,
so that a colony of size y0 will, over some period of time, increase by r ∗ y members. This is an example of
exponential growth, described by the differentical equation

dy

dt
= r · y

with the exact solution y(t) = y0 · ert.

But this explosive exponential growth rapidly reaches a barrier, the natural carrying capacity of the environ-
ment. As the colony grows, each member has a smaller share of the fixed resources, and this acts to oppose
the population increase. Thus, it might be expected that the population will eventually level off at some size
where it can just be sustained.

A differential equation which describes this more elaborate population model is known as the logistic equation.
Along with the growth rate r, we now include a carrying capacity or maximum population size k. Our
diffential equation is then

dy

dt
= r · y · (1 − y

k
)

You can see that, if y << k, the behavior is essentially exponential, but as y approaches the limiting value
k, the factor (1 − y

k ) is going to fiercely reduce the growth rate.

If we know the values of r and k, and we have the population size y0 at time t0 = 0, then there is a formula
for the exact solution of this equation:

y(t) =
k · y0 · ert

k + y0 · (ert − 1)

3 The Euler method

The forward Euler method for solving an ODE is very simple:

• Assume you have a solution estimate (t,y);
• Assume you have chosen a stepsize dt;
• Evaluate the ODE right hand side dy/dt at (t,y);
• Update your position to t+dt, y+dy/dt*dt;
• Repeat as often as desired.

It should be clear that the sequence of solution estimates you get is going to depend a lot on the stepsize
dt that you choose. For instance, let’s consider the exponential growth problem fracdydt = y, starting at
t0 = 0, y0 = 1. We will use three different stepsizes, and compare the results with the exact solution.

dt dt dt

t 0.25 0.125 0.0625 Exact

0.000 1.000 1.000 1.000 1.000

2



0.062 1.062 1.064

0.125 1.125 1.129 1.133

0.188 1.199 1.206

0.250 1.250 1.266 1.274 1.284

0.312 1.354 1.367

0.375 1.424 1.439 1.455

0.438 1.529 1.549

0.500 1.562 1.602 1.624 1.649

0.562 1.726 1.755

0.625 1.802 1.834 1.868

0.688 1.948 1.989

0.750 1.953 2.027 2.070 2.117

0.812 2.199 2.254

0.875 2.281 2.337 2.399

0.938 2.483 2.554

1.000 2.441 2.566 2.638 2.718

You can observe that the Euler estimate using dt=0.25 quickly deviates from the exact solution, but that,
as we decrease the stepsize to 0.125 and then 0.0625, the estimates improve. On the other hand, even then,
we see that, for every stepsize we tried, the accuracy decreases as we proceed forward in time.

These two observations, that smaller stepsizes improve accuracy, and that the error tends to increase with
time, are actually a persistent feature of the numerical solution of differential equations.

4 An Euler code

Since we would like to use the Euler method repeatedly, for a variety of stepsizes, and even for a variety of
ODE’s, we will want to create a Python function, named euler.py, which encapsulates the method.

The function will have the rough form:

def eu l e r ( dydt , tspan , y0 , n ) :

import numpy as np

m = np . s i z e ( y0 )

t0 = tspan [ 0 ]
t s top = tspan [ 1 ]
dt = ( t s top − t0 ) / n
t = np . z e r o s ( n + 1 )
y = np . z e r o s ( [ n + 1 , m ] )

for i in range ( 0 , n + 1 ) :
i f ( i == 0 ) :

t [ i ] = t0
y [ i , : ] = y0

else :
t [ i ] = t [ i −1] + dt
y [ i , : ] = y [ i −1 , : ] + dt ∗ ( dydt ( t [ i −1] , y [ i −1 , : ] ) )

return t , y

Listing 1: Outline of an Euler ODE solver

Here, the input variables are:

• dydt is the name of a derivative function.
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• tspan is a vector of length 2. tspan[0] is the start, and tspan[1] the final time.
• y0 contains the value of y at the initial time.
• n is the number of equal steps to take.

and the output is:

• t a vector of length n+1, containing the initial time, and the n later times.
• y is a vector of length n+1, containing the initial y0, and the n later estimates.

The first part of the code does some initialization, unpacking tspan, computing dt, setting aside memory for
the t and y vectors. The following loop first stores the initial condition, and then each further step extends
the solution vector to a later time.

5 Setting up and solving the logistic ODE

Now let us suppose we are interested in solving the logistic ODE, for which we have parameters t0 = 0, y0 =
0.1, r = 1, k = 1.

First, we need a function that defines the right hand side:

def l o g i s t i c d e r i v ( t , y ) :

r = 1
k = 1

dydt = r ∗ y ∗ ( 1 . 0 − y / k )

return dydt

Listing 2: The logistic right hand side function.

Since we know the exact solution, it will be useful to have another function available to evaluate that:

def l o g i s t i c e x a c t ( t ) :

r = 1
k = 1
y0 = 0 .1

y = ( k ∗ y0 ∗ np . exp ( r ∗ t ) ) \
/ ( k + y0 ∗ ( np . exp ( r ∗ t ) − 1 .0 ) )

return y

Listing 3: The logistic exact solution function.

Now we are ready to call the Euler solver:

t , y = eu l e r ( l o g i s t i c d e r i v , [ 0 . 0 , 8 . 0 ] , 0 . 1 , 8 )
p l t . p l o t ( t , y )
t2 = np . l i n s p a c e ( 0 . 0 , 8 . 0 , 101 )
y2 = l o g i s t i c e x a c t ( t2 )
p l t . p l o t ( t , y , ’ ro ’ )
p l t . p l o t ( t2 , y2 , ’b− ’ )
p l t . show ( )

Listing 4: Euler solution of logistic equation.
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Solving the logistic equation with Euler’s method.

The plot suggests that our code has the right idea about the logistic equation, but has made some noticeable
errors. We can assume that these errors would decrease if we used more steps.

6 The stiff equation

Consider the “stiff” differenatial equation defined by:

dy

dt
= 50 · (cos(t) − y)

y(0) = 0

The exact solution is:

y(t) = 50 · sin(t) + 50 · cos(t) − 50 · e−50·t

502 + 1.0

We are interested in solving this problem over the interval 0 ≤ t ≤ 1.0. We will use our Euler code, and take
n = 27 steps. When we plot the approximate and exact solutions, the results are unpleasant:

Solving the stiff equation with Euler’s method.
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From the plot, we can see a suggestion for where the trouble comes from. The slope of the exact solution at
the origin is almost vertical. The Euler step follows this direction, whereas the slope of the exact solution
decreases. Thereafter, the approximate solution seems to struggle to get back on track, but continues to
zigzag back and forth across the exact solution. Luckily for us, these oscillations gradually die down and the
error drops steadily.

Even if we didn’t know the exact solution, the behavior of our approximation would suggest that something
is wrong. If our stepsize is about right, then repeating the computation with a smaller stepsize should give
about the same picture. So looking at the plot of our approximation, we should naturally expect that using
more steps would be necessary.

7 The predator-prey equations

The predator-prey equations are a simple ecological model in which two species interact. The prey species
tends to reproduce at a certain rate, but also to be eaten whenever it encounters a predator. Meanwhile,
the predator species has a tendency to die if unfed, but to prosper whenever it encounters a prey to eat.

We might use the symbols r for rabbits and f for foxes, and then write a pair of coupled differential equations
describing the evoluation of the populations:

dr

dt
= α · r − β · r · f

df

dt
= −γ · f + δ · r · f

where the parameters (all positive) are:

• α measures the reproductive rate of the rabbits.
• β measures the “cost” to a rabbit of a fox-rabbit encounter.
• γ measures the starvation rate of the foxes.
• δ: measures the “benefit” to the fox of a fox-rabbit cncounter.

We will take these values to be α = 2.0, β = 0.001, γ = 10, δ = 0.002. We will take the initial conditions
t0 = 0, r0 = 5000, f0 = 100. Finally, we will be interested in studying this system over the time interval
0 ≤ t ≤ 5.0.

Now that we are studying two variables, we need to pack them into a single array y. Similarly, our derivative
routine must return an array of two derivatives. Here is how we do that:

def p r eda t o r p r ey de r i v ( t , y ) :
import numpy as np

r = y [ 0 ]
f = y [ 1 ]

alpha = 2 .0
beta = 0.001
gamma = 10 .0
de l t a = 0.002

drdt = alpha ∗ r − beta ∗ r ∗ f
d fdt = − gamma ∗ f + de l t a ∗ r ∗ f

dydt = np . array ( [ drdt , d fdt ] )

return dydt

Listing 5: Right hand side for predator-prey ODE

6



Similarly, when we call euler(), we must set the initial condition as y0 = np.array ( [ 5000, 100 ] ).

We really don’t know how to choose a good value of n, so we have to experiment. By repeatedly increasing
this value, at around n=200, we get a solution plot that suggests an interesting pattern in the data:

Euler approximation to predator-prey equations, 200 steps.

It looks as though both populations are oscillating, perhaps with a regular period, but with growing ampli-
tude. Does this suggest that the population sizes will spiral out of control? In order to believe our results,
and to try to improve the accuracy, we need to repeat the calculation, perhaps with 400 steps, and see if the
pattern persists.

8 Phase plots

When you see a pair of variables that seem to oscillate together, you might think of them as a version of
the sine and cosine functions. Indeed, especially in many physics problems, this behavior is very common.
It turns out that our predator prey ODE solution can be regarded as a similar sort of oscillation. While the
time plot that we made suggests this, a better way to analyze what is going on is to make a phase plot, in
which we plot r(t) on the x axis and f(t) on the y axis. For a sine/cosine pair, we’d expect to see a perfect
circle. For any sort of periodic behavior, we’d look for a closed curve. For our problem, where we don’t
think we’ve gotten an accurate solution yet, we are just interested to see what is going on.

Here is the result of our phase plot for the 200 step solution:

7



Euler approximation to predator-prey equations, 200 steps.

Now this looks very suggestive and interesting. Our main question is, if we try for a more accurate solution,
will the two loops merge, suggesting that the behavior really is periodic? Or if we go further in time, will
bigger and bigger loops appear, getting further apart?

9 Using the scipy function solve ivp()

If this were a course in ODE’s, we would continue to explore other solution techniques, including the backward
Euler method, the midpoint method, BDF2, and Runge Kutta methods. However, we assume that you are
less interested in writing your own ODE solver, and more interested in solving ODE’s. The scipy library
includes a powerful function ttsolve ivp() which is very good at efficiently and accurately approximating
ODE solutions. Let us consider how we would use it to deal with the problems we have see so far.

The simplest calling sequence for the ODE solver has the form

s o l = s o l v e i v p ( dydt , tspan , y0 )

The input argument list has the same meaning as we have used for the euler() function. However, we no
longer supply n, the number of steps. Also, the value y0 must be an array, even if it only has dimension
1. That’s because solve ivp() is an adaptive ODE solver, which varies the stepsize, taking small steps at
difficult times, and larger steps when it seems safe.

The output sol is different from what we have seen before. It is a sort of structure, storing a number of
components. In particular, if we are solving a scalar problem (like the logistic equation), then our solution
values are accessible as the array sol.y0[0]; for the predator-prey problem, we would be looking at the
arrays sol.y0[0] for the rabbits, and sol.y0[1] for the foxes. The actual time values that were computed
are stored as sol.t[].

Thus, here is a code to solve the logistic equation using this solver:

from s c ipy . i n t e g r a t e import s o l v e i v p
import numpy as np

s o l = s o l v e i v p ( l o g i s t i c d e r i v , [ 0 . 0 , 8 . 0 ] , [ 0 . 1 ] )
p l t . p l o t ( s o l . t , s o l . y [ 0 ] )
t2 = np . l i n s p a c e ( 0 . 0 , 8 . 0 , 101 )
y2 = l o g i s t i c e x a c t ( t2 )
p l t . p l o t ( t , y , ’ ro ’ )
p l t . p l o t ( t2 , y2 , ’b− ’ )
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p l t . show ( )

Listing 6: Euler solution of logistic equation.

Logistic solutions by solve ivp().

When we plot the solution from solve ivp() something seems wrong. There are huge gaps between the
exact and computed solutions. But in fact, this is just because we made a bad plot. Notice that all the red
dots lie right on the exact curve. The straight lines connecting these dots are not part of the solution, they
are just meant to suggest how the curve looks. The solve ivp() code just didn’t need to take many steps
to get an accurate solution.

But if we want to see more detail, we can ask the code to go back and fill in the solution values at intermediate
points. We do that by using an additional t eval = ? argument. To get the second plot above, we compute
a list of where we want the solutions, and then add that list on our input to solve ivp(). Everything else
stays the same:

t1 = np . l i n s p a c e ( 0 . 0 , 8 . 0 , 21 )
s o l = s o l v e i v p ( l o g i s t i c d e r i v , [ 0 . 0 , 8 . 0 ] , [ 0 . 1 ] , t e v a l = t1 )

Listing 7: Euler solution of logistic equation.

Now sol.t and sol.y[0] will be evaluated at 21 equally spaced points in the interval, and our plot will
give us a much better idea of how well the computed solution matches the exact solution.

10 The pendulum

A pendulum of length l swings back and forth under the influence of gravity with a force g, making an angle
θ with the vertical axis. For small angles θ, the behavior of the pendulum can be approximated by the
second order differential equation

d2θ

dt2
= −g

l
· θ

If the pendulum is initially at the angle θ0 with zero velocity θ′0 = 0, then the exact solution is

θ(t) = θ0 · cos(

√
g

l
· t)
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and therefore the pendulum swings with a period of

p = 2 · π ·

√
l

g

Now we’d like to use solve ivp() here, but that code does not work with a second order ODE. Thus, we
have to rewrite this second order system as a pair of first order equations. Writing

u = θ

v = θ′

we have, by differentiation,

u′ = θ′ = v

v′ = θ′′ = −g
l
· θ = −g

l
· u

or, in short

u′ = v

v′ = −g
l
· u

and now we can pass solve ivp() the vector y = [ u, v ] and similarly write the right hand side code in
terms of a two-dimensional variable y.

Now we take as parameters g = 9.81, l = 1, t0 = 0, y0 = [π3 , 0] and wish to integrate over 0 ≤ t ≤ 20. Our
right hand side code will be

def pendulum deriv ( t , y ) :

import numpy as np

g = 9.81
l = 1

u = y [ 0 ]
v = y [ 1 ]

dudt = v
dvdt = − ( g / l ) ∗ u

dydt = np . array ( [ dudt , dvdt ] )

return dydt

Listing 8: right hand side of pendulum ODE.
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The pendulum equation. The blue line is the exact solution, the red dots the solve ivp() solution points.

11 Conservation laws

Many ODE’s describe the behavior of a physical system for which a conservation law might apply. For the
pendulum problem, since there is no forcing term, and we are not modeling the effect of friction, the energy
of the pendulum should be constant over time. Again using u and v for the values of θ and θ′, and assuming
that the pendulum bob has a mass m = 1, the energy at time t should be the sum of potential and kinetic
energies:

E(t) =
1

2
·m · g · l · u(t)2 +

1

2
·m · v(t)2

Even if we don’t know the exact solution of our problem, we can monitor and plot the value of E(t). If it
deviates significantly from its initial value, then we know that our ODE solver is doing a poor job.

Here, for instance, are the plots of θ(t) and E(t) for the pendulum problem, solved by the Euler method
with 1000 fixed-size steps:

Euler approximation to θ(t) and E(t) equations, 1000 steps.

and here are the corresponding plots from solve ivp(), for which we requested 101 equally spaced plot
points:
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solve ivp() approximation to θ(t) and E(t) equations.

Although the plot of θ returned by the Euler code might seem like a reasonable solution, the explosion in
the value of the energy should be an alarm warning that this result is not a good approximation. In cases
where an ODE system satisfies a conservation law, it is always worth while to compute and monitor that
quantity as an extra measure of accuracy.

12 Exercises

1. Consider a biological system with growth rate r = 0.25 and carrying capacity k = 100. Suppose that
at time t = 0 the population is y0 = 10. Plot the population predicted by the exponential and logistic
models, over the time period 0 ≤ t ≤ 10. Draw the two curves on the same plot, one curve in red and
one in blue.

2. In the text, the logistic equation, with parameters t0 = 0, y0 = 0.1, r = 1, k = 1 was solved from
0 ≤ t ≤ 8 using 8 steps. Recompute this solution using 16, and 32 steps. Show all three of these
solutions on a single plot, along with the exact solution. You should see evidence that increasing the
number of steps produces a better approximation to the exact solution.

3. For the logistic equation, the parameter r determines how steeply the curve rises during the exponential
growth phase. Use the parameters t0 = 0, y0 = 0.1, k = 1, interval 0 ≤ t ≤ 8 and 8 steps. Solve the
problem 3 times, with parameter r set to 1, 2 and 4. For each solution attempt, compare the Euler
solution and the exact solution. What do you imagine will happen if you continue to increase r?

4. For the logistic equation, we expect solutions to remain between 0 and k, the maximum carrying
capacity or maximum sustainable population. But let us investigate what happens if we have an initial
condition that is above this value. Use the parameters t0 = 0, y0 = 2.0, r = 1, k = 1, interval 0 ≤ t ≤ 8
and 8 steps. Compare the Euler solution and the exact solution.

5. For the logistic equation, what will happen if our initial condition y0 is negative?

6. For the logistic equation, what is special about the initial conditions y0 = 0 and y0 = 1?

7. For the stiff equation, the solution with n = 27 Euler steps is clearly a disaster. Experiment with the
value of n, and try to produce an approximation whose plot is noticeably closer to the exact solution.

8. For the predator-prey equation, repeat the calculation using 400 steps. Plot the solutions and compare
them to the solution for 200 steps. What does this comparison suggest?

9. For the predator-prey equation, repeat the calculation using 400 steps. Make another phase plot,
and see whether the two loops come closer together. Then try extending the solution to the interval
0 ≤ t ≤ 10, using 800 steps. Your phase plot should now include more loops. Do they stay close
together, or do they split apart?
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10. For the stiff equation, use solve ivp(), recompute the solution, and plot it against the exact solution.
Our bad Euler solution used 27 steps. Can you figure out how many steps solve ivp() used, just by
looking at the plot?

11. For the predator prey equations, use solve ivp(), recompute the solution, and plot the phase plane.
The successive loops should lie almost exactly on top of each other. However, if solve ivp() takes
large steps, your plot might not seem to be lining up well. In that case, try using the t eval input
argument to request 1001 equally spaced solution values in the time interval.

12. For the pendulum equation, compute the phase portrait of the solution.

13. The nonlinear pendulum equation is d2θ
dt2 = − g

l ·θ Use solve ivp() to solve this equation. Compare the
linear and nonlinear solutions on a single plot. Differences will be more obvious if the initial condition
θ0 is large.

14. The predator-prey problem has a conserved quantity:

E(t) = δ · r(t) − γ · log(r(t)) + β · f(t) − α · log(f(t))

Use euler() and solve ivp() to solve the equation, compute and plot E(t) and observe whether E(t)
stays essentially constant over time for each solver.
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