Background for

“Bifurcation, Catastrophe, Singularity, and All That”
MATH4974: Mathematical Modeling
21 October 2008
Guest Instructor: John Burkardt

Location: http://people.sc.fsu.edu/~jburkardt/presentations/bifurcation_background.pdf

l’“ LOADS X, M

Figure 1: The Buckling Spring

1.) The Buckling Spring: Two straight springs and a circular spring are arranged as in Figure 1. The
two straight springs are naturally of length 1, but are currently length L. The left spring has an endpoint
fixed at the origin, and the angle that the left spring makes with the z-axis is #. The right spring endpoint
is free to move horizontally.

A horizontal load A is applied at the right spring endpoint; a vertical load p is applied at the point where
the springs meet. Finally, there is a spring force between the two straight springs, applied by the circular
spring, which tends to draw them together.

If the system is in equilibrium, the balance of forces is:

—2(1 = L)+ 2\cosf + usind =0
0.50 — 2X\Lsin6 + puLcosf =0

These equations can be solved for A and p in terms of L and 6:

AML,0) = (1 — L)cosf + 0.250sin6/L
w(L,0) =2(1 - L)sing — 0.50 cos /L

To study the structure of solutions, we can vary the fundamental parameters L and 6 and consider the
pattern of the associated variables A and pu.

2.) The Freudenstein Roth Function: Suppose we are looking for a solution (1, z2) of the following pair
of nonlinear equations:

ml—m§+5x§—2x2—1320

x1 + x5+ 2% — 14wy — 29 =0



symbolized by g(z1,z2) = 0. A standard way to solve such a system is called Newton’s method. It allows
you to pick an arbitrary starting guess, and then it carries out an iteration to seek an approximate solution.
The problem is, Newton’s method often won’t work unless the starting guess is close to the correct solution.
But if we don’t know the solution in the first place, how are we supposed to come up with an approximate
solution that’s good enough? And if we guess an approximate solution but Newton says it isn’t good enough,
what can we do?

One devious way to get Newton’s method to solve your nonlinear equations is to pick any pair of values
(%, 25) as a starting guess, add a third variable 3, and write a new set of equations f(x1,x2,x3)

f(@1, @2, 23) = g(21,22) + (w3 — 1)g(27, 23)
with the properties that
e When z3 =0, f(«},z3,0) = 0, so we have a starting point;
e When x5 = 1, then if we have a solution to f(x1,x2,1) =0, it is also true that g(x1,x2) = 0.

The only reason to add this complication is that we can take steps, as small as we like to nudge x3 from
the known solution at 0 to 1, where our unknown and desired solution is. And as long as each nudge of z3
doesn’t affect the solution too much (oops, could there be a problem here?) we can use our current solution
as a starting guess for the solution at the new value of x3. This idea is known as the continuation method.

Of course we can pick any starting point; we hope that for any starting point, we end up at the same
final answer (but this is not guaranteed!). It is possible that some starting points result in a much longer
“journey” to the final answer! And it may also be possible that, along the way, we can’t always use x3 as
the variable that we increase each time, if the solution curve decides to bend back on us!

3.) The Aircraft Model: a simple model of an aircraft keeps track of 5 state variables, roll, pitch, yaw,
angle of attack, and sideslip, describing the attitude of the plane, and 3 control variables, elevator, aileron,
and rudder which are controls the pilot can use to try to adjust the attitude of the plane.

This particular plane, by the way, is flying at Mach 0.9, at a height of 20,000 feet.

While the effects of the controls are usually predictable, there are cases where a a sequence of slight
increases to a control cause a corresponding small change in the attitude, until one more slight increase
causes the plane to “jump”, with large changes to the state variables.

The equilibrium equations can be written as A x 2 4+ ¢(z) = 0, where A is a 5x8 matrix:

-3.933 0.107  0.126 0 -9.99 0 —45.83 —7.64
0 —0.987 0 —22.95 0 —28.37 0 0

A = 0.002 0 —0.235 0 5.67 0 -0.921 -6.51
0 1 0 -1 0 —0.168 0 0
0 0 -1 0 —0.196 0 —0.0071 0

and ¢(x) is a set of quadratic terms:

—0.727xox3 + 8.39x314 — 684.4x425 + 63.5T477
0.949x1x3 + 0.173x1 25
p(x) = —0.716x120 — 1.578x124 + 1.1322427
—X1x5
T1X4

We have three remaining degrees of freedom. It is natural to use two of them to specify fixed values of
control parameters, and leave one control parameter free to vary. For the systems we are interested in, our
conditions will be

re¢ = elevator value
x7 = variable

x8:0
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Figure 2: Evidence of a limit point

So in this model, we will assume that the pilot is free to adjust the aileron x7, but the other two controls
are fixed. The set of solutions form a curve. For neighboring points on the curve, the values of x7 will be
close. So if we imagine traveling along the curve, we are essentially tapping on the aileron control, increasing
it a little as we move from point to point.

However, when the pilot actually flies the plane, sometimes a small increase in the aileron value causes
the plane’s behavior to jump discontinuously. How can this be? It must mean that, for the particular control
settings, we’ve reached a limit point in x7, that is, a place where the solution curve bends back. When the
pilot increases the aileron setting, the plane essentially has to skip the whole part of the curve that has bent
back, and jump to a new section that is relatively far away.

So the existence and location of limit points on a solution curve can tell us something important.

To hunt for limit points, we specify a fixed elevator value. Our basic computation now follows the
solution curve, generating a sequence of points. However, this time, we are constantly watching for limit
points in the variable x7, that is, points on the curve in which x7 changes from increasing to decreasing (or
vice versa).

We can detect that we’ve passed a limit point simply by observing successive values of x7, or by comparing
the corresponding values of the tangent vector, tany;. The tangent vector is telling us how each variable is
changing along the curve. When tan; is 0, that generally means that x7 has reached a limit point.

To actually get a good approximation to the exact location of the limit point, we need to do a special
iteration that seeks the value of x7 for which tan; goes to zero.
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Figure 3: The Aircraft Coordinate System



