MATH 728D: Machine Learning Solutions to Homework \#2:
 Probability

John Burkardt
February 17, 2019

1 Properties of Probability Measures

Assume that P is a probability measure defined on a sample space Ω, that A and B are events (measurable subsets of Ω), and that A^{C} represents the event that A does not occur. Verify the following statements:

1. $P\left(A^{C}\right)=1-P(A)$;

$$
\begin{aligned}
\Omega & =A+A^{C} \\
P(\Omega) & =P(A)+P\left(A^{C}\right) \\
1 & =P(A)+P\left(A^{C}\right) \\
P\left(A^{C}\right) & =1-P(A) .
\end{aligned}
$$

2. $P\left(B \cap A^{C}\right)=P(B)-P(A \cap B)$;

$$
\begin{aligned}
B & =(B \cap A)+\left(B \cap A^{C}\right) \\
P(B) & =P(B \cap A)+P\left(B \cap A^{C}\right) \\
P\left(B \cap A^{C}\right) & =P(B)-P(B \cap A) .
\end{aligned}
$$

3. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$;

$$
\begin{aligned}
A \cup B & =(A \cap B)+\left(A \cap B^{C}\right)+\left(A^{C} \cap B\right) \\
P(A \cup B) & =P(A \cap B)+P\left(A \cap B^{C}\right)+P\left(A^{C} \cap B\right) \\
P(A \cup B) & =P(A \cap B)+P\left(A \cap B^{C}\right)+P\left(A^{C} \cap B\right)+P(A \cap B)-P(A \cap B) \\
P(A \cup B) & =P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

4. $P\left(\cup_{i \in I} A_{i}\right) \leq \sum_{i \in I} P\left(A_{i}\right)$;

Define $B_{1}=A_{1}, B_{2}=A_{2} \cap A_{1}^{C}, B_{3}=A_{3} \cap A_{1}^{C} \cap A_{2}^{C}$, and so on;
Then $P\left(B_{i}\right) \leq P\left(A_{i}\right)$ because $B_{i} \subseteq A_{i}$ for every i. Also, the B_{i} sets are disjoint.

$$
\begin{aligned}
\cup_{i \in I} A_{i} & =\cup_{i \in I} B_{i} \\
P\left(\cup_{i \in I} A_{i}\right) & =P\left(\cup_{i \in I} B_{i}\right) \\
P\left(\cup_{i \in I} B_{i}\right) & =\sum_{i \in I} P\left(B_{i}\right) \leq \sum_{i \in I} P\left(A_{i}\right) \\
P\left(\cup_{i \in I} A_{i}\right) & \leq \sum_{i \in I} P\left(A_{i}\right)
\end{aligned}
$$

5. $P(A)=\sum_{i \in I} P\left(A \cap C_{i}\right)$, if $\left\{C_{i}\right\}$ is a partition of Ω;

The set A is the disjoint sum of the sets $\left(A \cap C_{i}\right)$. Therefore,

$$
\begin{aligned}
A & =\cup_{i \in I}\left(A \cap C_{i}\right) \\
P(A) & =P\left(\cup_{i \in I}\left(A \cap C_{i}\right)\right) \\
P(A) & \left.=\cup_{i \in I} P\left(A \cap C_{i}\right)\right) \text { (disjoint sum) }
\end{aligned}
$$

6. $A \subseteq B \Rightarrow P(A) \leq P(B)$;

$$
\begin{aligned}
B & =A+\left(B \cap A^{C}\right) \\
P(B) & =P(A)+P\left(B \cap A^{C}\right) \\
P\left(B \cap A^{C}\right) & \geq 0 \\
P(B) & \geq P(A)
\end{aligned}
$$

2 Roulette

1. What is the probability that S is red?

There are 38 slots, of which 18 are red, and all slots are equally likely to be chosen. Therefore, the chance that the ball will land in a red slot is $P($ red $)=\frac{18}{38} \approx 0.4737$.
2. What is the probability that S lands in a slot numbered between 1 and 10 ?

There are 38 slots, of which 10 are numbered between 1 and 10 , and all slots are equally likely to be chosen. Therefore, the chance of that the ball will land in such a slot is $P(1-$ to- 10$)=\frac{10}{38} \approx 0.2632$.
3. What is the probability that S lands on slot $\# 7$? $P(7)=\frac{1}{38}=0.0263$;
4. If the player has bet $\mathrm{B}=\$ 100$ on $\# 7$, what is the expected value of the game? $E V=P(7) * \$ 35 * 100+P($ not 7$) *-\$ 100=-\$ 5.26$

3 Chuck-a-Luck

1. What is the probability of exactly $0,1,2$ or 3 D's showing up? (Note that 1 or 2 D's can show up in 3 different ways!)

$$
\begin{aligned}
& P(0)=1 * \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}=\frac{125}{216} \approx 0.5787 \\
& P(1)=3 * \frac{1}{6} \times \frac{5}{6} \times \frac{5}{6}=\frac{75}{216} \approx 0.3472 \\
& P(2)=3 * \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6}=\frac{15}{216} \approx 0.0694 \\
& P(3)=1 * \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}=\frac{1}{216} \approx 0.0046
\end{aligned}
$$

2. If the player bets $B=\$ 100$, what is the expected value of the game?;

$$
E V=\$ 100 *\left(-1 * \frac{125}{216}+1 * \frac{75}{216}+2 * \frac{15}{216}+10 * \frac{1}{216}\right) \approx-4.6296
$$

3. Suppose we can increase the payoff for the triple D result from $\$ 10^{*} \mathrm{~B}$ to $\$ \mathrm{~N}^{*} \mathrm{~B}$. What is the smallest (integer) value of N so that the expected value of the game is in the player's favor (making the expected
value positive)?;
Try $N=20$:

$$
E V=\$ 100 *\left(-1 * \frac{125}{216}+1 * \frac{75}{216}+2 * \frac{15}{216}+20 * \frac{1}{216}\right) \approx 4.1667
$$

4 The Game of Life

1. What is the probability that you will live to at least age 50 ?

Out of 100,000 people who were born, 92,632 are still alive at age 50 ; this suggests your probability of living to at least 50 is $\frac{92632}{100000} \approx 92.6 \%$
2. What is the probability that you will die sometime between age 50 and age 60 ?

92,632 people were alive at age 50 , and only 85,802 were alive at age 60 . If we assume you are alive at age 50, then your chances of dying before 60 can be estimated at $\frac{92632-85802}{92632}=\frac{6830}{92632} \approx 7.4 \%$
3. What is the expected lifetime of a person in this population? We want to estimate the area under a graph whose x axis is age, and whose y axis is the probability of reaching that age. The y value is found simply by dividing the number of people by 100,000 . Simpson's rule for estimating the area under the function $y(x)$ given n data values at points with equal spacing h is:

$$
\text { Area } \approx\left(\frac{1}{2} y_{1}+y_{2}+\ldots+y_{n-1}+\frac{1}{2} y_{n}\right) * h
$$

Our calculation involves $n=13$ data values y separated by a uniform spacing of $h=10$ years:

$$
\begin{aligned}
& \text { Estimate for Expected Value of Lifespan }= \\
& (1 / 2 * 1.00000+0.99184+0.98771+0.97393+0.95603+0.92632+0.85802+0.73100 \\
& +0.50564+0.17915+0.00932+0.00002+1 / 2 * 0.00000) * 10 \approx 71.13 \text { years }
\end{aligned}
$$

5 Covariance Definition

(From "Probability Basics" slides):
Let $X=\left(X_{1}, \ldots, X_{n}\right)^{T}, Y=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ be vectors of random variables with joint distribution P. The covariance of X and Y is the rank-one matrix

$$
\operatorname{cov}[X, Y]:=\mathbb{E}\left[(X-\mathbb{E}[X])(Y-\mathbb{E}(Y))^{T}\right]=\mathbb{E}\left[X Y^{T}\right]-\mathbb{E}[X] \mathbb{E}[Y]^{T}
$$

Verify the second equality.

$$
\begin{aligned}
\operatorname{cov}[X, Y]: & =\mathbb{E}\left[(X-\mathbb{E}[X]) \quad(Y-\mathbb{E}(Y))^{T}\right] \\
& =\mathbb{E}\left[X Y^{T}-X \mathbb{E}[Y]^{T}-\mathbb{E}[X] Y^{T}+\mathbb{E}[X] \mathbb{E}[Y]^{T}\right] \\
& =\mathbb{E}\left[X Y^{T}\right]-\mathbb{E}\left[X \mathbb{E}[Y]^{T}\right]-\mathbb{E}\left[\mathbb{E}[X] Y^{T}\right]+\mathbb{E}\left[\mathbb{E}[X] \mathbb{E}[Y]^{T}\right] \\
& =\mathbb{E}\left[X Y^{T}\right]-\mathbb{E}[X] \mathbb{E}[Y]^{T}-\mathbb{E}[X] \mathbb{E}\left[Y^{T}\right]+\mathbb{E}[X] \mathbb{E}[Y]^{T} \\
& =\mathbb{E}\left[X Y^{T}\right]-\mathbb{E}[X] \mathbb{E}[Y]^{T}
\end{aligned}
$$

6 Tail Bounds

(From"Probability Basics" slides):

1. Show that, for any nonnegative random variable X :

$$
\begin{aligned}
& \mathbb{E}[X]=\int_{0}^{\infty} \operatorname{Prob}(X \geq t) d t \\
& \operatorname{Prob}(X \geq t)=\int_{X=t}^{\infty} p(X) d X \\
& \int_{t=0}^{\infty} \operatorname{Prob}(X \geq t) d t=\int_{t=0}^{\infty} \int_{X=t}^{\infty} p(X) d X d t \\
&=\int_{X=0}^{\infty} \int_{t=0}^{X} p(X) d t d X \\
&=\int_{X=0}^{\infty} X p(X) d X \\
&=\mathbb{E}(X)
\end{aligned}
$$

and re-derive Markov's inequality:

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{t=0}^{a} \operatorname{Prob}(X \geq t) d t+\int_{t=a}^{\infty} \operatorname{Prob}(X \geq t) d t \\
& \geq \int_{t=0}^{a} \operatorname{Prob}(X \geq t) d t \\
& \geq \int_{t=0}^{a} \operatorname{Prob}(X \geq a) d t \quad(\operatorname{Prob}(X \geq t) \text { is non increasing }) \\
& \geq a \operatorname{Prob}(X \geq a)
\end{aligned}
$$

2. Let $\phi(t)$ be any strictly monotonically increasing nonnegative function. Show that, for any random variable X and any $t \in \mathbb{R}$:

$$
\operatorname{Prob}(X \geq t) \leq \frac{\mathbb{E}[\phi(X)]}{\phi(t)}
$$

Since $\phi(t)$ is monotonic, we have

$$
\operatorname{Prob}(X \geq t)=\operatorname{Prob}(\phi(X) \geq \phi(t))
$$

Now apply Markov's inequality with $Y=\phi(X)$ and $a=\phi(t)$:

$$
\operatorname{Prob}(X \geq t)=\operatorname{Prob}(\phi(X) \geq \phi(t)) \geq \frac{\mathbb{E}[\phi(X)]}{\phi(t)}
$$

Alternately:

$$
\begin{aligned}
\mathbb{E}[\phi(X)] & =\int_{X=0}^{\infty} \phi(X) p(X) d X \\
& =\int_{X=0}^{t} \phi(X) p(X) d X+\int_{X=t}^{\infty} \phi(X) p(X) d X \\
& \geq \int_{X=t}^{\infty} \phi(X) p(X) d X \\
& \geq \int_{X=t}^{\infty} \phi(t) p(X) d X \\
& =\phi(t) \int_{X=t}^{\infty} p(X) d X \\
& =\phi(t) \operatorname{Prob}(t<=X)
\end{aligned}
$$

from which the conclusion follows.
3. From the previous result,

$$
\operatorname{Prob}(X \geq t) \leq \frac{\mathbb{E}[\phi(X)]}{\phi(t)}
$$

re-derive Chebychev's inequality that, for an arbitrary random variable X and $t>0$, one has

$$
\operatorname{Prob}(|X-\mathbb{E}[X]| \geq t) \leq \frac{\operatorname{var}[X]}{t^{2}}
$$

Note that

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right] \\
& =\operatorname{var}(X-\mathbb{E}(X)) \\
& =\operatorname{var}(|X-\mathbb{E}(X)|)
\end{aligned}
$$

Define $Z(X)=|X-\mathbb{E}[X]|$, and let $\phi(Z)=Z^{2}$. Then $\phi(Z)$ is a strictly monotonically increasing nonnegative function, and we write

$$
\begin{aligned}
\operatorname{Prob}(\mid X-\mathbb{E}[X] \geq t) & =\operatorname{Prob}(Z \geq t) \\
& \leq \frac{\mathbb{E}[\phi(Z)]}{\phi(t)} \\
& =\frac{\mathbb{E}\left[(|X-\mathbb{E}[X]|)^{2}\right]}{t^{2}} \\
& =\frac{\operatorname{var}(X)}{t^{2}}
\end{aligned}
$$

7 Mean and Variance By Sampling

(From"Probability Basics" slides):

Suppose we make N draws from a Gaussian distribution whose true mean is μ and true variance is σ^{2}.
The maximum likelihood estimates for mean and variance, $\mu_{M L}$ and $\sigma_{M L}^{2}$, depend on the random draws X, and are therefore random variables. We can compute the expectation of these quantities. Show that
1.

$$
\begin{gathered}
\mathbb{E}\left[\mu_{M L}\right]=\mu \\
\mathbb{E}\left[\mu_{M L}\right]=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}\right] \\
= \\
=\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[x_{i}\right] \\
= \\
\frac{1}{N} \sum_{i=1}^{N} \mu \\
=\mu
\end{gathered}
$$

2.

$$
\mathbb{E}\left[\sigma_{M L}^{2}\right]=\frac{(N-1)}{N} \sigma^{2}
$$

The following identities will be used in the argument:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & =\sum_{i=1}^{n} x_{i}^{2}-n * \bar{x} \\
\operatorname{var}(t) & =\mathbb{E}\left[t^{2}\right]-(\mathbb{E}[t])^{2}
\end{aligned}
$$

Write:

$$
\begin{aligned}
\sigma_{M L}^{2} & :=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu_{M L}\right)^{2} \\
& =\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n *(\bar{x})^{2}\right) \\
& =\frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n(n-1)} *\left(\sum_{i=1}^{n} x_{i}\right)^{2}
\end{aligned}
$$

Taking the expected value:

$$
\begin{aligned}
\mathbb{E}\left[\sigma_{M L}^{2}\right] & =\mathbb{E}\left[\frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n(n-1)} *\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \\
& =\frac{1}{n-1} \sum_{i=1}^{n} \mathbb{E}\left[x_{i}^{2}\right]-\frac{1}{n(n-1)} * \mathbb{E}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left[\operatorname{var}\left(x_{i}\right)+\left(\mathbb{E}\left[x_{i}\right]\right)^{2}\right]-\frac{1}{n(n-1)} *\left(\operatorname{var}\left(\sum_{i=1}^{n} x_{i}\right)+\left(\mathbb{E}\left[\sum_{i=1}^{n} x_{i}\right]\right)^{2}\right] \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\sigma^{2}+\mu^{2}\right)-\frac{1}{n(n-1)} *\left(\operatorname{var}\left(\sum_{i=1}^{n} x_{i}\right)+\left(\sum_{i=1}^{n} \mathbb{E}\left[x_{i}\right]\right)^{2}\right) \\
& =\frac{n}{n-1}\left(\sigma^{2}+\mu^{2}\right)-\frac{1}{n(n-1)} *\left(\left(\sum_{i=1}^{n} \operatorname{var}\left(x_{i}\right)\right)+(n * \mu)^{2}\right) \\
& =\frac{n}{n-1}\left(\sigma^{2}+\mu^{2}\right)-\frac{1}{n(n-1)} *\left(n * \sigma^{2}+(n * \mu)^{2}\right) \\
& =\frac{n}{n-1}\left(\sigma^{2}+\mu^{2}\right)-\frac{1}{n-1} *\left(\sigma^{2}+n * \mu^{2}\right) \\
& =\sigma^{2}
\end{aligned}
$$

