MATH 728D: Machine Learning Solutions to Homework \#1:

Linear Algebra
John Burkardt
January 30, 2019

1 Householder Transformations

1. Show that Q is symmetric;

$$
\begin{aligned}
Q & =I-\frac{2}{v^{\prime} v} v v^{\prime} \\
Q^{\prime} & =\left(I-\frac{2}{v^{\prime} v} v v^{\prime}\right)^{\prime} \\
& =I^{\prime}-\frac{2}{v^{\prime} v}\left(v v^{\prime}\right)^{\prime} \\
& =I-\frac{2}{v^{\prime} v} v v^{\prime} \\
& =Q ;
\end{aligned}
$$

2. Show that Q is orthogonal;

$$
\begin{aligned}
Q * Q^{\prime} & =Q * Q \\
& =\left(I-\frac{2}{v^{\prime} v} v v^{\prime}\right) *\left(I-\frac{2}{v^{\prime} v} v v^{\prime}\right) \\
& =I-\frac{2}{v^{\prime} v} v v^{\prime}-\frac{2}{v^{\prime} v} v v^{\prime}+\frac{4}{\left(v v^{\prime}\right)^{2}} v v^{\prime} v v^{\prime} \\
& =I-\frac{4}{v^{\prime} v} v v^{\prime}+\frac{4}{\left(v^{\prime} v\right)^{2}} v\left(v^{\prime} v\right) v^{\prime} \\
& =I-\frac{4}{v^{\prime} v} v v^{\prime}+\frac{4}{v^{\prime} v} v v^{\prime} \\
& =I
\end{aligned}
$$

3. Show that $Q v=-v$;

$$
\begin{aligned}
Q * v & =\left(I-\frac{2}{v^{\prime} v} v v^{\prime}\right) * v \\
& =v-\frac{2}{v^{\prime} v} v v^{\prime} v \\
& =v-\frac{2}{v^{\prime} v} v\left(v^{\prime} v\right) \\
& =v-2 v \\
& =-v
\end{aligned}
$$

2 The QR Factorization

1. Based on this fact, what is the Q factor for A ?

$$
\begin{aligned}
Q_{1} * Q_{2} * \ldots * Q_{k} * A & =R \\
Q_{k}^{\prime} * \ldots * Q_{2}^{\prime} * Q_{1}^{\prime} * Q_{1} * Q_{2} * \ldots * Q_{k} * A & =Q_{k}^{\prime} * \ldots * Q_{2}^{\prime} * Q_{1}^{\prime} * R \\
A & =Q_{k}^{\prime} * \ldots * Q_{2}^{\prime} * Q_{1}^{\prime} * R \\
& =Q * R
\end{aligned}
$$

2. How do you know that Q is an orthogonal matrix?

If Q_{1} is orthogonal, then so is Q_{1}^{\prime};
If Q_{1}^{\prime} and Q_{2}^{\prime} are orthogonal, then so is $Q_{2}^{\prime} * Q_{1}^{\prime}$;
Repeating this argument, $Q=Q_{k}^{\prime} * \ldots * Q_{2}^{\prime} * Q_{1}^{\prime}$ is orthogonal.
3. The value k counts the number of Householder transformations we must apply. The j-th transformation reduces column j to upper triangular form. What is the typical value of k when A is an $n \times n$ matrix? We have to "upper triangularize" $n-1$ columns of A, so $k=n-1$;
What happens if A is an $m \times n$ matrix?
If $m<n, k=m-1$;
if $n<m, k=n$.

3 The LR Factorization

1. Describe how this factorization can be used to solve a linear system $A * x=b$;

$$
\begin{aligned}
A * x & =b \\
P^{\prime} * L * R * x & =b \\
L * R * x & =P * b \text { (easy to multiply by permutation) } \\
\text { Solve } L *(R * x) & =P * b \text { (easy to solve unit lower triangular system) } \\
\text { Solve } R * x & =L^{-1} * P * b \text { (easy to solve upper triangular system) } \\
x & =R^{-1} * L^{-1} * P * b
\end{aligned}
$$

2. The inverse of a triangular matrix is easy to compute. Assuming this is so, what is a formula for the inverse of a matrix A for which we have computed the LR factorization?

$$
A^{-1}=R^{-1} * L^{-1} * P
$$

4 The SVD Factorization

1. Show that the columns of U are eigenvectors of $A A^{\prime}$

$$
\begin{aligned}
A * A^{\prime} * U & =U * S * V^{\prime} *\left(V * S^{\prime} * U^{\prime}\right) * U \\
& =U * S *\left(V^{\prime} * V\right) * S^{\prime} *\left(U^{\prime} * U\right) \\
& =U * S^{2}
\end{aligned}
$$

Here S^{2} is an $m \times m$ diagonal matrix.
2. Show that the values σ_{i}^{2} are (some of the) eigenvalues of $A A^{\prime}$ and $A^{\prime} A$

A similar argument shows that $A^{\prime} * A * V=V * S^{2}$, where S^{2} is an $n \times n$ diagonal matrix;
3. Suppose that A is symmetric and positive definite, so that it has a full set of eigenvectors X and nonnegative eigenvalues Λ. Write a formula for the singular value decomposition of A;

$$
\begin{aligned}
X^{\prime} * A * X & =\Lambda ; \\
A & =X * \Lambda * X^{\prime} \\
A & =U(=X) * S(=\Lambda) * V^{\prime}\left(=X^{\prime}\right)
\end{aligned}
$$

4. Suppose that A is a square, invertible matrix. Write a formula for the inverse of A in terms of the singular value decomposition;

$$
\begin{aligned}
A & =U * S * V^{\prime} \\
A^{-1} & =V * S^{-1} * U^{\prime} \text { (Assertion) } \\
A * A^{-1} & =U * S * V^{\prime} * V * S^{-1} * U^{\prime} \\
& =U * S * S^{-1} * U^{\prime} \\
& =U * U^{\prime} \\
& =I
\end{aligned}
$$

and similarly for $A^{-1} * A . S^{-1}$ is meaningful because S is square, and because each σ_{i} is nonzero.

