
MATH 728D: Machine Learning
Project 3: Support Vector Machine, Multivariate Regression, Clustering

1 Support Vector Machines

We are given a set of n pairs {xi, yi}, where each xi is a d dimensional data value, and yi is a classification,
which, by SVM convention, will have the value -1 or +1.

We assume our data is linearly separable, that is, that at least one straight line can be drawn that splits the
data into its two groups. If so, there will be many such lines. The SVM approach seeks the best such line,
which maximizes the separation margin between the two data sets.

Our example will involve a dataset with spatial dimension d = 2, so we can easily visualize the results. In
any dimension, the equation of the separating SVM line or hyperplane can be represented as

f(x) = x′ ∗ w + b = 0

where x represents a data value stored as a column vector, w is a d-vector of weights, and b is a real number
which is a generalization of the y-intercept, and we want f(x) to be positive or negative for data with a +1
or -1 classification respectively.

The SVM system can be rewritten as seeking w and b that:

minimize: w′w

subject to: yi(x
′
iw + b) ≥ 1 for 1 ≤ i ≤ n

In other words, the sign of f(x) correctly classifies each data item xi as “positive” or “negative”.

This is a quadratic programming problem, for which MATLAB offers the function quadprog(). This expects
a general problem of the form:

minimize:
1

2
x′Hx + f ′x subject to:

 Ax ≤ c
B x = d (we won’t need this!)
lb ≤ x ≤ ub (we won’t need this!)


If we rearrange our SVM problem data, we can fit the quadprog() format:

x→ wb(1 : d + 1, 1)→
(

w
b

)
H(1 : d + 1, 1 : d + 1)→1

2

(
Id 0
0 0

)
f(1 : d + 1, 1)→

(
0d+1

)
A(1 : n, 1 : d + 1)→− diag(Y ) ∗

(
X 1n

)
c(1 : n, 1)→

(
−1n

)
Here, Im is the d × d identity matrix, diag(Y ) is the n × n diagonal matrix whose diagonal entries are the
values of the y data (the classifications), and X is the n× d matrix of data values.

Once we have defined the quadratic programming problem, we solve it with a command like:
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wb = quadprog (H, f ,A, c )

where the first d values of wb are the weights w and the last is the “intercept” b.

1. Create a data array by loading the file jet engines.txt.

2. Create vectors rpm, vib and grade from columns 2, 3 and 4 of the data. Note that grade is +1 or -1.

3. Create the necessary arrays H, f, A and c;

4. Get wb, the weight and intercept data, by calling quadprog();

5. Create a plot that displays the data and the separating line. You will need to work out the coordinates
(px(1),py(1)) and (px(2),py(2)) needed to display the line. Hint: px(1) and px(2) can be the minimum
and maximum rpm value, and then py(1) and py(2) can be found using your SVM separating line
formula rpm * w(1) + vib * w(2) + b = 0:

good = f i n d ( grade == +1 ) ;
bad = f i n d ( grade == − 1 ) ;
px = [ min (rpm) , max(rpm) ] ;
py = [ ? , ? ] ;
hold on
p lo t ( rpm( good ) , v ib ( good ) , ’b+’ ) ;
p l o t ( rpm( bad ) , vib ( bad ) , ’ ro ’ ) ;
p l o t ( px , py , ’ k−’ ) ;
hold o f f

Include this plot in your submission!

Your plot should show that the SVM has “optimally” separated the data.

Python users: The Python package cvxopt can solve quadratic programs. It can be downloaded
by pip install cvxopt. Your program will need to include the import statements:

from cvxopt import matrix
from cvxopt import s o l v e r s

cvxopt() assumes a general quadratic problem of the form:

minimize:
1

2
x′Hx− f ′x subject to: Ax ≤ c

which (aside from the minus sign on the f) is the same as we saw for MATLAB.

Once you have set up the H, f, A and c arrays, convert them each to the matrix format, as in:

H = matrix ( H )

Then call solvers.qp:

s o l = s o l v e r s . qp ( H, f , A, c )

and then convert sol back to a numpy array:

wb = np . array ( s o l [ ’ x ’ ] )

Then plot the data and the SVM separating line, as suggested above.

If you have trouble with cvxopt(), please let me know!

Table 1 Support Vector Machine

---------------------------------------------------------------------

f(x) = x’ w + b = rpm * ___ + vib * ___ + ___
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2 Multivariate Regression

The file insurance train.txt includes n = 1000 records about medical insurance. Each record lists, for a given
person, 7 factors: age, sex ( ”female”=0, ”male”=1), BMI, children, smoker ( ”no”=0, ”yes”=1), region
( ”NE”=1, ”NW”=2, ”SW”=3, ”SE”=4 ), total medical charges ($). We seek an affine formula that can
estimate the charges based on the numerical values of age, sex, BMI, number of children, and smoker:

charges = c1 + c2 ∗ age + c3 ∗ sex + c4 ∗ bmi + c5 ∗ c h i l d r e n + c6 ∗ smoker

Because our techniques work for linear models, not affine ones, we make up an extra variable called “one”
so that our problem has the form:

charges = c1 ∗ one + c2 ∗ age + c3 ∗ sex + c4 ∗ bmi + c5 ∗ c h i l d r e n + c6 ∗ smoker

Our array A will have six columns, with the first being a vector of 1000 1’s, followed by columns for age,
sex, BMI, children, smoker. We seek values c that minimize the root mean square norm of y −A ∗ c.

1. Read the training data from insurance train.txt, extract columns 1, 2, 3, 4, 5, and 7, storing them in
vectors named age, sex, bmi, children, smoker, and charges;

2. Build a matrix A, starting with a column of 1000 1’s, then columns for age, sex, bmi, children, smoker;

3. Compute and tabulate the coefficients c that minimize the norm of the residual y-A*c;

4. Tabulate the rms norm of y−A∗ c, comparing your predicted and actual charges for the training data;

5. Tabulate the actual and estimated charges for patients 200, 400, 600, 800 and 1000;

6. Read the testing data from insurance test.txt;

7. Create the appropriate matrix A for your new set of data, and use the values c that you computed from
the training data, to estimate the charges for the testing data; Report the rms norm of the residual
when estimating the testing data;

Table 2 Multivariate regression

---------------------------------------------------------------------

charges = ___ * one + ___ * age + ___ * sex + ___ * bmi + ___ * children + ___ * smoker

RMS of residual for training data:

rms = ___

Estimated and actual charges for some patients:

#200 ___ ___

#400 ___ ___

#600 ___ ___

#800 ___ ___

#1000 ___ ___

RMS of residual for testing data:

rms = ___

If you compare the testing and training rms values, what do you observe? Notice that one of the regression
coefficients is negative. What does this suggest?

3 Clustering

Clustering is used if we believe our n data values fall naturally into k separate groups, or clusters. To classify
the data, we want to assign a cluster index cluster(i) to each data item data(i,:). Assuming the clusters
are roughly circular, then one way to do this is to pick a representative central point center(j,:) for each
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cluster and assign data items to the cluster with the nearest center. Mathematically, we imagine the vector
cluster reports the assignment of each data item:

cluster(i) = arg min
1≤j≤k

(data(i, :)− center(j, :))2

In MATLAB, it may be more convenient to list all the data items that belong to a given cluster. Thus,
the indices of the elements in cluster 1 might be listed in a vector c1, whose length also tells us how many
elements are in cluster 1. For a two cluster problem, with d1 and d2 the distances of each data item to the
two cluster centers, we could compute c1 in MATLAB by:

c1 = f i n d ( d1 < d2 ) ;

Given the centers, we can compute E, the cluster “energy” or cluster variance:

E =

n∑
i=1

(data(i, :)− center(cluster(i), :))2

A good clustering has a low value of E and an optimal clustering minimizes it.

In MATLAB, we might compute the individual cluster energies, as in:

e1 = sum ( d1 ( c ) . ˆ 2 ) ;

and in our two-dimensional case, we can then easily compute E=e1+e2.

Notice that we are replacing n data values by k representatives, the cluster centers, so in some sense clustering
is a kind of dimension reduction. In this case, we are not reducing the spatial dimension d, but the dimension
n counting the number of data values.

Once we have the optimal cluster assignment, we can usually get better results by recomputing the centers
as the average of the points belonging to them. By changing the centers, we might actually tempt some
data points to switch clusters, and so the process of updating cluster assignments and centers can involve
an iteration.

We will begin with some simple clustering efforts of our own, and then turn to the k-means algorithm, which
can return the optimal cluster centers and cluster assignments by a single function call. Keep in mind that
our measure of optimality is a small total cluster energy, E.

We will work with a data file of n = 272 pairs of values (d=2), representing the length of an eruption of the
old Faithful geyser, and the length of the pause that follows.

1. Get the file faithful.txt and load the data;

2. Standardize your data, so that both columns range between 0 and 1;

3. A scatterplot of your data will show it naturally divides into k = 2 clusters;

4. Define a pair of centers:

c en t e r = [ 0 . 40 , 0 . 6 0 ; <−− row 1 i s c en t e r #1
0 .60 , 0 .30 ] ; 2 i s c en t e r #2

5. Define a vector d1, the distance of each data item to cluster center 1; similarly define d2;

6. Define a vector c1 which indexes data points closer to center 1 than to center 2; similarly define c2;

7. A scatterplot would show how you have clustered the data:

hold on
p lo t ( data ( c1 , 1 ) , data ( c1 , 2 ) , ’b . ’ ) ;
p l o t ( data ( c1 , 1 ) , data ( c1 , 2 ) , ’ r . ’ ) ;
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p lo t ( c en t e r ( 1 , 1 ) , c en t e r ( 1 , 2 ) , ’ bo ’ ) ;
p l o t ( c en t e r ( 2 , 1 ) , c en t e r ( 2 , 2 ) , ’ ro ’ ) ;
hold o f f

8. Compute your cluster energies e1, e2, and E=e1+e2 and report these energies in the table; e1

is the sum of the squares of d1 for the data indexed in c1; e2 is computed similarly;

9. Replace each cluster center by the average of its data elements, and report these centers in the table.

10. Using these new centers, update d1 and d2, c1 and c2, and the cluster energies e1, e2, and E=e1+e2,
and report these energies in the table.

11. If we repeat these steps, the total energy will decrease, and the clustering may improve significantly.
Instead, call kmeans() (or, in Python, you could use scipy.cluster.vq.kmeans()) to get the best
clustering centers in one step:

k = 2 ;
[ c , c en t e r ] = kmeans ( data , k ) ;
c1 = c ( 1 ) ;
c2 = c ( 2 ) ;

Compute the energies e1, e2, and E=e1+e2; Report the kmeans centers and energies in the table.

Table 3 Clustering

---------------------------------------------------------------------

Clusters using center1 = (0.4,0.6) and center2 = (0.6,0.3):

e1 = ___ e2 = ___ E = ___

Clusters using averaged centers = (___, ___) and center2 = (___, ___):

e1 = ___ e2 = ___ E = ___

Clusters using kmeans centers = (___, ___) and center2 = (___, ___):

e1 = ___ e2 = ___ E = ___

Plotting the data suggested that it formed two clusters. Performing the kmeans clustering gives optimal
representatives of these two clusters.

4 What to Turn in:

The project should be completed and submitted by the beginning of class on April 25th. You should submit
a report, roughly 3-4 pages in length, stored as a single PDF, that includes:

1. Team information: The names of the team members. Teams can involve from 1 to 4 members. Each
team member should participate in the project, and should be able to explain the process involved in
getting the results of the exercises.

2. Problem Description: For each exercise, make any comments that come to mind about the problem,
the programming, and the results.

3. Tables: You should turn in neatly formatted versions of Tables 1, 2, and 3.

4. Plots: Your PDF should include the plot associated with the SVM calculation.

5. Send report to: burkardt@mailbox.sc.edu

Keep copies of the programs used to get your results, as they may be requested for review if there is an issue
with your results.
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