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The fastest way back to the shore is the perpendicular direction!

We are familiar with the problem of finding the “least squares line” that best approximates a set of data
values (xi, yi) that doesn’t actually fall perfectly on a line. When we do this, we are solving a version of the
projection problem, which chooses an approximation to data values that minimizes a measure of the error.
In this lab, we will look at some examples of this idea, ranging from the least squares line to the idea of
principal component analysis.

1 Projection of a vector onto another vector

Given a pair of vectors u and v, the dot product formula relates the inner product to the lengths of the
vectors and the angle θ between them:

< u, v >= ||u||2 ||v||2 cos(θ)

In the following, assume we have:

u =

(
1
2

)
v =

(
3
4

)
Using the vector u as a guide, we want to verify the dot product relation, compute the angle in degrees
between the vectors.
The length of the projection of v onto u is <u,v>

||u||2 . The direction of the projection of v onto v is u
||u||2 .

Therefore, the projection of v onto u is

v proj =
< u, v >

||u||2
u

||u||2
=
< u, v >

< u, u >
u

Thus, we can decompose the vector v into parallel and perpendicular components v proj and v perp. These
components define a right triangle, so we can also verify the Pythagorean relationship.

Exercise 1:

• calculate u dot v = < u, v >
• calculate u norm = ||u||2
• calculate v norm = ||v||2
• calculate cos theta = cos(θ);
• Verify that your data satisfies the dot product formula ;
• calculate theta degrees = 180

π cos−1(cos(θ));
• Compute v proj = <u,v>

<u,u>u;

• Compute v perp = v − <u,v>
<u,u>u;

• Verify the Pythagorean relation: ||v||2 = ||vproj ||2 + ||vperp||2
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2 Householder Transformations

In order to do more general projection problems, we will need to use the QR factorization, which rewrites an
m× n matrix A = Q ∗R, where Q is m×m orthogonal and R is m× n upper triangular. This factorization
can be built up by a sequence Qj of simple orthogonal matrices known as Householder transformations,
which operate on each column of A, gradually transforming it to upper triangular form:

Q1 ∗Q2 ∗ ... ∗Qk ∗A = R

If we then multiply both sides of this equation by Q = Q′k ∗ ... ∗Q′2 ∗Q′1, we have our QR factorization.

In this exercise, we construct and apply Householder transformations to compute the QR factorization.

We are going to operate on A one column at a time. In order to handle column j of matrix A, we construct
the vector v as follows:

v = A( : , j ) ; % copy column j o f cur rent v e r s i o n o f A
v ( 1 : j−1) = 0 ; % zero out e n t r i e s 1 to j − 1
v ( j ) = v ( j ) + s i gn ( v ( j ) ) ∗ norm( v ) ; % modify entry j

Now we use v to define the corresponding Householder transformation:

Qj = I − 2

v′v
v v′

and we compute:
A = Qj ∗A

We carry out this process, for j = 1, 2, ..., n− 1, when the matrix A should have become upper triangular.

In the following, assume we have the matrix A:

A =

 2 4 4
2 −2 5
1 7 6



Exercise 2:

1. Compute Q1, the Householder transformation that applies to column 1 of A;

2. Compute A1 = Q1 ∗A and verify that column 1 is now upper triangular;

3. Compute Q2, the Householder transformation that applies to column 2 of A1;

4. Compute A2 = Q2 ∗A1 and verify that columns 1 and 2 are now upper triangular;

5. Since A2 is now actually an upper triangular matrix, define R = A2, Q = Q′1 ∗Q′2;

6. Verify that A = Q ∗R;

3 Orthonormal basis by QR Method

Suppose we have several vectors v1, v2, ..., vk that are in a linear space T . The set of all linear combinations
of the v vectors, also called the span of the vectors, forms a linear subspace S ⊂ T . The best way to
describe the subspace S is to determine a set of basis vectors, with typical element u, and the best kind of
basis vectors are linearly independent, with unit length and pairwise orthogonal. Although we start with k
vectors v, the basis set u can be any size from 0 to k.

A natural way to determine the basis vectors u begins by packing the vectors v into a matrix:

V = [v1|v2|...|vk]
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and then computing the QR factorization:
V = Q ∗R

R will have the same shape as V, but will be upper triangular. If R(1,1) is nonzero, the Q(:,1) is a useful
basis vector, and so on for successive diagonal entries of R, until we run out of diagonal entries, or hit a zero
diagonal entry. Because of numerical roundoff, we will actually stop when the entries of R become “very
small. The initial columns of Q that we select are the basis for the subspace S.

In the following, assume we have:

v1 =

 3
0
4

 v2 =

 2
2
1

 v3 =

 4
−2
7


Exercise 3:

• Form the matrix V from the vectors v1, v2, v3;
• Use the command [Q,R] = qr(V) to compute the QR factorization of V;
• Set dim = 0;
• Set a tolerance tol = sqrt(eps);
• For each 1 <= j <= 3, if tol <= |R(J,J)|, increment dim = dim + 1;
• You should find that dim=2, that is, only two columns of Q are needed;
• Define U = Q(:,1:dim); this is your basis for S;
• Verify that U ′U = I, that is, the columns of U are orthonormal;

4 Projection of a vector into a subspace

Let us continue the previous exercise. Suppose, then, that we have a vector v ∈ T , and we wish to determine
its projection in the subspace S, for which we have computed the orthonormal basis matrix U .

Our goal is to decompose w as
w = w proj + w perp

where w proj ∈ S and w perp is perpendicular (has a zero dot product) with every vector in S.

Because U is a basis, every vector v ∈ S must be able to be written as

v = U ∗ α

where α is a set of coefficients of the columns of U .
Because U ′ ∗ U = I, we can determine the α coefficients for any such v by:

v =U ∗ α
U ′ ∗ v =U ′ ∗ U ∗ α = α

Now if w is not actually in the subspace S, we can still find the coefficients of the projection of w into S in
the same way:

α = U ′ ∗ w

and once we have the coefficients, we can construct the projection

wproj = U ∗ α = U ∗ U ′ ∗ w
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In the following, assume we have the vectors v1, v2, v3, and the U matrix computed from the previous
exercise, and let the vector w be defined by:

w =

 3
4
6


Exercise 4:

• Compute the coefficients α of the projection of w into the space spanned by the v vectors, α = U ′ ∗w;
• Compute wproj = U ∗ α;
• Compute wperp = w − wproj ;
• Verify ||w||2 = ||wproj ||2 + ||wperp||2;
• Verify < wperp, v1 >=< wperp, v2 >=< wperp, v3 >= 0;
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