
MATH 728D: Machine Learning Lab #5:

Optimization

John Burkardt

December 5, 2018

When does f(x) = 4x3 − 16x attain its minimum value?

This question is an example of the optimization problem, which seeks input values x for which a function
attains a minimum or maximum value. We ask this question, because often, the function f(x) is measuring
a cost, or an error, and it is valuable to know how to minimize such things.

This lab looks at the gradient descent method for minimization.

1 Gradient Descent in 1D

Consider the function f(x) = 2x4 − 4x2 + x+ 20 and suppose that we seek a value x for which this function
is minimized. Moreover, we suspect that this value lies in the interval −2 ≤ x ≤ 2.

Our approach will require us to have available the derivative function f ′(x), which we will use in order
to gradually improve our initial guess for the minimizer.

Exercise 1::

1. write function fx = f(x) to evaluate f(x);

2. write function fpx = fp(x)to evaluate f ′(x);

3. choose a random initial guess x in [−2,+2];

4. choose a small r, a “learning rate”, maybe 0.05;

5. choose a small derivative tolerance tol, maybe 0.001;

6. while tol < |fp(x)|:
(a) update x = x - r * fp(x);

(b) print x, f(x), fp(x);

7. report final x, fx, fp

8. plot f(x) for −2 ≤ x ≤ +2:

If you run the program several times, do you get roughly the same result? Does the plot suggest that
you have found the minimizer of f(x) in [-2,+2]?

2 Gradient Descent in Higher Dimensions

Now suppose f(x) is a function of a n-dimensional argument x, which we will think of as a row vector. Then
the derivative information we seek is known as the gradient, symbolized by ∇f , and also regarded as a row
vector:

∇f =

[
∂f

∂x1
,
∂f

∂x2
, . . .

∂f

∂xn

]

1



It is simple to adjust our gradient descent algorithm for the n-dimensional case.

Consider the function:
f(x) = 2x2

1 − 1.05x4
1 + x6

1/6 + x1x2 + x2
2

Exercise 2::

1. write function fx = f(x) to evaluate f(x);

2. write function fpx = fp(x)to evaluate ∇f(x);

3. Use -3+6*rand(1,2) to choose an initial guess x in [−3,+3]× [−3,+3];

4. choose a small r, a “learning rate”, maybe 0.05;

5. choose a small derivative tolerance tol, maybe 0.001;

6. while tol < ||fp(x)||:
(a) update x = x - r * fp(x);

(b) print x, f(x), fp(x);

7. report final x, fx, fp

8. surface plot f(x) for [−2,+2]× [−2,+2]:

9. contour plot f(x) for [−2,+2]× [−2,+2]:

Do your plots suggest that you have found the minimizer?

3 Gradient Descent for Model Parameters

Instead of a formula f(x), many optimization problems start with a mass of data to be approximated by a
simple model. For instance, we may have n pairs of values (xi, yi). We are looking for parameters b and m
in a linear model of the form y = b + m ∗ x that approximates our data well.

Obviously, b and m are our unknowns. For any particular i, we will measure the error Ei as the square
of the difference between the model’s prediction based on xi, and the actual data yi:

Ei(b,m;xi, yi) = (yi − b−mxi)
2

Then our total error is simply:

E(b,m;x, y) =

n∑
i=1

Ei(b,m;xi, yi)

To use the gradient method, we will need to compute the vector

∇E(b,m;x, y) =

[
∂E

∂b
;
∂E

∂m

]

For this exercise, use the data file ford data.csv, which contains the model year yeari, mileage xi, and
selling price yi for 23 Ford Escorts. We want to approximate the information in this data set by a formula
that predicts the price based on mileage.

The x and y variables have quite different scales. If we do not account for this, the gradient descent
method will have trouble converging. The simplest thing to do is to normalize both sets of data , so that

x← x−min(x)

max(x)−min(x)
(1)

y ← y −min(y)

max(y)−min(y)
(2)
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so that both normalized variables range from 0 to 1.

Exercise 3::

1. Use csvread() to read data;

2. Copy column 2 and 3 of data into x and y arrays;

3. Normalize x and y;

4. write function value = e(b,m,x,y);

5. write function grad = ep(b,m,x,y) for ∇E(b,m, x, y);

6. Initialize b = 0.5 and m = 0;

7. choose a small r, a “learning rate”, maybe 0.01;

8. choose a small derivative tolerance tol, maybe 0.001;

9. while tol < ||ep(b,m, x, y)||:
(a) update [b;m] = [b;m] - r * ep(b,m,x,y;

10. report final b, m, e, ep.

11. plot the normalized (x, y) data with the line y = b+mx using the parameter values you have computed.

As you debug your code, you may find it helpful to:

• check your ep(b,m, x, y) function against a finite difference approximation;
• limit the iterations to no more than 500;
• print each iteration index, values of b, m and e(bm,mx, y)

4 Stochastic Gradient Descent

We repeat the previous problem, but now we use stochastic gradient descent as our optimization method.
This time, we still seek to minimize the error function E(m, b;x, y), but each step involves the gradient of a
single error function Ei(m, b;x, y, i).

Since we have
Ei(b,m;xi, yi) = (yi − b−mxi)

2

then the gradient ∇Ei is simply:

∂Ei

∂b
=− 2(yi − b−mxi) (3)

∂Ei

∂m
=− 2xi(yi − b−mxi) (4)

and in the program we will call this epi.

Exercise 4::

1. Copy column 2 and 3 of data into x and y arrays;

2. Set n=length(x, to count the number of variables;

3. Normalize x and y;

4. write function value = e(b,m,x,y) (same as before);

5. write function gradi = epi(b,m,x,y) for ∇E(b,m, x, y, i);

6. Initialize b = 0.5 and m = 0;

7. choose a small r, a “learning rate”, maybe 0.01;

8. choose a small derivative tolerance tol, maybe 0.001;

9. repeat the following up to n*500 times:
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(a) use randi([1,n]) to pick a random index i;

(b) compute gradient vector gradi;

(c) update b = b - r * gradi(1), m = m - r * gradi(2);

10. report final b, m, e, ep.
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