IV - High-Dimensional Geometry and Some Applications

Math 728 D - Machine Learning \& Data Science - Spring 2019

Contents

(1) Volumes in High Dimensions
(2) Concentration of Measure
(3) Dimension Reduction
(4) First Applications to Simple Estimation Problems

- Separating Gaussians
- Fitting a Gaussian
- Gaussian Mixtures and Clustering

Effect of Shrinking

Consider $A \subset \mathbb{R}^{d}$ measurable, $\epsilon \in(0,1),(1-\epsilon) A:=\{(1-\epsilon) \mathbf{x}: \mathbf{x} \in A\}$; let

$$
\operatorname{vol}(A)=\operatorname{vol}_{d}(A):=\int_{A} \chi_{A}(\mathbf{x}) d \mathbf{x} \quad(\text { volume of } A) .
$$

Then

$$
\begin{equation*}
\operatorname{vol}((1-\epsilon) A)=(1-\epsilon)^{d} \operatorname{vol}(A) \tag{2.1}
\end{equation*}
$$

Argument: this holds for any d-dimensional cube (induction on d); cover A by cubes of smaller and smaller size; additivity of the volumes of the cubes + each cube shrinks by factor $(1-\epsilon)^{d}$, measurability of A (see Lecture II, page 6) $\rightsquigarrow(2.1)$.

Hence

$$
\begin{equation*}
\frac{\operatorname{vol}((1-\epsilon) A)}{\operatorname{vol}(A)}=(1-\epsilon)^{d} \leq e^{-\epsilon d} \tag{2.2}
\end{equation*}
$$

i.e., such fractions decay exponentially when d increases.

The Euclidean Ball/Sphere

Define

$$
B_{d}:=\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\|_{2} \leq 1\right\} \quad S_{d}:=\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\|_{2}=1\right\}=\partial B_{d} .
$$

We are interested in the quantities

$$
V(d):=\operatorname{vol}_{d}\left(B_{d}\right), \quad A(d):=\operatorname{vol}_{d-1}\left(S_{d}\right)
$$

Cartesian Coordinates:

$$
V(d)=\int_{x_{1}=-1}^{x_{1}=1} \int_{x_{2}=-\sqrt{1-x_{1}^{2}}}^{x_{2}=\sqrt{1-x_{1}^{2}}} \int_{x_{d}=-\sqrt{1-x_{1}^{2}-\cdots-x_{d-1}^{2}}}^{x_{d}=\sqrt{1-x_{1}^{2}-\cdots-x_{d-1}^{2}}} d x_{d} d x_{d-1} \cdots d x_{2} d x_{1}
$$

or, in radial coordinates:

$$
V(d)=\int_{S_{d}} \int_{r=0}^{1} r^{d-1} d r d A=\int_{S_{d}} d A \int_{r=0}^{1} r^{d-1} d r=\frac{A(d)}{d}
$$

How to compute $A(d)$?

The Euclidean Ball/Sphere

Compute instead

$$
\begin{equation*}
G(d):=\int_{\mathbb{R}^{d}} e^{-\|\mathbf{x}\|_{2}^{2}} d \mathbf{x}=\prod_{j=1}^{d} \int_{\mathbb{R}} e^{-x_{j}^{2}} d x_{j}=\pi^{\frac{d}{2}} \quad\left(\text { since } \int_{\mathbb{R}} e^{-x^{2}} d x=\sqrt{\pi}\right) \tag{2.3}
\end{equation*}
$$

Calculate $G(d)$ using polar coordinates ($e^{-\|\mathbf{x}\|_{2}^{2}}=e^{-r^{3}}$ for \mathbf{x} in the sphere with radius r)

$$
\begin{equation*}
G(d)=\int_{S_{d}} d A \int_{0}^{\infty} e^{-r^{2}} r^{d-1} d r=A(d) \int_{0}^{\infty} e^{-r^{2}} r^{d-1} d r=A(d) \frac{1}{2} \Gamma\left(\frac{d}{2}\right) . \tag{2.4}
\end{equation*}
$$

where $\Gamma(x):=\int_{0}^{\infty} e^{-z} z^{x-1} d x$ is the Gamma-function (generalizing the factorial $\Gamma(n+1)=n!$).
(2.3), (2.4) \Rightarrow

$$
\begin{equation*}
A(d)=2 \pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)^{-1} \rightsquigarrow \tag{2.5}
\end{equation*}
$$

Remark 1

$$
V(d)=\frac{2}{d} \pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)^{-1}, \quad A(d)=2 \pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)^{-1} .
$$

Compare with the volume 2^{d} von the ℓ_{∞}^{d} ball $[-1,1]^{d}$; what is the probabilityof uniform samples over $[-1,1]^{d}$ to land in B_{d} ?

Concentration of Measure

Most of the measure of B_{d} is concentrated for large d in a slab around an equator. W.I.o.g. let \mathbf{e}^{1} be the north pole.

Theorem 2

Let $c \geq 1$ and

$$
S /(c)=\left\{\mathbf{x} \in B_{d}:\left|x_{1}\right| \leq c / \sqrt{d-1}\right\} .
$$

Then, for $d \geq 3$

$$
\begin{equation*}
\frac{\operatorname{vol}(S /(c))}{\operatorname{vol}\left(B_{d}\right)} \geq 1-\frac{2}{c} e^{-c^{2} / 2} \tag{3.1}
\end{equation*}
$$

Proof of Theorem 2: Use notation in the above figure. By symmetry, it suffices to show that

$$
\begin{equation*}
\frac{\operatorname{vol}(A)}{\operatorname{vol}(H)} \leq \frac{2}{c} e^{-c^{2} / 2} \tag{3.2}
\end{equation*}
$$

Upper bound for $\operatorname{vol}(A)$: Consider a disk at height $x_{1} \geq 0$ of (infinitesimally small) width δx_{1} whose top face is a $(d-1)$ dimensional ball of radius $\sqrt{1-x_{1}^{2}}$. Since the surface area is $V(d-1)\left(1-x_{1}^{2}\right)^{\frac{d-1}{2}}$ its volume is $\delta x_{1} V(d-1)\left(1-x_{1}^{2}\right)^{\frac{d-1}{2}}$. The volume of A is obtained by adding the volumes of these disks and letting $\delta x_{1} \rightarrow 0 ; \rightsquigarrow$

$$
\begin{aligned}
& \operatorname{vol}(A) \quad=\quad \int_{\frac{c}{\sqrt{d-1}}}^{1} V(d-1)\left(1-x_{1}^{2}\right)^{\frac{d-1}{2}} d x_{1} \stackrel{(1-x) \leq e^{-x}}{\leq} \int_{\frac{c}{\sqrt{d-1}}}^{\infty} V(d-1) e^{-x_{1}^{2} \frac{d-1}{2}} d x_{1} \\
& \frac{x_{1} \sqrt{d-1}}{{ }^{c} \leq} \geq 1 \quad V(d-1) \frac{\sqrt{d-1}}{c} \int_{\frac{c}{\sqrt{d-1}}}^{\infty} x_{1} e^{-x_{1}^{2} \frac{d-1}{2}} d x_{1} .
\end{aligned}
$$

Since $\int_{\frac{c}{\sqrt{d-1}}}^{\infty} x_{1} e^{-x_{1}^{2} \frac{d-1}{2}} d x_{1}=-\left.(d-1)^{-1} e^{-x_{1}^{2} \frac{d-1}{2}}\right|_{\frac{c}{\sqrt{d-1}}} ^{\infty}=(d-1)^{-1} e^{-c^{2} / 2} \rightsquigarrow$

$$
\begin{equation*}
\operatorname{vol}(A) \leq \frac{V(d-1)}{c \sqrt{d-1}} e^{-c^{2} / 2} \tag{3.3}
\end{equation*}
$$

Proof of Theorem 2 continued: Lower bound for $\operatorname{vol}(H)$:
Consider the cylinder $\left(x_{1}=(d-1)^{-1 / 2}\right)$
$C:=\left(0,(d-1)^{-1 / 2}\right) \times\left(1-(d-1)^{-1}\right)^{1 / 2} V(d-1) \quad \rightsquigarrow \quad \operatorname{vol}(C)=\frac{\left(1-(d-1)^{-1}\right)^{\frac{d-1}{2}}}{\sqrt{d-1}} V(d-1)$

For $a \geq 1$ one has $(1-x)^{a} \geq 1-a x$ (note that for $d \geq 3$ one has $\left.a:=(d-1) / 2 \geq 1\right) \rightsquigarrow$

$$
\operatorname{vol}(H) \geq \operatorname{vol}(S /(1)) \geq \operatorname{vol}(C)=\frac{\left(1-(d-1)^{-1}\right)^{\frac{d-1}{2}}}{\sqrt{d-1}} V(d-1) \geq \frac{\frac{1}{2}}{\sqrt{d-1}} V(d-1)
$$

By (3.3)

$$
\frac{\operatorname{vol}(A)}{\operatorname{vol}(H)} \leq \frac{\frac{V(d-1)}{c \sqrt{d-1}} e^{-c^{2} / 2}}{\frac{\frac{1}{2}}{\sqrt{d-1}} V(d-1)}=\frac{2}{c} e^{-c^{2} / 2}
$$

Near Orthogonality

Consequences:

Theorem 3

Draw n points $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$ at random (uniform distribution) from the unit ball B_{d} : then with probability at least $1-1 / n$, one has
(1) $\left\|\mathbf{x}^{i}\right\|_{2} \geq 1-\frac{2 \log n}{d}$ for all $i \in\{1,2, \ldots, n\}$ and
(2) $\left|\mathbf{x}^{i} \cdot \mathbf{x}^{j}\right| \leq \frac{\sqrt{6 \log n}}{\sqrt{d-1}}$ for all $i \neq j$.

Comments:

- (1) says that n randomly drawn points accumulate with the higher probability near the boundary S_{d} of B_{d} the larger d.
- (2) says that the inner product of any two of the n randomly drawn points is close to zero with high probability when d gets large. In view of (1) this actually means that the larger d "the more orthogonal" get pairs of randomly drawn points (recall: $\frac{|\mathbf{x} \cdot \mathbf{y}|}{\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}}=\cos (\angle(\mathbf{x}, \mathbf{y}))$)
- Theorem 3 quantifies the earlier observations derived from the Law of Large Numbers in Lecture II.
- Estimating probabilities in conjunction with "for all" statements is usually done with the aid of so called union bounds, see next page.

Union Bounds
 a frequent argument

The Union Bound is a frequently used "argument macro" which is a Boolean inequality and often comes in the following form.

Remark 4

Let $X_{j} \sim(\mathcal{X}, \mathcal{B}, P), j \in \mathcal{I}$. Assume that for some $A \in \mathcal{B}$ and each X_{j} one knows that $\operatorname{Prob}\left(X_{j} \notin A\right) \leq \delta_{j}, j \in \mathcal{I}$. Then

$$
\begin{equation*}
\operatorname{Prob}\left(\forall j \in \mathcal{I}: X_{j} \in A\right) \geq 1-\sum_{j \in \mathcal{I}} \delta_{j} . \tag{3.4}
\end{equation*}
$$

In detail:

$$
\begin{equation*}
\operatorname{Prob}\left(\forall j \in \mathcal{I}: X_{j} \in A\right)=1-\operatorname{Prob}\left(\exists j \text { such that } X_{j} \notin A\right) \tag{3.5}
\end{equation*}
$$

Defining the event $A_{j}=\left\{\omega \in \Omega: X_{j} \notin A\right\}$,

$$
\begin{align*}
\operatorname{Prob}\left(\exists j \in \mathcal{I} \text { such that } X_{j} \notin A\right) & =\operatorname{Prob}\left(\operatorname{or}_{j \in \mathcal{I}}\left(X_{j} \notin A\right)\right)=P\left(\bigcup_{j \in \mathcal{I}} A_{j}\right) \leq \sum_{j \in \mathcal{I}} P\left(A_{j}\right) \\
& =\sum_{j \in \mathcal{I}} \operatorname{Prob}\left(X_{j} \notin A\right) \leq \sum_{j \in \mathcal{I}} \delta_{j} . \tag{3.6}
\end{align*}
$$

$(3.6)+(3.5) \Rightarrow(3.4)$.

Proof of Theorem 3: ad (1): Let \mathbf{X} be uniformly distributed over B_{d}. By (2.2)

$$
\operatorname{Prob}\left(\|\mathbf{X}\|_{2}<1-\epsilon\right) \leq \frac{\operatorname{vol}\left((1-\epsilon) B_{d}\right)}{\operatorname{vol}\left(B_{d}\right)} \leq e^{-\epsilon d}
$$

Thus, for each fixed $i \in\{1, \ldots, n\}$

$$
\operatorname{Prob}\left(\left\|\mathbf{X}^{i}\right\|_{2}<1-\frac{2 \log n}{d}\right) \leq e^{-\left(\frac{2 \log n}{d}\right) d}=\frac{1}{n^{2}} .
$$

Hence

$$
\begin{aligned}
& \operatorname{Prob}\left(\exists i \text { s.t. }\left\|\mathbf{X}^{i}\right\|_{2}<1-\frac{2 \log n}{d}\right) \\
& \quad \leq P\left(\left\{\mathbf{X}^{1}:\left\|\mathbf{X}^{1}\right\|_{2}<1-\frac{2 \log n}{d}\right\} \cup \cdots \cup\left\{\mathbf{X}^{n}:\left\|\mathbf{X}^{n}\right\|_{2}<1-\frac{2 \log n}{d}\right\}\right) \\
& \quad \leq \frac{n}{n^{2}}=\frac{1}{n} \Rightarrow \operatorname{Prob}\left(\forall i\left\|\mathbf{X}^{i}\right\|_{2} \geq 1-\frac{2 \log n}{d}\right) \geq 1-\frac{1}{n} \rightsquigarrow(1)
\end{aligned}
$$

where we have used the union bound, see Remark 4 with $A_{j} \leftrightarrow\left(\left\|\mathbf{X}^{j}\right\|_{2} \geq 1-\frac{2 \log n}{d}\right)$.

Proof of Theorem 3 continued: ad (2): For any fixed among the $\binom{n}{2}$ pairs (i, j) we let $\mathbf{X}^{i}=X_{1} \mathbf{e}^{1}$ have the direction of the north pole, i.e., $\left\|\mathbf{X}^{i}\right\|_{2}=\left|X_{1}^{i}\right|$. By Theorem 2,

$$
\operatorname{Prob}\left(\left|X_{1}^{j}\right|>\frac{c}{\sqrt{d-1}}\right)=\frac{\operatorname{vol}\left(B_{d} \backslash S I(c)\right)}{\operatorname{vol}\left(B_{d}\right)} \leq \frac{2}{c} e^{-c^{2} / 2}
$$

Therefore, taking $c=\sqrt{6 \log n}$, the probability that the projection of \mathbf{X}^{j} to the north pole-direction is more than $\sqrt{\frac{6 \log n}{d-1}}$ can be bounded by (since $6 \log 2>4$)

$$
\operatorname{Prob}\left(\left|X_{1}^{j}\right|>\sqrt{\frac{6 \log n}{d-1}}\right) \leq \frac{2}{\sqrt{6 \log n}} e^{-\frac{6 \log n}{2}} \leq n^{-3}
$$

The same union bound (Remark 4) implies that the probability, that for some pair (i, j) one has $\left|\mathbf{X}^{i} \cdot \mathbf{X}^{j}\right|>\sqrt{\frac{6 \log n}{d-1}}$, is bounded by $\binom{n}{2} \cdot n^{-3} \leq \frac{1}{2 n} . \Rightarrow(2)$

Uniform Random Sampling from the Sphere S_{d}

Let $X_{j} \sim \mathcal{N}(0,1), j=1, \ldots, d$, independent standard Gaussians; \rightsquigarrow joint density

$$
p_{d}(\mathbf{x})=\mathcal{N}(\mathbf{x} \mid \mathbf{0}, \mathbf{I})=\prod_{j=1}^{d} \mathcal{N}\left(x_{j} \mid 0,1\right)=\frac{1}{(2 \pi)^{d / 2}} e^{-\frac{x_{1}^{2}+\cdots+x_{d}^{2}}{2}}=\frac{1}{(2 \pi)^{d / 2}} e^{-\frac{1}{2}\|\mathbf{x}\|_{2}^{2}}
$$

It is easy to sample according to $\mathcal{N}\left(x_{j} \mid 0,1\right)$ - why? \rightsquigarrow sample according to $p_{d} \rightsquigarrow \mathbf{X} \rightsquigarrow$ $\mathbf{Y}=\mathbf{X} /\|\mathbf{X}\|_{2}$
Note: components of \mathbf{Y} are no longer independent!
Question: how to sample uniformly from B_{d} ?

Gaussian Annulus Theorem

The next theorem describes where the mass of a spherical Gaussian density in high dimensions is concentrated.

Theorem 5

Let $\mathcal{N}(\mathbf{x} \mid \mathbf{0}, \mathbf{I})=\prod_{j=1}^{d} \mathcal{N}\left(x_{j} \mid 0,1\right)$ be the d-dimensional standard spherical Gaussian density and $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Then, for any $\beta \leq \sqrt{d}$

$$
\begin{equation*}
\operatorname{Prob}\left(\sqrt{d}-\beta \leq\|\mathbf{X}\|_{2} \leq \sqrt{d}+\beta\right)=\int_{\sqrt{d}-\beta \leq\|\mathbf{x}\|_{2} \leq \sqrt{d}+\beta} \mathcal{N}(\mathbf{x} \mid \mathbf{0}, \mathbf{I}) d \mathbf{x} \geq 1-3 e^{-c \beta^{2}}, \tag{3.7}
\end{equation*}
$$

where c is a fixed positive constant.

Intuition: $\mathbf{X} \sim \mathcal{N}(\mathbf{x} \mid \mathbf{0}, \mathbf{I}) \rightsquigarrow \mathbb{E}\left[\|\mathbf{X}\|_{2}^{2}\right]=\sum_{j=1}^{d} \mathbb{E}\left[X_{j}^{2}\right]=\sum_{j=1}^{d} \operatorname{var}\left[X_{j}\right]=d$. Thus the expected distance of a point, drawn from $\mathcal{N}(\mathbf{0}, \mathrm{I})$, from the origin (the mean) is \sqrt{d}. Theorem 5 says that randomly drawn points indeed concentrat tightly around the sphere of radius \sqrt{d}.

Proof of Theorem 5: Note

$$
\begin{equation*}
\sqrt{d}-\beta \leq\|\mathbf{X}\|_{2} \leq \sqrt{d}+\beta \quad \Leftrightarrow \quad\left|\|\mathbf{X}\|_{2}-\sqrt{d}\right| \leq \beta \tag{3.8}
\end{equation*}
$$

\rightsquigarrow suffices to prove that $\operatorname{Prob}\left(\left|\|\mathbf{X}\|_{2}-\sqrt{d}\right| \geq \beta\right) \leq 3 e^{-c \beta^{2}}$. Multiplication by $\|\mathbf{X}\|_{2}+\sqrt{d} \rightsquigarrow$

$$
\begin{gathered}
\left|\|\mathbf{X}\|_{2}^{2}-d\right| \geq\left(\|\mathbf{X}\|_{2}+\sqrt{d}\right) \beta \geq \beta \sqrt{d} \rightsquigarrow \\
\operatorname{Prob}\left(\left|\|\mathbf{X}\|_{2}-\sqrt{d}\right| \geq \beta\right) \leq \operatorname{Prob}\left(\left|\|\mathbf{X}\|_{2}^{2}-d\right| \geq \beta \sqrt{d}\right) .
\end{gathered}
$$

Rewrite

$$
\|\mathbf{X}\|_{2}^{2}-d=\sum_{j=1}^{d} X_{j}^{2}-d=\sum_{j=1}^{d}\left(X_{j}^{2}-1\right)=: \sum_{j=1}^{d} Y_{j} \quad \rightsquigarrow \quad \mathbb{E}\left[Y_{j}\right]=\mathbb{E}\left[X_{j}^{2}\right]-1=\operatorname{var}\left[X_{j}\right]-1=0 .
$$

Goal: estimate

$$
\operatorname{Prob}\left(\left|\|\mathbf{X}\|_{2}^{2}-d\right| \geq \beta \sqrt{d}\right)=\operatorname{Prob}\left(\left|\sum_{j=1}^{d} Y_{j}\right| \geq \beta \sqrt{d}\right)
$$

To apply Theorem 5 we need to bound the r th moments of Y_{j}.

Proof of Theorem 5 continued: Bounding $\mathbb{E}\left[Y_{j}^{r}\right]\left(Y_{j}=X_{j}^{2}-1\right)$: to that end, note

$$
\begin{gathered}
\left|Y_{j}\right|^{r} \leq\left\{\begin{array}{ll}
1, & \text { for }\left|X_{j}\right| \leq 1, \\
\left|X_{j}\right|^{2 r}, & \text { for }\left|X_{j}\right| \geq 1 .
\end{array} \quad \Rightarrow\right. \\
\left|\mathbb{E}\left[Y_{j}^{r}\right]\right|=\mathbb{E}\left[\left|Y_{j}\right|^{r}\right] \leq \mathbb{E}\left[1+X_{j}^{2 r}\right]=1+\mathbb{E}\left[X_{j}^{2 r}\right]=1+\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^{2 r} e^{-x^{2} / 2} d x .
\end{gathered}
$$

To estimate $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^{2 r} e^{-x^{2} / 2} d x$ use that $\quad \Gamma(y)=\int_{0}^{\infty} x^{y-1} e^{-x} d x$:
Change of variables $z:=x^{2} / 2 \rightsquigarrow$

$$
1+\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^{2 r} e^{-x^{2} / 2} d x=1+\sqrt{\frac{1}{\pi}} \int_{0}^{\infty} 2^{r} z^{r-1 / 2} e^{-z} d z=1+\sqrt{\frac{1}{\pi}} 2^{r} \Gamma(r-1 / 2) \leq 2^{r} r!.
$$

Recall: in Lecture III, Theorem 6 we need the r th moment to be bounded by $\sigma^{2} r!$.

$$
\mathbb{E}\left[Y_{j}\right]=0, \rightsquigarrow \operatorname{var}\left[Y_{j}\right]=\mathbb{E}\left[Y_{j}^{2}\right]^{r=2} \leq 2^{2} \cdot 2=8=\sigma_{Y}^{2}
$$

Proof of Theorem 5 continued: So far we have $\quad\left|\mathbb{E}\left[Y_{j}^{r}\right]\right| \leq 2^{r} r!\quad$ but $\quad 2^{r} r!\nless 8^{2} r!\quad \rightsquigarrow$ another change of variables: $W_{j}:=Y_{j} / 2 \quad$ (Lecture II, (8.6)) \rightsquigarrow

$$
\operatorname{var}\left[W_{j}\right]=\frac{1}{4} \operatorname{var}\left[Y_{j}\right] \leq 2=\sigma_{W}^{2}, \quad \mathbb{E}\left[W_{j}^{r}\right]=2^{-r} \mathbb{E}\left[Y_{j}^{r}\right] \leq r!
$$

Since

$$
\operatorname{Prob}\left(\left|\|\mathbf{X}\|_{2}^{2}-d\right| \geq \beta \sqrt{d}\right)=\operatorname{Prob}\left(\left|\sum_{j=1}^{d} Y_{j}\right| \geq \beta \sqrt{d}\right)=\operatorname{Prob}\left(\left|\sum_{j=1}^{d} W_{j}\right| \geq \frac{\beta \sqrt{d}}{2}\right)
$$

Lecture III, Theorem 6 yields ($a=\frac{\beta \sqrt{d}}{2}$),

$$
\operatorname{Prob}\left(\left|\|\mathbf{X}\|_{2}^{2}-d\right| \geq \beta \sqrt{d}\right) \leq 3 e^{-\frac{\partial^{2}}{12 d 2}}=3 e^{-\frac{\beta^{2}}{12 \cdot 8}}=3 e^{-\frac{\beta^{2}}{96}}
$$

$\rightsquigarrow c=1 / 96$.

Motivation

- One of the most frequent tasks involving high-dimensional data is nearest-neighbor-search.
- Scenario: given is a database of N points $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right\} \subset \mathbb{R}^{d}, j=1, \ldots, N, N, d$ large; \mathcal{X} is efficiently stored.
- Task: for any query point $\mathbf{x} \in \mathbb{R}^{d}$ find the nearest (or approximately nearest) neighbor from \mathcal{X}.
- Wishlist: the number of queries is typically large \rightsquigarrow the response time (returning the neighbor) should be small; typically a moderately growing function of $\log N$ and $\log d$. Preprocessing time is allowed to be larger, e.g. polynomial in N and d.
- An important preprocessing ingredient is dimension reduction, i.e., the projection of $\mathcal{X} \subset \mathbb{R}^{d}$ to \mathbb{R}^{k} with $k \ll d$, while approximately preserving mutual distances.

The next result shows how much the dimension can be reduced and how to find a good projection. It is an application of Theorem 5.

The Johnson-Lindenstrauss-Lemma Random Projections

For $k \leq d$ consider the random matrix

$$
\begin{equation*}
\boldsymbol{A}=\left(A_{i, j}\right)_{i, j=1}^{k, d} \in \mathbb{R}^{k \times d} \quad \text { where } \quad A_{i, j} \sim \mathcal{N}(0,1), i, j=1, \ldots, k, d, \text { drawn independently. } \tag{4.1}
\end{equation*}
$$

Let us denote by $\boldsymbol{A}_{i}=\left(a_{i, 1}, \ldots, a_{i, d}\right), i=1, \ldots, k$, the rows of \boldsymbol{A}. Note: $\boldsymbol{A}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
We will see: the mapping $\mathbf{x} \in \mathbb{R}^{d} \mapsto \mathbf{A x} \in \mathbb{R}^{k}$ is with high probability (regarding the choice of \boldsymbol{A}) near-distance preserving..

Theorem 6

Let $\mathbf{x} \in \mathbb{R}^{d}$ be fixed and let the random matrix \boldsymbol{A} be given by (4.1). Then

$$
\begin{equation*}
\operatorname{Prob}\left(\left|\|\boldsymbol{A} \mathbf{x}\|_{2}-\sqrt{k}\|\mathbf{x}\|_{2}\right| \geq \epsilon \sqrt{k}\|\mathbf{x}\|_{2}\right) \leq 3 e^{-c k \epsilon^{2}} \tag{4.2}
\end{equation*}
$$

where c is the constant from Theorem 5 and the probability is taken with respect to $\mathcal{N}(\cdot \mid \mathbf{0}, \mathbf{I})^{k}$.
Remark: Since \boldsymbol{A} is linear, for any fixed $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ one has

$$
\left|\frac{\left\|k^{-1 / 2} \boldsymbol{A}(\mathbf{x}-\mathbf{y})\right\|_{2}}{\|\mathbf{x}-\mathbf{y}\|_{2}}-1\right| \leq \epsilon
$$

with probability at least $1-3 e^{-c k \epsilon^{2}}$.

Proof of Theorem 6: $\boldsymbol{A} \mathbf{x}$ is the vector with components $\boldsymbol{A}_{i} \cdot \mathbf{x}, i=1, \ldots, k$. Dividing both sides in $\operatorname{Prob}\left(\left|\|\boldsymbol{A} \mathbf{x}\|_{2}-\sqrt{k}\|\mathbf{x}\|_{2}\right| \geq \epsilon \sqrt{k}\|\mathbf{x}\|_{2}\right)$ by $\|\mathbf{x}\|_{2}$, we can assume without loss of generality that $\|\mathbf{x}\|_{2}=1$ (the statement is about relative accuracy). By Lecture II, Corollary 18 and (10.9), the sum of independent Gaussians is Gaussian whose variance is the sum of variances. \rightsquigarrow

$$
\operatorname{var}\left[\boldsymbol{A}_{i} \cdot \mathbf{x}\right]=\sum_{j=1}^{d} x_{j}^{2} \operatorname{var}\left[A_{i, j}\right]=\sum_{j=1}^{d} x_{j}^{2}=\|\mathbf{x}\|_{2}^{2}=1
$$

Hence $\boldsymbol{A}_{1} \cdot \mathbf{x}, \ldots, \boldsymbol{A}_{k} \cdot \mathbf{x}$ are independent Gaussian variables $\sim \mathcal{N}(0,1)$. Hence $\boldsymbol{A} \mathbf{x}$ is a k-dimensional spherical Gaussian random variable with unit variance in each coordinate.
Theorem 5 (with d replaced by k and using (3.8)) $\Rightarrow \operatorname{Prob}\left(\left|\|\boldsymbol{A x}\|_{2}-\sqrt{k}\right| \geq \epsilon \sqrt{k}\right) \leq 3 e^{-c k \epsilon^{3}}$.

The Johnson-Lindenstrauss-Lemma

The JL-Lemma is based on the random projection (4.1): define

$$
\begin{equation*}
\mathbf{F}(\mathbf{x}):=\frac{1}{\sqrt{k}} \boldsymbol{A} \mathbf{x} . \tag{4.3}
\end{equation*}
$$

Theorem 7

Given: any $\epsilon \in(0,1), N \in \mathbb{N}$; let $\quad k \geq \frac{3 \log N}{c \epsilon^{2}}, \quad$ where c is the constant from Theorem 5 .
Claim: for any set $\mathcal{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right\} \subset \mathbb{R}^{d}$, the mapping \mathbf{F}, defined by (4.3), satisfies for all pairs $\mathbf{x}^{i}, \mathbf{x}^{j} \in \mathcal{X}$

$$
\begin{equation*}
(1-\epsilon)\left\|\mathbf{x}^{i}-\mathbf{x}^{j}\right\|_{2} \leq\left\|\mathbf{F}\left(\mathbf{x}^{i}\right)-\mathbf{F}\left(\mathbf{x}^{j}\right)\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{x}^{i}-\mathbf{x}^{j}\right\|_{2} \tag{4.4}
\end{equation*}
$$

holds with probability at least $1-\frac{3}{2 N}$.

Remarks:

- The reduced dimension k does not depend on the ambient dimension d, but only on the number N of projected points.
- The dependence of k on N is only logarithmic.
- There is a close connection between random projections and the Compressive Sensing paradigm discussed later in the course (if time permits).

Proof of Theorem 7: Fix any pair $\mathbf{x}^{i}, \mathbf{x}^{j} \in \mathcal{X}$. By the Random Projection Theorem 6, the probability of $\left\|F\left(\mathbf{x}^{i}\right)-\mathbf{F}\left(\mathbf{x}^{j}\right)\right\|_{2}=\left\|F\left(\mathbf{x}^{i}-\mathbf{x}^{j}\right)\right\|_{2}$ being outside the interval $\left[(1-\epsilon)\left\|\mathbf{x}^{i}-\mathbf{x}^{j}\right\|_{2},(1+\epsilon)\left\|\mathbf{x}^{i}-\mathbf{x}^{j}\right\|_{2}\right]$, is at most $3 e^{-c k \epsilon^{2}}$.
For $k \geq \frac{3 \log N}{c \epsilon^{2}}$, this probability is at most $3 / N^{3}$. Since there are $\binom{N}{2}<N^{2} / 2$ such pairs, the assertion follows from a union bound, see Remark 4.

Mixtures of Gaussians - An Example

Gaussian mixtures: are often used to model heterogeneous data coming from multiple sources
Example: The heights of individuals in a fixed age range in a city are being recorded. On average men are taller than women \rightsquigarrow Model:

$$
\begin{array}{ll}
\text { f-height: } & \mu_{1}+X_{1}, \quad X_{1} \sim \mathcal{N}\left(0, \sigma_{1}^{2}\right) ; \tag{5.1}\\
\text { m-height : } & \mu_{2}+X_{2}, \quad x_{2} \sim \mathcal{N}\left(0, \sigma_{2}^{2}\right) .
\end{array}
$$

where the mixture weights w_{1}, w_{2} represent the proportions of females, males in the city.
Problem: Given access to sample from the density $p(x)$, i.e., heights of individuals without knowing the gender, reconstruct the parameters $\mu_{i}, \sigma_{i}^{2}, i=1,2$ for the mixture model (5.8).

Notice: since there are shorter men than some women, given a height, it is not clear whether it comes from a female or male.

One could ask analogous questions for more attributes $X_{1}, \ldots . X_{d}$.
In this section: Separate two spherical Gaussians with unit-variance for large d but with well-separated means; later: the case of nearby means.

Separation of Gaussians

Model: $\quad p(\mathbf{x})=w_{1} \mathcal{N}\left(\mathbf{x} \mid \mu_{1}, 1\right)+w_{2} \mathcal{N}\left(\mathbf{x} \mid \mu_{2}, 1\right), \mathbf{x} \in \mathbb{R}^{d}(d$ large $), \quad$ find $\mu_{i}, w_{i}, i=1,2$.
Observation 1: For two independent draws \mathbf{x}, \mathbf{y} from the same $\mathcal{N}(\mathbf{0}, \mathbf{I})$, say, one has

$$
\begin{equation*}
\|\mathbf{x}-\mathbf{y}\|_{2}=\sqrt{2 d} \pm O(1) \tag{5.2}
\end{equation*}
$$

Argument: By Theorem 5, \mathbf{x}, \mathbf{y} are with high probability within an annulus of width $O(1)$ around the sphere with radius \sqrt{d}. W.I.o.g. we can rotate the coordinate system to obtain $\mathbf{x}=(\sqrt{d}+O(1)) \mathbf{e}^{1}$. By Theorem 2, with high probability,
$\left|\mathbf{y} \cdot \mathbf{e}^{1}\right| \leq \sqrt{d} \cdot O\left((d-1)^{-1 / 2}\right)=O(1)$, i.e., $|\mathbf{x} \cdot \mathbf{y}|=O(\sqrt{d}) \rightsquigarrow$

$$
\|\mathbf{x}-\mathbf{y}\|_{2}^{2}=(\mathbf{x}-\mathbf{y})^{\top}(\mathbf{x}-\mathbf{y})=\|\mathbf{x}\|_{2}^{2}-2 \mathbf{x} \cdot \mathbf{y}+\|\mathbf{y}\|_{2}^{2}=2 d \pm O(\sqrt{d}) \quad \Rightarrow \quad \text { (5.2) }
$$

Observation 2: Consider two independent draws \mathbf{x}, \mathbf{y} from $\mathcal{N}\left(\mu_{1}, \mathbf{I}\right), \mathcal{N}\left(\mu_{2}, \mathbf{I}\right)$, respectively, and set $\Delta:=\left\|\mu_{1}-\mu_{2}\right\|_{2}$. Then, with high probability one has

$$
\begin{equation*}
\|\mathbf{y}-\mathbf{x}\|_{2}^{2}=\Delta^{2}+2 d \pm O(\sqrt{d}) \tag{5.3}
\end{equation*}
$$

Argument: Adding, subtracting μ_{1}, μ_{2} and expanding, yields
$\|\mathbf{x}-\mathbf{y}\|_{2}^{2}=\left\|\mathbf{x}-\mu_{1}\right\|_{2}^{2}+\left\|\mathbf{y}-\mu_{2}\right\|_{2}^{2}+\Delta^{2}+2\left(\mathbf{x}-\mu_{1}\right)^{\top}\left(\mathbf{y}-\mu_{2}\right)+2\left(\mathbf{x}-\mu_{1}\right)^{\top}\left(\mu_{1}-\mu_{2}\right)-2\left(\mathbf{y}-\mu_{2}\right)^{\top}\left(\mu_{1}-\mu_{2}\right)$.
By the above argument, the 4 th summand is $\pm O(\sqrt{d})$. Consider the slabs S_{1}, S_{2} of width $O(1)$ around the centers μ_{1}, μ_{2}, which are perpendicular to $\mu_{1}-\mu_{2}$. As argued above, with high probability $\mathbf{x} \in S_{1}, \mathbf{y} \in S_{2}$ so that $\mu_{1}-\mu_{2}$ has inner products with $\mathbf{x}-\mu_{1}, \mathbf{y}-\mu_{2}$ of at most the order $O(\sqrt{d}) \Rightarrow(5.3)$.

Outline of a Simple Separation Algorithm

Rationale: Distance D_{1} between two points from the same Gaussian should be smaller than the distance D_{2} bewteen two points from different Gaussians, i.e.,

$$
D_{1} \leq \sqrt{2 d}+O(1) \stackrel{!}{\leq} \sqrt{\Delta^{2}+2 d}-O(1) \leq D_{2} \quad \Leftrightarrow \quad 2 d+O(\sqrt{d}) \leq 2 d+\Delta^{2} .
$$

This holds when $\Delta \geq \mathrm{Cd}^{1 / 4}$.
Algorithm:

- Calculate all pairwise distances between the samples;
- Identify the two clusters $\mathcal{C}_{S}, \mathcal{C}_{\text {l }}$ of small and large pairwise distances; pick a pair ($\mathbf{x}^{i_{1}}, \mathbf{x}^{i_{2}}$) from \mathcal{C}_{s} and fix $\mathbf{x}^{i_{1}} ;$ define $\mathcal{C}_{s, 1}$ as the set of all points \mathbf{x}^{j} such that $\left(\mathbf{x}^{i_{1}}, \mathbf{x}^{j}\right) \in \mathcal{C}_{l}$ (long distance); these points come from a single Gaussian with high probability;
- the remaining points come from the other one.

One still needs to fit the clustered points to a Gaussian.

Maximum Likelihood Estimator (MLE)

Suppose that $\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}$ are i.i.d samples from $\mathbf{X} \sim \mathcal{N}\left(\mu, \sigma^{2} \mathbf{I}\right)$ (spherical Gaussian with center $\mu \in \mathbb{R}^{d}$)

Goal: estimate μ and σ^{2} from these points.
The joint density of the underlying random variables $\mathbf{X}^{j}, j=1, \ldots, \mathbf{X}^{N}$ is the $d N$-dimensional spherical Gaussian

$$
p\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right):=\mathcal{N}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N} \mid(\mu, \ldots, \mu), \sigma^{2} \mathbf{I}_{d N}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{d N}{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(\left\|\mathbf{x}^{1}-\mu\right\|_{2}^{2}+\cdots+\left\|\mathbf{x}^{N}-\mu\right\|_{2}^{2}\right)} .
$$

The Maximum Likelihood Estimator (MLE) determines estimates $\mu_{M L}, \sigma_{M L}^{2}$ by maximizing this joint density for the given data $\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}$.

Proposition 8

MLE provides the sample mean

$$
\begin{equation*}
\mu_{M L}:=\frac{1}{N}\left(\mathbf{x}^{1}+\cdots+\mathbf{x}^{N}\right), \tag{5.4}
\end{equation*}
$$

as estimate for μ and the discrete sample variance with respect to the sample mean

$$
\begin{equation*}
\sigma_{M L}^{2}=\frac{1}{d N} \sum_{j=1}^{N}\left\|\mathbf{x}_{j}-\mu_{M L}\right\|_{2}^{2} \tag{5.5}
\end{equation*}
$$

as an estimate for σ^{2}.

Proof of Proposition 8: Maximizing $p\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right)$ is most conveniently done by maximizing its logarithm

$$
\begin{equation*}
\log p\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right)=-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{N}\left\|\mathbf{x}_{j}-\mu\right\|_{2}^{2}-\frac{d N}{2} \log \left(2 \sigma^{2}\right)-\frac{d N}{2} \log (\pi) \quad \text { (log-likelihood function). } \tag{5.6}
\end{equation*}
$$

Maximization over μ is independent of σ^{2}. Taking $E(\mu):=\sum_{j=1}^{N}\left\|\mathbf{x}_{j}-\mu\right\|_{2}^{2}$, one has
$\nabla E(\mu)=2 \sum_{j=1}^{N}\left(\mathbf{x}^{j}-\mu\right)=0 \Leftrightarrow \mu=\mu_{M L}$.
Take $a:=\left(2 \sigma^{2}\right)^{-1}$, it suffices to maximize over a. Differentiation with respect to a and setting the derivative to zero, yields the unique solution $a_{M L}$ by

$$
0=-\sum_{j=1}^{N}\left\|\mathbf{x}_{j}-\mu_{N}\right\|_{2}^{2}+\frac{d N}{2} \frac{1}{a_{M L}} \Rightarrow 2 \sigma_{M L}^{2}=\frac{1}{a_{M L}}=\frac{2}{d N} \sum_{j=1}^{N}\left\|\mathbf{x}_{j}-\mu_{N}\right\|_{2}^{2}
$$

which is (5.5)

Remark 9

The estimates $\mu_{M L}, \sigma_{M L}^{2}$ are independent of wether the data are sampled according to $\mathcal{N}\left(\cdot \mid \mu, \sigma^{2} \mathbf{I}\right)$ or $w \mathcal{N}\left(\cdot \mid \mu, \sigma^{2} \mathbf{I}\right)$ where $w>0$ is any "weight factor". How to determine such a weight?

Maximum Likelihood Estimator (MLE)

Remark 10

This can be generalized to non-spherical Gaussians $\mathbf{X} \sim \mathcal{N}(\mu ; \boldsymbol{A})$, i.e.,

$$
\mathcal{N}(\mathbf{x} \mid \mu, \boldsymbol{A}):=\frac{1}{(2 \pi)^{d / 2}|\operatorname{det} \boldsymbol{A}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \boldsymbol{A}^{-1}(\mathbf{x}-\mu) .\right.
$$

One obtains $\mu_{M L}=\frac{1}{N} \sum_{j=1}^{N} \mathbf{x}^{j}$ as before and

$$
\boldsymbol{A}_{M L}=\frac{1}{N} \sum_{j=1}^{N}\left(\mathbf{x}^{j}-\mu_{M L}\right)\left(\mathbf{x}^{j}-\mu_{M L}\right)^{\top} .
$$

Hint: the joint density of $\mathbf{X}^{1}, \ldots, \mathbf{X}^{N} \sim \mathcal{N}(\mu ; \boldsymbol{A})$ is (by independence)

$$
p\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right)=\prod_{j=1}^{N} \mathcal{N}\left(\mathbf{x}^{j} \mid \mu, \boldsymbol{A}\right)=\frac{1}{(2 \pi)^{d N / 2}|\operatorname{det} \boldsymbol{A}|^{N / 2}} e^{-\frac{1}{2} \sum_{j=1}^{N}\left(\mathbf{x}^{j}-\mu\right) \boldsymbol{A}^{-1}\left(\mathbf{x}^{j}-\mu\right)} \rightsquigarrow
$$

maximize over μ and $\boldsymbol{R}=\boldsymbol{A}^{-1}$

$$
0 \stackrel{!}{=} \log p\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right)=-\frac{d N}{2} \log (2 \pi)-\frac{N}{2} \log |\operatorname{det} \boldsymbol{A}|-\frac{1}{2} \sum_{j=1}^{N}\left(\mathbf{x}^{j}-\mu\right) \boldsymbol{A}^{-1}\left(\mathbf{x}^{j}-\mu\right)
$$

Maximizing over $\mu \rightsquigarrow$

$$
\partial_{\mu} \log p\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right) \stackrel{!}{=} 0 \quad \rightsquigarrow \quad 0=\sum_{j=1}^{N} \boldsymbol{A}^{-1}\left(\mathbf{x}^{j}-\mu\right)=\boldsymbol{A}^{-1}\left(\sum_{j=1}^{N}\left(\mathbf{x}^{j}-\mu\right)\right) \Leftrightarrow \sum_{j=1}^{N} \mathbf{x}^{j}=N \mu .
$$

Maximizing over $\boldsymbol{R}:=\boldsymbol{A}^{-1} \rightsquigarrow$

$$
0 \stackrel{!}{=} \frac{N}{2} \frac{d}{d \boldsymbol{R}} \log |\operatorname{det} \boldsymbol{R}|-\frac{1}{2} \frac{d}{d \boldsymbol{R}} \sum_{j=1}^{N}\left(\mathbf{x}^{j}-\mu_{M L}\right) \boldsymbol{R}\left(\mathbf{x}^{j}-\mu_{M L}\right)
$$

Notice: (chain rule)

$$
\frac{d}{d \boldsymbol{R}} \log |\operatorname{det} \boldsymbol{R}|=\boldsymbol{R}^{-1}=\boldsymbol{A}, \quad \frac{d}{d \boldsymbol{R}} \sum_{j=1}^{N}\left(\mathbf{x}^{j}-\mu\right) \boldsymbol{R}\left(\mathbf{x}^{j}-\mu\right)=\sum_{j=1}^{N}\left(\mathbf{x}^{j}-\mu_{M L}\right)\left(\mathbf{x}^{j}-\mu_{M L}\right)^{\top} .
$$

How good are these estimates?

Note: for each draw $\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}$ one obtains estimates $\mu_{M L}=\mu_{M L}\left(\mathbf{X}^{1}, \ldots \mathbf{X}^{N}\right)$, $\sigma_{M L}=\sigma_{M L}\left(\mathbf{X}^{1}, \ldots \mathbf{X}^{N}\right)$ which will vary over repeated draws and are therefore also random variables.

Exercise 11

$\mu_{M L}, \sigma_{M L}$ are random variables distributed according to $p\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right)$. Hence we can compute the expectation of these quantities: show that

$$
\begin{equation*}
\mathbb{E}\left[\mu_{M L}\right]=\mu, \quad \mathbb{E}\left[\sigma_{M L}^{2}\right]=\left(\frac{d N-1}{d N}\right) \sigma^{2} \tag{5.7}
\end{equation*}
$$

Thus, the maximum likelihood estimate systematically underestimates the true variance by the factor $\frac{d N-1}{d N}$. This results from computing $\sigma_{M L}^{2}$ based on the sample mean not the true mean. (5.7) \rightsquigarrow

$$
\tilde{\sigma}_{M L}^{2}:=\frac{d N}{d N-1} \sigma_{M L}^{2}=\frac{1}{d N-1} \sum_{j=1}^{N}\left\|\mathbf{x}_{j}-\mu_{M L}\right\|_{2}^{2}
$$

is an unbiased estimator. These are special effects reflecting a more general feature of maximum likelihood methods.

Gaussian Mixtures revisited

Mixture Models: form an important class of stochastic models. They have the form

$$
\begin{equation*}
p=w_{1} p_{1}+w_{2} p_{2}+\cdots+w_{k} p_{k}, \quad w_{j} \geq 0, \sum_{j=1}^{k} w_{j}=1, p_{j} \text { are known densities. } \tag{5.8}
\end{equation*}
$$

The mixture weights w_{i} quantify the proportion of the density p_{j} in the whole stochastic process. Clearly, p is again a probability density.

In this section we consider the case: $\quad p_{j}(\mathbf{x})=\mathcal{N}\left(\mathbf{x} \mid \mu_{j}, \sigma^{2}\right), \mu_{j}, \mathbf{x} \in \mathbb{R}^{d}$, under the assumptions:

- d large
- $k \ll d$
- $\quad \sigma \sim 1$

Task: Given data $\mathfrak{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right\} \subset \mathbb{R}^{d}$, estimate $w_{i}, \mu_{i}, \sigma, j=1, \ldots, k$.
Recall: before $k=2,\left\|\mu_{1}-\mu_{2}\right\|_{2} \geq C d^{1 / 4}$; now $k>2$ is permitted and centers are allowed to be closer to each other.

Strategy:

(i) Cluster the set of samples into k clusters $\mathcal{C}_{j}, j=1, \ldots, k$, where \mathcal{C}_{j} corresponds to the set of samples generated according to p_{j}; This is based on the discussion over the next slides
(ii) determine μ_{j}, σ^{2} for the Gaussian corresponding to the cluster $\mathcal{C}_{j}, j=1, \ldots, k$, as described in the previous section;
(iii) determine the weights by a least squares method.

(i) Is Based on: Invariance of Spherical Gaussians under Projection

Lemma 12

Let $\mathbb{U} \subset \mathbb{R}^{d}$ be a k-dimensional subspace. Then a spherical Gaussian density $\mathcal{N}\left(\mathbf{x} \mid \mu, \sigma^{2} \mathbf{I}\right)$ restricted to \mathbb{U} is (up to normalization) again a sperical Gaussian density with the same variance.

Proof: Let $\left\{\mathbf{u}^{1}, \ldots, \mathbf{u}^{k}\right\} \subset \mathbb{R}^{d}$ be an orthonormal basis for \mathbb{U}. Complete the matrix \mathbf{U}_{k} with columns $\mathbf{u}^{i}, i=1, \ldots, k$,to an orthonormal matrix $\mathbf{U}=\left(\mathbf{U}_{k}, N-k \mathbf{U}\right)$ for \mathbb{R}^{d} by adding columns $\mathbf{u}^{k+1}, \ldots, \mathbf{u}^{N}$. Then, for $\mathbf{x}=\mathbf{U} \mathbf{z}=\mathbf{U}_{k} \mathbf{z}^{\prime}+{ }_{N-k} \mathbf{U} \mathbf{z}^{\prime \prime}$, where $\mathbf{z}^{\prime}=\left(z_{1}, \ldots, z_{k}\right), \mathbf{z}^{\prime \prime}:=\left(z_{k+1}, \ldots, N\right)$,

$$
\mathcal{N}(\mathbf{x} \mid \mu, \sigma \mathbf{l})=\frac{1}{\left(\sigma^{2} 2 \pi\right)^{d / 2}} e^{-\frac{1}{2 \sigma^{2}}\left\|\mathbf{U}\left(\mathbf{z}-\mathbf{u}^{\top} \mu\right)\right\|_{2}^{2}}=\frac{1}{\left(\sigma^{2} 2 \pi\right)^{d / 2}} e^{-\frac{1}{2 \sigma^{2}}\left\|\mathbf{z}-\mathbf{u}^{\top} \mu\right\|_{2}^{2}}
$$

where we have used that the Euclidean norm is invariant under orthogonal transformations. Writing $\mathbf{U}^{\top} \mu=\left(\mu^{\prime}, \mu^{\prime \prime}\right)$, noting that the restriction of \mathbf{x} to \mathbb{U} is $\mathbf{U}_{k} \mathbf{z}^{\prime}$, and that $\left\|\mathbf{z}-\mathbf{U}^{\top} \mu\right\|_{2}^{2}=\left\|\mathbf{z}^{\prime}-\mu^{\prime}\right\|_{2}^{2}+\left\|\mathbf{z}^{\prime \prime}-\mu^{\prime \prime}\right\|_{2}^{2}$ we get

$$
\mathcal{N}\left(\mathbf{U}_{k} \mathbf{z}^{\prime} \mid \mu, \sigma^{2} \mathbf{I}\right)=\frac{1}{\left(\sigma^{2} 2 \pi\right)^{\frac{d-k}{2}}} e^{-\frac{1}{2 \sigma^{2}}\left\|\mu^{\prime \prime}\right\|_{2}^{2}} \frac{1}{\left(\sigma^{2} 2 \pi\right)^{\frac{k}{2}}} e^{-\frac{1}{2 \sigma^{2}}\left\|\mathbf{z}^{\prime}-\mu^{\prime}\right\|_{2}^{2}}=\operatorname{CN}\left(\mathbf{z}^{\prime} \mid \mu^{\prime}, \sigma^{2} \mathbf{I}\right)
$$

as claimed.

Remark 13

When $\mu \in \mathbb{U}$, i.e., $\mu=\mathbf{U}_{k} \mathbf{y}, \mathbf{y} \in \mathbb{R}^{k}$, one has $\mathbf{U}^{\top} \mu=\mathbf{U}^{\top} \mathbf{U}_{k} \mathbf{y}=\mathbf{y}$, i.e., the projected Gaussian has the same mean as the original one. Goal: find the subspace \mathbb{U}_{k} spanned by the means of a Gaussian mixture.

Invariance of Spherical Gaussians under Projection

Remark: Perhaps a better way to understand a "projection" of a density to a subspace \mathbb{U} is to see how it acts on functions that do not depend on variables orthogonal to \mathbb{U}. Specifically, for $\mathbf{U}, \mathbf{U}_{k}, N-k \mathbf{U}, \mathbf{z}^{\prime}, \mathbf{z}^{\prime \prime}, \mu^{\prime} \mathbf{u}^{\prime \prime}$ as above, consider any g such that $g(\mathbf{x})=g(\mathbf{U z})=g\left(\mathbf{U}_{k} \mathbf{z}^{\prime}+{ }_{N-k} \mathbf{U} \mathbf{z}^{\prime \prime}\right)=g\left(\mathbf{U}_{k} \mathbf{z}^{\prime}\right)=: \tilde{g}\left(\mathbf{z}^{\prime}\right)$

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} g(\mathbf{x}) \mathcal{N}\left(\mathbf{x} \mid \mu, \sigma^{2} \mathbf{I}\right) d \mathbf{x} & =\frac{1}{\left(\sigma^{2} 2 \pi\right)^{d / 2}} \int_{\mathbb{R}^{d}} g(\mathbf{U z}) e^{-\frac{1}{2 \sigma^{2}}\|\mathbf{U z}-\mu\|_{2}^{2}} d \mathbf{z} \quad(\text { since }|\operatorname{det} \mathbf{U}|=1) \\
& =\frac{1}{\left(\sigma^{2} 2 \pi\right)^{d / 2}} \int_{\mathbb{R}^{d}} \tilde{g}\left(\mathbf{z}^{\prime}\right) e^{-\frac{1}{2 \sigma^{2}}\left\|\mathbf{U}\left(\mathbf{z}-\mathbf{U}^{\top} \mu\right)\right\|_{2}^{2}} d \mathbf{z} \\
& =\frac{1}{\left(\sigma^{2} 2 \pi\right)^{d / 2}} \int_{\mathbb{R}^{d}} \tilde{g}\left(\mathbf{z}^{\prime}\right) e^{-\frac{1}{2 \sigma^{2}}\left\|\mathbf{z}-\mathbf{u}^{\top} \mu\right\|_{2}^{2}} d \mathbf{z} \\
& =\underbrace{\frac{1}{\left(\sigma^{2} 2 \pi\right)^{\frac{d-k}{2}}} \int_{\mathbb{R}^{d}-k} e^{-\frac{1}{2 \sigma^{2}}\left\|\mathbf{z}^{\prime \prime}-\mu^{\prime \prime}\right\|_{2}^{2}} d \mathbf{z}^{\prime \prime}} \frac{1}{\left(\sigma^{2} 2 \pi\right)^{\frac{k}{2}} \int_{\mathbb{R}^{k}} \tilde{g}\left(\mathbf{z}^{\prime}\right) e^{-\frac{1}{2 \sigma^{2}}\left\|\mathbf{z}^{\prime}-\mu^{\prime}\right\|_{2}^{2}} d \mathbf{z}^{\prime}} \\
& =\underbrace{\frac{1}{\left(\sigma^{2} 2 \pi\right)^{\frac{k}{2}}} \int_{\mathbb{R}^{k}} \tilde{g}\left(\mathbf{z}^{\prime}\right) e^{-\frac{1}{2 \sigma^{2}}\left\|\mathbf{z}^{\prime}-\mu^{\prime}\right\|_{2}^{2}} d \mathbf{z}^{\prime}}_{=1} \\
& =\int_{\mathbb{R}^{k}}^{\int \tilde{g}\left(\mathbf{z}^{\prime}\right) \mathcal{N}\left(\mathbf{z}^{\prime} \mid \mu^{\prime}, \sigma^{2} \mathbf{l}\right) d \mathbf{z}^{\prime} .}
\end{aligned}
$$

Best-Fit Subspace to a Spherical Gaussians

Let $\mathbb{U} \subset \mathbb{R}^{d}$ be a k-dimensional subspace. Therefore there exists an orthonormal basis $\left\{\mathbf{u}^{1}, \ldots, \mathbf{u}^{k}\right\} \subset \mathbb{R}^{d}$ forming the matrix \mathbf{U}_{k}. By Lecture I, page 47, (5.26),

$$
\begin{equation*}
P_{\mathbb{U}} \mathbf{x}=\sum_{j=1}^{k}\left(\mathbf{x} \cdot \mathbf{u}^{j}\right) \mathbf{u}^{j}=\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{x} \tag{5.9}
\end{equation*}
$$

is the orthogonal projection to \mathbb{U}.

Definition 14

Given a probability density p on \mathbb{R}^{d}. Then the subspace

$$
\begin{equation*}
\mathbb{U}_{k}:=\underset{\mathbb{U} \subset \mathbb{R}^{d}, \operatorname{dim} \mathbb{U}=k}{\operatorname{argmax}} \mathbb{E}\left[\left\|P_{\mathbb{U}} \mathbf{X}\right\|_{2}^{2}\right] \tag{5.10}
\end{equation*}
$$

is called the best-fit k-dimensional subspace (w.r.t. p).

Remark 15

Intuitively, $\mathbb{U}_{k}=\mathbb{U}_{k}(p)$ is the subspace that "sees most" of the density p among all k-dimensional subspaces. Compare this with Lecture I, Theorem 42, when the density p is replaced by a point cloud forming the matrix \boldsymbol{A}. This subspace will be seen to contain the means of the Gaussian mixture.

Best-Fit Subspace to a Spherical Gaussians

A first central step is to identify the best-fit subspace for a mixture of k spherical Gaussians.

Theorem 16

Let the density p on \mathbb{R}^{d} have the form (5.8) where $p_{j}=\mathcal{N}\left(\cdot \mid \mu_{j}, \sigma^{2} \mathbf{I}\right), \mu_{j} \in \mathbb{R}^{d}, j=1, \ldots, k$. Then the best-fit k-dimensional subspace \mathbb{U}_{k} for this mixture contains the centers $\mu_{j} \in \mathbb{R}^{d}$, $j=1, \ldots, k$. If the μ_{j} are linearly dependent, the uniquely define the subspace \mathbb{U}_{k}.

The proof is based on several lemmas.

Lemma 17

For $p=\mathcal{N}\left(\cdot \mid \mu, \sigma^{2} \mathbf{I}\right), \mathbf{X} \sim \mathcal{N}\left(\mu ; \sigma^{2} \mathbf{I}\right), \mathbf{u} \in \mathbb{R}^{d},\|\mathbf{u}\|_{2}=1$, one has

$$
\begin{equation*}
\mathbb{E}\left[\left(\mathbf{u}^{\top} \mathbf{X}\right)^{2}\right]=\sigma^{2}+\left(\mathbf{u}^{\top} \mu\right)^{2} \tag{5.11}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
\mathbb{E}\left[\left\|P_{\mathbb{U}_{1}} \mathbf{X}\right\|_{2}^{2}\right] & =\mathbb{E}\left[|\mathbf{u} \cdot \mathbf{X}|^{2}\right]=\mathbb{E}\left[\left(\mathbf{u}^{\top}(\mathbf{X}-\mu)+\mathbf{u}^{\top} \mu\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\mathbf{u}^{\top}(\mathbf{X}-\mu)\right)^{2}+2\left(\mathbf{u}^{\top} \mu\right)\left(\mathbf{u}^{\top}(\mathbf{X}-\mu)\right)+\left(\mathbf{u}^{\top} \mu\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\mathbf{u}^{\top}(\mathbf{X}-\mu)\right)^{2}\right]+2\left(\mathbf{u}^{\top} \mu\right) \mathbf{u}^{\top} \mathbb{E}[\mathbf{X}-\mu]+\left(\mathbf{u}^{\top} \mu\right)^{2} \\
& =\mathbb{E}\left[\left(\mathbf{u}^{\top}(\mathbf{X}-\mu)\right)^{2}\right]+\left(\mathbf{u}^{\top} \mu\right)^{2}=\sum_{j=1}^{d} u_{j}^{2} \mathbb{E}\left[\left(X_{j}-\mu_{j}\right)^{2}\right]=\sigma^{2}+\left(\mathbf{u}^{\top} \mu\right)^{2} .
\end{aligned}
$$

Best-Fit Subspace to a Spherical Gaussians

Lemma 18

For $p=\mathcal{N}\left(\cdot \mid \mu, \sigma^{2} \mathbf{I}\right)$ a k-dimensional subspace is a best-fit subspace for p if and only if it contains μ.

Proof: For $\mu=\mathbf{0}$, by symmetry, every k-dimensional subspace is a best-fit subspace. Assume now $\mu \neq \mathbf{0}$.
For $k=1, \mathbb{U}=\operatorname{span}\{\mathbf{u}\}$, one has $P_{\mathbb{U}} \mathbf{X}=(\mathbf{u} \cdot \mathbf{x}) \mathbf{u}$ and hence $\left\|P_{\mathbb{U}} \mathbf{X}\right\|_{2}^{2}=(\mathbf{u} \cdot \mathbf{X})^{2}$. In view of (5.11), $\mathbb{E}\left[\left\|P_{\mathbb{U}} \mathbf{X}\right\|_{2}^{2}\right]$ is maximized if and only if \mathbf{u} is parallel to μ, i.e., $|\mathbf{u} \cdot \mu|=\|\mathbf{u}\|_{2}\|\mu\|_{2}=\|\mu\|_{2} \rightsquigarrow \mu \in \mathbb{U}$.
For $k>1$: suppose $\mu \notin \mathbb{U}$. Since the orthogonal complement μ^{\perp} of μ in \mathbb{R}^{d} has dimension $d-1$ and \mathbb{U} has dimension k we must have $\operatorname{dim}\left(\mathbb{U} \cap \mu^{\perp}\right)=k-1$. Therefore, there exists an orthonormal basis $\left\{\mathbf{u}^{1}, \ldots, \mathbf{u}^{k-1}, \mathbf{u}^{k}\right\}$ of \mathbb{U} where

$$
\begin{equation*}
\mu^{\top} \mathbf{u}^{j}=0, \quad j=1, \ldots, k-1 \tag{5.12}
\end{equation*}
$$

As before, denoting by \mathbf{U}_{r} the matrices with columns $\mathbf{u}^{1}, \ldots, \mathbf{u}^{r}$, we recall from (5.9) that $P_{\mathbb{U}} \mathbf{X}=\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{x}$ and (since $\mathbf{U}_{k}^{\top} \mathbf{U}_{k}=\mathbf{I}_{k}$)

$$
\begin{align*}
&\left\|P_{U} \mathbf{x}\right\|_{2}^{2}=\left(P_{U} \mathbf{x}\right)^{\top} P_{\mathbb{U}} \mathbf{x}=\mathbf{x}^{\top} \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{x}=\mathbf{x}^{\top} \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{x}=\sum_{j=1}^{k}\left(\mathbf{x}^{\top} \mathbf{u}^{j}\right)^{2} \quad \rightsquigarrow \text { consider } \tag{5.13}\\
& \mathbb{E}\left[\left\|P_{\mathbb{U}} \mathbf{X}\right\|_{2}^{2}\right]=\sum_{j=1}^{k} \mathbb{E}\left[\left(\mathbf{X}^{\top} \mathbf{u}^{j}\right)^{2}\right] \stackrel{(5.11),(5.12)}{=}(k-1) \sigma^{2}+\left(\mathbf{u}^{k} \cdot \mu\right)^{2} \text { maximal iff } \mathbf{u}^{k}=a \mu
\end{align*}
$$

Best-Fit Subspace to a Spherical Gaussians

Proof of Theorem 16: Let $p=w_{1} p_{1}+\cdots+w_{k} p_{k}$ be the Gaussian mixture (i.e., $\left.p_{j}(\mathbf{x})=\mathcal{N}\left(\mathbf{x} \mid \mu_{j}, \sigma^{2} \mathbf{I}\right)\right)$ and let \mathbb{U} be any subspace of \mathbb{R}^{d} of dimension k. It can be spanned by an orthonormal basis $\left\{\mathbf{u}^{1}, \ldots, \mathbf{u}^{k}\right\}$.
Then, by (5.13) and linearity of \mathbb{E},

$$
\mathbb{E}_{\sim p}\left[\left\|P_{\mathbb{U}} \mathbf{X}\right\|_{2}^{2}\right]=\sum_{l=1}^{k} w_{l} \mathbb{E} \sim p_{l}\left[\left\|P_{\mathbb{U}} \mathbf{X}\right\|_{2}^{2}\right] .
$$

This sum is maximized if each summand is maximized. By Lemma 18, this is the case if and only if \mathbb{U} contains the means $\mu_{j}, j=1, \ldots, k$.

Outline of a Separation Algorithm

(1) (Ideally) find the best-fit subspace \mathbb{U}_{k} that contains the centers $\mu_{j}, j=1, \ldots, k$.
(2) By Lemma 12, the projection of a spherical Gaussian to \mathbb{U}_{k} is still (now a k-dimensional) Gaussian with the same variance σ^{2}.
(3) Suppose $\mathfrak{X}=\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{N}\right\} \subset \mathbb{R}^{d}$ is the given set of samples from the mixture distribution. Let $\mathfrak{X}^{k}=\left\{\mathbf{x}^{1, k}, \ldots, \mathbf{x}^{N, k}\right\} \mid \subset \mathbb{U}_{k}$ be the projected sample set, i.e., $\mathbf{x}^{j, k}=P_{\mathbb{U}_{k}} \mathbf{x}^{j}$, $j=1, \ldots, k$, and denote by $\Delta_{i, j}:=\left\|\mathbf{x}^{j, k}-\mathbf{x}^{i, k}\right\|_{2}$ the mutual distances in \mathbb{U}_{k}. Note: since the centers μ_{j} already belong to \mathbb{U}_{k} their distances don't change under projection

$$
\begin{equation*}
\left\|\mu_{j}-\mu_{i}\right\|_{2}=\left\|P_{\mathbb{U}_{k}}\left(\mu_{j}-\mu_{i}\right)\right\|_{2}, \quad i \neq j \leq k \tag{5.14}
\end{equation*}
$$

4. By the methods discussed in the preceding section, one can separate Gaussians in \mathbb{R}^{k} provided that their centers satisfy

$$
\begin{equation*}
\left\|\mu_{i}-\mu_{j}\right\|_{2} \geq C k^{1 / 4} \tag{5.15}
\end{equation*}
$$

which is only a small threshold (independent of d) when k is bounded uniformly.
(5) Exploit the latter fact to cluster \mathfrak{X}^{k} into k clusters $\mathcal{C}_{j}, j=1, \ldots, k$, where now with high probability the points in \mathcal{C}_{j} come from the Gaussian $p_{j}=\mathcal{N}\left(\cdot \mid \mu_{j}, \sigma^{2} \mathbf{I}\right)$.
(6) Compute for each \mathcal{C}_{j} estimates $\mu_{j, M L}, \sigma_{j, M L}^{2}$ by means of the Maximum-Likelihood Estimator (in \mathbb{R}^{k}, see Remark 13) from the previous section, and set $\sigma^{2}=\frac{1}{k} \sum_{j=1}^{k} \sigma_{j, M L}^{2}$.
(7) Set $\mathbf{M}:=\left(\mu_{1, M L}, \ldots, \mu_{k, M L}\right) \in \mathbb{R}^{d \times k}, \mathbf{y}:=\frac{1}{N} \sum_{j=1}^{N} \mathbf{x}^{j}, \rightsquigarrow \mathbf{y} \approx \mathbb{E} \sim p[\mathbf{X}]=\sum_{l=1}^{k} w_{l} \mu_{l}$, $\rightsquigarrow \mathbf{y} \approx \sum_{l=1}^{k} w_{l} \mu_{l, M L} ;$ compute $\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right)^{\top} \in \mathbb{R}^{k}$ by $\mathbf{w}=\operatorname{argmin}_{\mathbf{v} \geq \mathbf{0}}\|\mathbf{M v}-\mathbf{y}\|_{2}^{2}$.

Outline of a Separation Algorithm

Items (1) and (5) in the above sketch require further comments:
ad (1): One cannot compute the exact best-fit subspace \mathbb{U}_{k} because one cannot carry out the required maximization exactly.
Simple idea: maximize instead with respect to the empirical mean, i.e.,

$$
\begin{equation*}
\underset{\operatorname{dim} \mathbb{U}=k}{\operatorname{argmax}} \mathbb{E}\left[\left\|P_{\mathbb{U}} \mathbf{X}\right\|_{2}^{2}\right] \leftrightarrow \underset{\operatorname{dim} \mathbb{U}=k}{\operatorname{argmax}}\left\{\frac{1}{N} \sum_{i=1}^{N}\left\|P_{\mathbb{U}} \mathbf{x}^{i}\right\|_{2}^{2}\right\} \tag{5.16}
\end{equation*}
$$

Consider first $k=1, \mathbb{U}=\operatorname{span}\{\mathbf{u}\},\|\mathbf{u}\|_{2}=1, \rightsquigarrow$

$$
\begin{equation*}
\mathbf{u}^{1}=\underset{\|\mathbf{u}\|_{2}=1}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{i} \cdot \mathbf{u}\right)^{2} . \tag{5.17}
\end{equation*}
$$

Let \boldsymbol{A} denote the matrix whose rows are the \mathbf{x}^{i}, i.e., $\boldsymbol{A} \in \mathbb{R}^{N \times d}$. Then, (5.17) can be equivalently restated as

$$
\begin{equation*}
\mathbf{u}^{1}=\mathbf{u}^{1}(\mathfrak{X})=\underset{\|\mathbf{u}\|_{2}=1}{\operatorname{argmax}}\left\|\boldsymbol{A}^{\top} \mathbf{u}\right\|_{2}^{2}=\underset{\|\mathbf{u}\|_{2}=1}{\operatorname{argmax}} \mathbf{u}^{\top} \boldsymbol{A A}^{\top} \mathbf{u} . \tag{5.18}
\end{equation*}
$$

As shown in Lecture I (see e.g. the proof ofTheorem 39, or Lemma 43), \mathbf{u}^{1} is the first left singular vector of the matrix \boldsymbol{A} and

$$
\begin{equation*}
\max _{\|\mathbf{u}\|_{2}=1} \frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{i} \cdot \mathbf{u}\right)^{2}=\frac{\sigma_{1, \mathfrak{x}}^{2}}{N}, \quad\left(\text { where } \sigma_{1, \mathfrak{x}} \text { is the largest singular value of } \boldsymbol{A} .\right) \tag{5.19}
\end{equation*}
$$

Outline of a Separation Algorithm

Returning to (5.16), we take up on the PCA Greedy Construction of the SVD in Lecture I, page 75 , (6.16) and successively maximize at the ith stage $\mathbf{u}^{\top} \boldsymbol{A} \boldsymbol{A}^{\top} \mathbf{u}$ over those unit vectors \mathbf{u}, $\|\mathbf{u}\|_{2}=1$, which are orthogonal to the previously computed directions $\mathbf{u}^{1}, \ldots, \mathbf{u}^{i-1}$ for $i \leq k$. Hence, for $r \leq k$

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{i} \cdot \mathbf{u}^{r}\right)^{2}=\max _{\|\mathbf{u}\|_{2}=1 ; \mathbf{u} \perp \mathbf{u}^{s}, s<r} \frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{i} \cdot \mathbf{u}\right)^{2} \tag{5.20}
\end{equation*}
$$

Let us again denote by \mathbf{U}_{k} the matrix whose columns are these pairwise orthonormal vectors \mathbf{u}^{i}. Thus $P_{\mathbb{U}_{k}} \mathbf{x}=\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{x}$ and

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N}\left\|P_{\mathbb{U}_{k}} \mathbf{x}^{i}\right\|_{2}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{i}\right)^{\top} \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{x}^{i}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{i}\right)^{\top} \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{x}^{i} \cdot=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{k}\left(\mathbf{u}^{j} \cdot \mathbf{x}^{i}\right)^{2} \\
& =\sum_{j=1}^{k}\left\{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}^{j} \cdot \mathbf{x}^{i}\right)^{2}\right\}=\sum_{j=1}^{k} \frac{\sigma_{j, x}^{2}}{N}
\end{aligned}
$$

i.e., in view of (5.20), each summand in the curly brackets is maximized by the greedy basis.

Outline of a Separation Algorithm

Corollary 19

Step (1) in the algorithm can be realized approximately by computing the SVD of the point cloud $\boldsymbol{A}^{\top} \leftrightarrow \mathfrak{X}$. The subspace generated by the first left singular vectors $\mathbf{u}^{i}, i=1, \ldots, k$, is an approximation to the exact best-fit subspace The larger the number N of samples \mathbf{x}^{i}, the closer is the empirical mean to the true expectation, i.e., the discrete maximization in (5.16) yields better and better approximations to the exact best-fit subspace. The singuar values $\sigma_{j, \mathfrak{x}}^{2}$ are approximations of σ^{2}.

The accuracy of the SVD based subspace affects the accuracy of the estimation for the means $\mu_{j, M L}$ taking place in the approximate subspace. ad (5):

- Compute first all pairwise distances $\Delta_{i, j}$ (in \mathbb{U}_{k}) and order them by increasing size $\Delta_{i_{r}, j_{r}}$; pick the smallest $r=s$ such that $\Delta_{i_{s}, j_{s}} \geq \sqrt{2 d}+a=: \delta$; find a, c such that $\Delta_{i_{s}, j_{s}} \geq \sqrt{2 d}+c k^{1 / 4}=: \Delta$ holds for all $s>r$.
- Put all pairs (i, j) into \mathcal{S}, for which $\left\|\mathbf{x}^{j, k}-\mathbf{x}^{i, k}\right\|_{2} \leq \delta$, put all pairs with $\left\|\mathbf{x}^{j, k}-\mathbf{x}^{i, k}\right\|_{2} \geq \Delta$ into \mathcal{L}.

Outline of a Separation Algorithm

- Consider the triangular array

$$
T=\left(\begin{array}{ccccc}
(1,2), & (1,3), & (1,4), & \cdots & ,(1, N) \\
& (2,3), & (2,4), & \cdots & ,(2, N) \\
& & \vdots & \cdots & , \\
& & & & ,(N-1, N)
\end{array}\right)
$$

Let $T_{\mathcal{S}}$ be the sub-array for which all pairs belong to \mathcal{S}. Two pairs are connected if the have a common index. A subset of pairs is connected if any two of them can be connected by a path of connected pairs. The "content" of a connected subset is the set of involved indices. Each cluster \mathcal{C}_{j} corresponds to the content of a maximal connected set of pairs in $T_{\mathcal{S}}$.

- Exercise: Design an efficient way of finding these sets.

