IV - High-Dimensional Geometry and Some Applications

Math 728 D - Machine Learning & Data Science - Spring 2019

Contents

- 1 Volumes in High Dimensions
- 2 Concentration of Measure
- 3 Dimension Reduction
 - First Applications to Simple Estimation Problems
 - Separating Gaussians
 - Fitting a Gaussian
 - Gaussian Mixtures and Clustering

Effect of Shrinking

Consider $A \subset \mathbb{R}^d$ measurable, $\epsilon \in (0, 1)$, $(1 - \epsilon)A := \{(1 - \epsilon)\mathbf{x} : \mathbf{x} \in A\}$; let

$$\operatorname{vol}(A) = \operatorname{vol}_d(A) := \int_A \chi_A(\mathbf{x}) d\mathbf{x}$$
 (volume of A).

Then

$$\operatorname{vol}((1-\epsilon)A) = (1-\epsilon)^{d} \operatorname{vol}(A). \tag{2.1}$$

Argument: this holds for any *d*-dimensional cube (induction on *d*); cover *A* by cubes of smaller and smaller size; additivity of the volumes of the cubes + each cube shrinks by factor $(1 - \epsilon)^d$, measurability of *A* (see Lecture II, page 6) \rightsquigarrow (2.1).

Hence

$$\frac{\operatorname{vol}((1-\epsilon)A)}{\operatorname{vol}(A)} = (1-\epsilon)^d \le e^{-\epsilon d},$$
(2.2)

i.e., such fractions decay exponentially when *d* increases.

The Euclidean Ball/Sphere

Define

$$B_d := \{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 \le 1 \} \quad S_d := \{ \mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 = 1 \} = \partial B_d.$$

We are interested in the quantities

$$V(d) := \operatorname{vol}_d(B_d), \quad A(d) := \operatorname{vol}_{d-1}(S_d).$$

Cartesian Coordinates:

$$V(d) = \int_{x_1=-1}^{x_1=1} \int_{x_2=-\sqrt{1-x_1^2}}^{x_2=\sqrt{1-x_1^2}} \cdots \int_{x_d=-\sqrt{1-x_1^2-\cdots-x_{d-1}^2}}^{x_d=\sqrt{1-x_1^2-\cdots-x_{d-1}^2}} dx_d dx_{d-1} \cdots dx_2 dx_1,$$

or, in radial coordinates:

$$V(d) = \int_{S_d} \int_{r=0}^{1} r^{d-1} dr dA = \int_{S_d} dA \int_{r=0}^{1} r^{d-1} dr = \frac{A(d)}{d}.$$

How to compute A(d)?

The Euclidean Ball/Sphere

Compute instead

$$G(d) := \int_{\mathbb{R}^d} e^{-\|\mathbf{x}\|_2^2} d\mathbf{x} = \prod_{j=1}^d \int_{\mathbb{R}} e^{-x_j^2} dx_j = \pi^{\frac{d}{2}} \quad (\text{since } \int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}).$$
(2.3)

Calculate G(d) using polar coordinates $(e^{-\|\mathbf{x}\|_2^2} = e^{-r^3}$ for **x** in the sphere with radius *r*)

$$G(d) = \int_{S_d} dA \int_0^\infty e^{-r^2} r^{d-1} dr = A(d) \int_0^\infty e^{-r^2} r^{d-1} dr = A(d) \frac{1}{2} \Gamma\left(\frac{d}{2}\right).$$
(2.4)

where $\Gamma(x) := \int_{0}^{\infty} e^{-z} z^{x-1} dx$ is the Gamma-function (generalizing the factorial $\Gamma(n+1) = n!$). (2.3), (2.4) $\Rightarrow \qquad A(d) = 2\pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)^{-1} \quad \rightsquigarrow \qquad (2.5)$

Remark 1

$$V(d) = rac{2}{d} \pi^{rac{d}{2}} \Gamma\left(rac{d}{2}
ight)^{-1}, \quad A(d) = 2\pi^{rac{d}{2}} \Gamma\left(rac{d}{2}
ight)^{-1}.$$

Compare with the volume 2^d von the ℓ_{∞}^d ball $[-1, 1]^d$; what is the probability of uniform samples over $[-1, 1]^d$ to land in B_d ?

Concentration of Measure

Most of the measure of B_d is concentrated for large *d* in a slab around an equator. W.I.o.g. let e^1 be the north pole.

Theorem 2

Let $c \geq 1$ and

$$Sl(c) = \{ \mathbf{x} \in B_d : |x_1| \le c/\sqrt{d-1} \}.$$

Then, for $d \ge 3$

$$\frac{\operatorname{vol}(SI(c))}{\operatorname{vol}(B_d)} \ge 1 - \frac{2}{c} e^{-c^2/2}.$$
(3.1)

Proof of Theorem 2: Use notation in the above figure. By symmetry, it suffices to show that

$$\frac{\operatorname{vol}(A)}{\operatorname{vol}(H)} \le \frac{2}{c} e^{-c^2/2}.$$
(3.2)

Upper bound for vol(*A*): Consider a disk at height $x_1 \ge 0$ of (infinitesimally small) width δx_1 whose top face is a (d-1) dimensional ball of radius $\sqrt{1-x_1^2}$. Since the surface area is $V(d-1)(1-x_1^2)^{\frac{d-1}{2}}$ its volume is $\delta x_1 V(d-1)(1-x_1^2)^{\frac{d-1}{2}}$. The volume of *A* is obtained by adding the volumes of these disks and letting $\delta x_1 \to 0$; \sim

$$\operatorname{vol}(A) = \int_{\frac{c}{\sqrt{d-1}}}^{1} V(d-1)(1-x_1^2) \overset{d-1}{\stackrel{2}{\overset{-1}{2}}} dx_1 \overset{(1-x) \leq e^{-x}}{\leq} \int_{\frac{c}{\sqrt{d-1}}}^{\infty} V(d-1)e^{-x_1^2 \frac{d-1}{2}} dx_1$$
$$\frac{\frac{x_1\sqrt{d-1}}{c}}{\stackrel{2}{\leq}} 1 V(d-1) \frac{\sqrt{d-1}}{c} \int_{\frac{c}{\sqrt{d-1}}}^{\infty} x_1 e^{-x_1^2 \frac{d-1}{2}} dx_1.$$

Since $\int_{\frac{c}{\sqrt{d-1}}}^{\infty} x_1 e^{-x_1^2 \frac{d-1}{2}} dx_1 = -(d-1)^{-1} e^{-x_1^2 \frac{d-1}{2}} \Big|_{\frac{c}{\sqrt{d-1}}}^{\infty} = (d-1)^{-1} e^{-c^2/2} \rightsquigarrow$ $\operatorname{vol}(A) \le \frac{V(d-1)}{c\sqrt{d-1}} e^{-c^2/2}.$ (3.3)

Proof of Theorem 2 continued: Lower bound for vol(H):

Consider the cylinder $(x_1 = (d-1)^{-1/2})$

$$C := (0, (d-1)^{-1/2}) \times (1 - (d-1)^{-1})^{1/2} V(d-1) \quad \rightsquigarrow \quad \operatorname{vol}(C) = \frac{(1 - (d-1)^{-1})^{\frac{d-1}{2}}}{\sqrt{d-1}} V(d-1)$$

For $a \ge 1$ one has $(1 - x)^a \ge 1 - ax$ (note that for $d \ge 3$ one has $a := (d - 1)/2 \ge 1) \rightsquigarrow$

$$\operatorname{vol}(H) \ge \operatorname{vol}(SI(1)) \ge \operatorname{vol}(C) = \frac{(1-(d-1)^{-1})^{\frac{d-1}{2}}}{\sqrt{d-1}}V(d-1) \ge \frac{\frac{1}{2}}{\sqrt{d-1}}V(d-1).$$

By (3.3)

$$\frac{\operatorname{vol}(A)}{\operatorname{vol}(H)} \leq \frac{\frac{V(d-1)}{c\sqrt{d-1}}e^{-c^2/2}}{\frac{1}{2}\sqrt{d-1}}V(d-1) = \frac{2}{c}e^{-c^2/2}.$$

Near Orthogonality

Consequences:

Theorem 3

Draw n points $\mathbf{x}^1, \ldots, \mathbf{x}^n$ at random (uniform distribution) from the unit ball B_d : then with probability at least 1 - 1/n, one has

$$\bigcirc \ \|\mathbf{x}^i\|_2 \geq 1-rac{2\log n}{d}$$
 for all $i\in\{1,2,\ldots,n\}$ and

$$2 |\mathbf{x}^i \cdot \mathbf{x}^j| \le \frac{\sqrt{6 \log n}}{\sqrt{d-1}} \text{ for all } i \neq j.$$

Comments:

- (1) says that n randomly drawn points accumulate with the higher probability near the boundary S_d of B_d the larger d.
- (2) says that the inner product of any two of the *n* randomly drawn points is close to zero with high probability when *d* gets large. In view of (1) this actually means that the larger *d* "the more orthogonal" get pairs of randomly drawn points (recall: $\frac{|\mathbf{x}\cdot\mathbf{y}|}{\|\mathbf{x}\|\|_{1}} = \cos(\angle(\mathbf{x},\mathbf{y}))$)
- Theorem 3 quantifies the earlier observations derived from the Law of Large Numbers in Lecture II.
- Estimating probabilities in conjunction with "for all" statements is usually done with the aid
 of so called union bounds, see next page.

Union Bounds a frequent argument

The Union Bound is a frequently used "argument macro" which is a Boolean inequality and often comes in the following form.

Remark 4

Let $X_j \sim (\mathcal{X}, \mathcal{B}, \mathcal{P}), j \in \mathcal{I}$. Assume that for some $A \in \mathcal{B}$ and each X_j one knows that $\operatorname{Prob}(X_j \notin A) \leq \delta_j, j \in \mathcal{I}$. Then

$$\operatorname{Prob}\Big(\forall j \in \mathcal{I} : X_j \in \mathcal{A}\big) \ge 1 - \sum_{j \in \mathcal{I}} \delta_j.$$
(3.4)

In detail:

$$\operatorname{Prob}(\forall j \in \mathcal{I} : X_j \in A) = 1 - \operatorname{Prob}(\exists j \text{ such that } X_j \notin A).$$
(3.5)

Defining the event $A_j = \{ \omega \in \Omega : X_j \notin A \}$,

$$\operatorname{Prob}\left(\exists j \in \mathcal{I} \text{ such that } X_j \notin A\right) = \operatorname{Prob}\left(\operatorname{or}_{j \in \mathcal{I}}(X_j \notin A)\right) = P\left(\bigcup_{j \in \mathcal{I}} A_j\right) \leq \sum_{j \in \mathcal{I}} P(A_j)$$

$$= \sum_{j \in \mathcal{I}} \operatorname{Prob}(X_j \notin A) \leq \sum_{j \in \mathcal{I}} \delta_j.$$
(3.6)

 $(3.6) + (3.5) \Rightarrow (3.4).$

Proof of Theorem 3: ad (1): Let X be uniformly distributed over B_d . By (2.2)

$$\operatorname{Prob}\left(\|\mathbf{X}\|_{2} < 1 - \epsilon\right) \leq \frac{\operatorname{vol}((1 - \epsilon)B_{d})}{\operatorname{vol}(B_{d})} \leq e^{-\epsilon d}$$

Thus, for each fixed $i \in \{1, \ldots, n\}$

$$\operatorname{Prob}\left(\|\mathbf{X}^{i}\|_{2} < 1 - \frac{2\log n}{d}\right) \leq e^{-\left(\frac{2\log n}{d}\right)d} = \frac{1}{n^{2}}.$$

Hence

$$\begin{aligned} \operatorname{Prob}\left(\exists i \text{ s.t. } \|\mathbf{X}^{i}\|_{2} < 1 - \frac{2\log n}{d}\right) \\ &\leq P\left(\left\{\mathbf{X}^{1}: \|\mathbf{X}^{1}\|_{2} < 1 - \frac{2\log n}{d}\right\} \cup \dots \cup \left\{\mathbf{X}^{n}: \|\mathbf{X}^{n}\|_{2} < 1 - \frac{2\log n}{d}\right\}\right) \\ &\leq \frac{n}{n^{2}} = \frac{1}{n} \quad \Rightarrow \quad \operatorname{Prob}\left(\forall i \|\mathbf{X}^{i}\|_{2} \geq 1 - \frac{2\log n}{d}\right) \geq 1 - \frac{1}{n} \quad \rightsquigarrow \quad (1), \end{aligned}$$

where we have used the union bound, see Remark 4 with $A_j \leftrightarrow \left(\|\mathbf{X}^j\|_2 \geq 1 - \frac{2\log n}{d} \right)$.

Proof of Theorem 3 continued: ad (2): For any fixed among the $\binom{n}{2}$ pairs (i, j) we let $\mathbf{X}^i = X_1 \mathbf{e}^1$ have the direction of the north pole, i.e., $\|\mathbf{X}^i\|_2 = |X_1^i|$. By Theorem 2,

$$\operatorname{Prob}\left(|X_1^j| > \frac{c}{\sqrt{d-1}}\right) = \frac{\operatorname{vol}(B_d \setminus Sl(c))}{\operatorname{vol}(B_d)} \leq \frac{2}{c}e^{-c^2/2}.$$

Therefore, taking $c = \sqrt{6 \log n}$, the probability that the projection of **X**^{*j*} to the north pole-direction is more than $\sqrt{\frac{6 \log n}{d-1}}$ can be bounded by (since $6 \log 2 > 4$)

$$\operatorname{Prob}\left(|X_1^j| > \sqrt{\frac{6\log n}{d-1}}\right) \le \frac{2}{\sqrt{6\log n}}e^{-\frac{6\log n}{2}} \le n^{-3}.$$

The same union bound (Remark 4) implies that the probability, that for some pair (i, j) one has $|\mathbf{X}^i \cdot \mathbf{X}^j| > \sqrt{\frac{6 \log n}{d-1}}$, is bounded by $\binom{n}{2} \cdot n^{-3} \le \frac{1}{2n} \Rightarrow (2)$

Uniform Random Sampling from the Sphere S_d

Let $X_j \sim \mathcal{N}(0, 1), j = 1, \dots, d$, independent standard Gaussians; \rightsquigarrow joint density

$$p_d(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mathbf{0},\mathbf{I}) = \prod_{j=1}^d \mathcal{N}(x_j|0,1) = \frac{1}{(2\pi)^{d/2}} e^{-\frac{x_1^2 + \dots + x_d^2}{2}} = \frac{1}{(2\pi)^{d/2}} e^{-\frac{1}{2} \|\mathbf{x}\|_2^2}.$$

It is easy to sample according to $\mathcal{N}(x_j|0, 1)$ - why? \rightsquigarrow sample according to $p_d \rightsquigarrow \mathbf{X} \rightsquigarrow \mathbf{Y} = \mathbf{X}/\|\mathbf{X}\|_2$

Note: components of Y are no longer independent!

Question: how to sample uniformly from B_d ?

Gaussian Annulus Theorem

The next theorem describes where the mass of a spherical Gaussian density in high dimensions is concentrated.

Theorem 5

Let $\mathcal{N}(\mathbf{x}|\mathbf{0},\mathbf{I}) = \prod_{j=1}^{d} \mathcal{N}(x_j|0,1)$ be the *d*-dimensional standard spherical Gaussian density and $\mathbf{X} \sim \mathcal{N}(\mathbf{0},\mathbf{I})$. Then, for any $\beta \leq \sqrt{d}$

$$\operatorname{Prob}\left(\sqrt{d} - \beta \leq \|\mathbf{X}\|_{2} \leq \sqrt{d} + \beta\right) = \int_{\sqrt{d} - \beta \leq \|\mathbf{X}\|_{2} \leq \sqrt{d} + \beta} \mathcal{N}(\mathbf{x}|\mathbf{0},\mathbf{I})d\mathbf{x} \geq 1 - 3e^{-c\beta^{2}}, \quad (3.7)$$

where c is a fixed positive constant.

Intuition: $\mathbf{X} \sim \mathcal{N}(\mathbf{x}|\mathbf{0},\mathbf{I}) \rightsquigarrow \mathbb{E}[||\mathbf{X}||_2^2] = \sum_{j=1}^d \mathbb{E}[X_j^2] = \sum_{j=1}^d \operatorname{var}[X_j] = d$. Thus the expected distance of a point, drawn from $\mathcal{N}(\mathbf{0},\mathbf{I})$, from the origin (the mean) is \sqrt{d} . Theorem 5 says that randomly drawn points indeed concentrat tightly around the sphere of radius \sqrt{d} .

Proof of Theorem 5: Note

$$\sqrt{d} - \beta \le \|\mathbf{X}\|_2 \le \sqrt{d} + \beta \quad \Leftrightarrow \quad |\|\mathbf{X}\|_2 - \sqrt{d}| \le \beta$$
(3.8)

 $\rightsquigarrow \text{ suffices to prove that } \operatorname{Prob}\left(|\|\mathbf{X}\|_2 - \sqrt{d}| \geq \beta\right) \leq 3e^{-c\beta^2}. \quad \text{Multiplication by } \|\mathbf{X}\|_2 + \sqrt{d} \rightsquigarrow$

$$|\|\mathbf{X}\|_2^2 - d| \ge (\|\mathbf{X}\|_2 + \sqrt{d})\beta \ge \beta\sqrt{d} \quad \rightsquigarrow$$

$$\operatorname{Prob}\left(|\|\mathbf{X}\|_2 - \sqrt{d}| \ge \beta\right) \le \operatorname{Prob}\left(|\|\mathbf{X}\|_2^2 - d| \ge \beta\sqrt{d}\right).$$

Rewrite

$$\|\mathbf{X}\|_{2}^{2} - d = \sum_{j=1}^{d} X_{j}^{2} - d = \sum_{j=1}^{d} (X_{j}^{2} - 1) =: \sum_{j=1}^{d} Y_{j} \quad \rightsquigarrow \quad \mathbb{E}[Y_{j}] = \mathbb{E}[X_{j}^{2}] - 1 = \operatorname{var}[X_{j}] - 1 = 0.$$

Goal: estimate

$$\operatorname{Prob}\left(|\|\mathbf{X}\|_{2}^{2}-d|\geq\beta\sqrt{d}\right)=\operatorname{Prob}\left(\left|\sum_{j=1}^{d}Y_{j}\right|\geq\beta\sqrt{d}\right).$$

To apply Theorem 5 we need to bound the *r*th moments of Y_i .

Proof of Theorem 5 continued: Bounding $\mathbb{E}[Y_j^r]$ ($Y_j = X_j^2 - 1$): to that end, note

$$|Y_j|^r \leq \left\{ egin{array}{ccc} 1, & ext{for} & |X_j| \leq 1, \ |X_j|^{2r}, & ext{for} & |X_j| \geq 1. \end{array}
ight.$$

$$|\mathbb{E}[Y_j^r]| = \mathbb{E}[|Y_j|^r] \le \mathbb{E}[1 + X_j^{2r}] = 1 + \mathbb{E}[X_j^{2r}] = 1 + \sqrt{\frac{2}{\pi}} \int_0^\infty x^{2r} e^{-x^2/2} dx.$$

To estimate
$$\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^{2r} e^{-x^2/2} dx$$
 use that $\Gamma(y) = \int_{0}^{\infty} x^{y-1} e^{-x} dx$:

Change of variables $z := x^2/2 \rightsquigarrow$

$$1 + \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^{2r} e^{-x^{2}/2} dx = 1 + \sqrt{\frac{1}{\pi}} \int_{0}^{\infty} 2^{r} z^{r-1/2} e^{-z} dz = 1 + \sqrt{\frac{1}{\pi}} 2^{r} \Gamma(r-1/2) \le 2^{r} r!.$$

Recall: in Lecture III, Theorem 6 we need the *r*th moment to be bounded by $\sigma^2 r!$.

$$\mathbb{E}[Y_j] = 0, \rightsquigarrow \operatorname{var}[Y_j] = \mathbb{E}[Y_j^2] \stackrel{r=2}{\leq} 2^2 \cdot 2 = 8 = \sigma_Y^2.$$

Proof of Theorem 5 continued: So far we have $|\mathbb{E}[Y_j^r]| \le 2^r r!$ but $2^r r! \ne 8^2 r! \rightsquigarrow$ another change of variables: $W_j := Y_j/2$ (Lecture II, (8.6)) \rightsquigarrow

$$\operatorname{var}[W_j] = \frac{1}{4} \operatorname{var}[Y_j] \le 2 = \sigma_W^2, \quad \mathbb{E}[W_j^r] = 2^{-r} \mathbb{E}[Y_j^r] \le r!.$$

Since

$$\operatorname{Prob}\Big(|\|\mathbf{X}\|_2^2 - d| \ge \beta \sqrt{d}\Big) = \operatorname{Prob}\Big(\Big|\sum_{j=1}^d Y_j\Big| \ge \beta \sqrt{d}\Big) = \operatorname{Prob}\Big(\Big|\sum_{j=1}^d W_j\Big| \ge \frac{\beta \sqrt{d}}{2}\Big),$$

Lecture III, Theorem 6 yields ($a = \frac{\beta \sqrt{d}}{2}$),

$$\operatorname{Prob}\left(|\|\mathbf{X}\|_{2}^{2} - d| \geq \beta \sqrt{d}\right) \leq 3e^{-\frac{a^{2}}{12d^{2}}} = 3e^{-\frac{\beta^{2}}{12\cdot8}} = 3e^{-\frac{\beta^{2}}{96}}.$$

 $\rightsquigarrow c = 1/96.$

Motivation

- One of the most frequent tasks involving high-dimensional data is nearest-neighbor-search.
- Scenario: given is a database of N points X = {x¹,..., x^N} ⊂ ℝ^d, j = 1,..., N, N, d large; X is efficiently stored.
- Task: for any query point $\mathbf{x} \in \mathbb{R}^d$ find the nearest (or approximately nearest) neighbor from \mathcal{X} .
- Wishlist: the number of queries is typically large → the response time (returning the neighbor) should be small; typically a moderately growing function of log N and log d.
 Preprocessing time is allowed to be larger, e.g. polynomial in N and d.
- An important preprocessing ingredient is dimension reduction, i.e., the projection of $\mathcal{X} \subset \mathbb{R}^d$ to \mathbb{R}^k with $k \ll d$, while approximately preserving mutual distances.

The next result shows how much the dimension can be reduced and how to find a good projection. It is an application of Theorem 5.

The Johnson-Lindenstrauss-Lemma Random Projections

For $k \leq d$ consider the random matrix

 $\boldsymbol{A} = (A_{i,j})_{i,j=1}^{k,d} \in \mathbb{R}^{k \times d} \text{ where } A_{i,j} \sim \mathcal{N}(0,1), i, j = 1, \dots, k, d, \text{ drawn independently.}$ (4.1)

Let us denote by $\mathbf{A}_i = (a_{i,1}, \dots, a_{i,d}), i = 1, \dots, k$, the rows of \mathbf{A} . Note: $\mathbf{A}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

We will see: the mapping $\mathbf{x} \in \mathbb{R}^d \mapsto A\mathbf{x} \in \mathbb{R}^k$ is with high probability (regarding the choice of A) near-distance preserving..

Theorem 6

Let $\mathbf{x} \in \mathbb{R}^d$ be fixed and let the random matrix \mathbf{A} be given by (4.1). Then

$$\operatorname{Prob}\left(\left|\|\boldsymbol{A}\boldsymbol{x}\|_{2}-\sqrt{k}\|\boldsymbol{x}\|_{2}\right|\geq\epsilon\sqrt{k}\|\boldsymbol{x}\|_{2}\right)\leq 3e^{-ck\epsilon^{2}},\tag{4.2}$$

where c is the constant from Theorem 5 and the probability is taken with respect to $\mathcal{N}(\cdot|\mathbf{0},\mathbf{I})^k$.

Remark: Since **A** is linear, for any fixed $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ one has

$$\left|\frac{\|k^{-1/2}\boldsymbol{A}(\mathbf{x}-\mathbf{y})\|_2}{\|\mathbf{x}-\mathbf{y}\|_2}-1\right|\leq\epsilon$$

with probability at least $1 - 3e^{-ck\epsilon^2}$.

Proof of Theorem 6: Ax is the vector with components $\mathbf{A}_i \cdot \mathbf{x}$, i = 1, ..., k. Dividing both sides in $\operatorname{Prob}\left(\left|\|\mathbf{A}\mathbf{x}\|_2 - \sqrt{k}\|\mathbf{x}\|_2\right| \ge \epsilon\sqrt{k}\|\mathbf{x}\|_2\right)$ by $\|\mathbf{x}\|_2$, we can assume without loss of generality that $\|\mathbf{x}\|_2 = 1$ (the statement is about relative accuracy). By Lecture II, Corollary 18 and (10.9), the sum of independent Gaussians is Gaussian whose variance is the sum of variances.

$$\operatorname{var}[\mathbf{A}_{i} \cdot \mathbf{x}] = \sum_{j=1}^{d} x_{j}^{2} \operatorname{var}[\mathbf{A}_{i,j}] = \sum_{j=1}^{d} x_{j}^{2} = \|\mathbf{x}\|_{2}^{2} = 1.$$

Hence $A_1 \cdot \mathbf{x}, \ldots, A_k \cdot \mathbf{x}$ are independent Gaussian variables $\sim \mathcal{N}(0, 1)$. Hence $A\mathbf{x}$ is a *k*-dimensional spherical Gaussian random variable with unit variance in each coordinate.

Theorem 5 (with *d* replaced by *k* and using (3.8)) $\Rightarrow \operatorname{Prob}\left(\left|\|\mathbf{Ax}\|_2 - \sqrt{k}\right| \ge \epsilon \sqrt{k}\right) \le 3e^{-ck\epsilon^3}$. \Box

Dimension Reduction

The Johnson-Lindenstrauss-Lemma

The JL-Lemma is based on the random projection (4.1): define

$$\mathbf{F}(\mathbf{x}) := \frac{1}{\sqrt{k}} \mathbf{A} \mathbf{x}.$$
 (4.3)

Theorem 7

Given: any $\epsilon \in (0, 1)$, $N \in \mathbb{N}$; let $k \ge \frac{3 \log N}{c\epsilon^2}$, where *c* is the constant from Theorem 5. Claim: for any set $\mathcal{X} = \{\mathbf{x}^1, \dots, \mathbf{x}^N\} \subset \mathbb{R}^d$, the mapping **F**, defined by (4.3), satisfies for all pairs $\mathbf{x}^i, \mathbf{x}^j \in \mathcal{X}$ $(1 - \epsilon) \|\mathbf{x}^i - \mathbf{x}^j\|_2 \le \|\mathbf{F}(\mathbf{x}^i) - \mathbf{F}(\mathbf{x}^j)\|_2 \le (1 + \epsilon) \|\mathbf{x}^i - \mathbf{x}^j\|_2$ (4.4)

holds with probability at least $1 - \frac{3}{2N}$.

Remarks:

- The reduced dimension k does not depend on the ambient dimension d, but only on the number N of projected points.
- The dependence of *k* on *N* is only logarithmic.
- There is a close connection between random projections and the Compressive Sensing paradigm discussed later in the course (if time permits).

Proof of Theorem 7: Fix any pair $\mathbf{x}^i, \mathbf{x}^j \in \mathcal{X}$. By the Random Projection Theorem 6, the probability of $\|\mathbf{F}(\mathbf{x}^i) - \mathbf{F}(\mathbf{x}^i)\|_2 = \|\mathbf{F}(\mathbf{x}^i - \mathbf{x}^j)\|_2$ being outside the interval $[(1 - \epsilon)\|\mathbf{x}^i - \mathbf{x}^j\|_2, (1 + \epsilon)\|\mathbf{x}^i - \mathbf{x}^j\|_2]$, is at most $3e^{-ck\epsilon^2}$.

For $k \ge \frac{3 \log N}{c\epsilon^2}$, this probability is at most $3/N^3$. Since there are $\binom{N}{2} < N^2/2$ such pairs, the assertion follows from a union bound, see Remark 4.

П

Mixtures of Gaussians - An Example

Gaussian mixtures: are often used to model heterogeneous data coming from multiple sources

Example: The heights of individuals in a fixed age range in a city are being recorded. On average men are taller than women \rightsquigarrow Model:

f-height: $\mu_1 + X_1$, $X_1 \sim \mathcal{N}(0, \sigma_1^2)$; m-height: $\mu_2 + X_2$, $X_2 \sim \mathcal{N}(0, \sigma_2^2)$. $\Rightarrow p(x) = w_1 \mathcal{N}(x|\mu_1, \sigma_1^2) + w_2 \mathcal{N}(x|\mu_2, \sigma_2^2)$, (5.1)

where the mixture weights w_1 , w_2 represent the proportions of females, males in the city.

Problem: Given access to sample from the density p(x), i.e., heights of individuals without knowing the gender, reconstruct the parameters μ_i , σ_i^2 , i = 1, 2 for the mixture model (5.8).

Notice: since there are shorter men than some women, given a height, it is not clear whether it comes from a female or male.

One could ask analogous questions for more attributes $X_1, ..., X_d$.

In this section: Separate two spherical Gaussians with unit-variance for large *d* but with well-separated means; later: the case of nearby means.

Separation of Gaussians

Observation 1: For two independent draws \mathbf{x}, \mathbf{y} from the same $\mathcal{N}(\mathbf{0}, \mathbf{I})$, say, one has

$$\|\mathbf{x} - \mathbf{y}\|_2 = \sqrt{2d} \pm O(1).$$
 (5.2)

Argument: By Theorem 5, **x**, **y** are with high probability within an annulus of width O(1) around the sphere with radius \sqrt{d} . W.I.o.g. we can rotate the coordinate system to obtain $\mathbf{x} = (\sqrt{d} + O(1))\mathbf{e}^1$. By Theorem 2, with high probability, $|\mathbf{y} \cdot \mathbf{e}^1| \le \sqrt{d} \cdot O((d-1)^{-1/2}) = O(1)$, i.e., $|\mathbf{x} \cdot \mathbf{y}| = O(\sqrt{d}) \rightsquigarrow$

$$\|\mathbf{x} - \mathbf{y}\|_2^2 = (\mathbf{x} - \mathbf{y})^\top (\mathbf{x} - \mathbf{y}) = \|\mathbf{x}\|_2^2 - 2\mathbf{x} \cdot \mathbf{y} + \|\mathbf{y}\|_2^2 = 2d \pm O(\sqrt{d}) \quad \Rightarrow \quad (5.2).$$

Observation 2: Consider two independent draws **x**, **y** from $\mathcal{N}(\mu_1, \mathbf{I}), \mathcal{N}(\mu_2, \mathbf{I})$, respectively, and set $\Delta := \|\mu_1 - \mu_2\|_2$. Then, with high probability one has

$$\|\mathbf{y} - \mathbf{x}\|_2^2 = \Delta^2 + 2d \pm O(\sqrt{d}).$$
 (5.3)

Argument: Adding, subtracting μ_1, μ_2 and expanding, yields

$$\|\mathbf{x}-\mathbf{y}\|_{2}^{2} = \|\mathbf{x}-\mu_{1}\|_{2}^{2} + \|\mathbf{y}-\mu_{2}\|_{2}^{2} + \Delta^{2} + 2(\mathbf{x}-\mu_{1})^{\top}(\mathbf{y}-\mu_{2}) + 2(\mathbf{x}-\mu_{1})^{\top}(\mu_{1}-\mu_{2}) - 2(\mathbf{y}-\mu_{2})^{\top}(\mu_{1}-\mu_{2}) + 2(\mathbf{x}-\mu_{1})^{\top}(\mu_{1}-\mu_{2}) - 2(\mathbf{y}-\mu_{2})^{\top}(\mu_{1}-\mu_{2}) + 2(\mathbf{x}-\mu_{1})^{\top}(\mu_{1}-\mu_{2}) - 2(\mathbf{y}-\mu_{2})^{\top}(\mu_{1}-\mu_{2}) - 2(\mathbf{y}-\mu_{2})^{\top}(\mu_{2}-\mu_{2}) - 2(\mathbf{y}-\mu_{2})^{\top}(\mu_{2$$

By the above argument, the 4th summand is $\pm O(\sqrt{d})$. Consider the slabs S_1, S_2 of width O(1) around the centers μ_1, μ_2 , which are perpendicular to $\mu_1 - \mu_2$. As argued above, with high probability $\mathbf{x} \in S_1$, $\mathbf{y} \in S_2$ so that $\mu_1 - \mu_2$ has inner products with $\mathbf{x} - \mu_1$, $\mathbf{y} - \mu_2$ of at most the order $O(\sqrt{d}) \Rightarrow (5.3)$.

Rationale: Distance D_1 between two points from the same Gaussian should be smaller than the distance D_2 bewteen two points from different Gaussians, i.e.,

$$D_1 \leq \sqrt{2d} + O(1) \stackrel{!}{\leq} \sqrt{\Delta^2 + 2d} - O(1) \leq D_2 \quad \Leftrightarrow \quad 2d + O(\sqrt{d}) \leq 2d + \Delta^2.$$

This holds when $\Delta \geq Cd^{1/4}$.

Algorithm:

- Calculate all pairwise distances between the samples;
- Identify the two clusters C_s, C_l of small and large pairwise distances; pick a pair (xⁱ, xⁱ) from C_s and fix xⁱ; define C_{s,1} as the set of all points x^j such that (xⁱ, x^j) ∈ C_l (long distance); these points come from a single Gaussian with high probability;
- the remaining points come from the other one.

One still needs to fit the clustered points to a Gaussian.

Maximum Likelihood Estimator (MLE)

Suppose that $\mathbf{x}^1, \ldots, \mathbf{x}^N$ are i.i.d samples from $\mathbf{X} \sim \mathcal{N}(\mu, \sigma^2 \mathbf{I})$ (spherical Gaussian with center $\mu \in \mathbb{R}^d$)

Goal: estimate μ and σ^2 from these points.

The joint density of the underlying random variables $\mathbf{X}^{j}, j = 1, ..., \mathbf{X}^{N}$ is the *dN*-dimensional spherical Gaussian

$$p(\mathbf{x}^{1},...,\mathbf{x}^{N}) := \mathcal{N}(\mathbf{x}^{1},...,\mathbf{x}^{N}|(\mu,...,\mu),\sigma^{2}\mathbf{I}_{dN}) = \frac{1}{(2\pi\sigma^{2})^{\frac{dN}{2}}}e^{-\frac{1}{2\sigma^{2}}\left(\|\mathbf{x}^{1}-\mu\|_{2}^{2}+...+\|\mathbf{x}^{N}-\mu\|_{2}^{2}\right)}$$

The Maximum Likelihood Estimator (MLE) determines estimates μ_{ML} , σ_{ML}^2 by maximizing this joint density for the given data $\mathbf{x}^1, \ldots, \mathbf{x}^N$.

Proposition 8

MLE provides the sample mean

$$\mu_{ML} := \frac{1}{N} (\mathbf{x}^1 + \dots + \mathbf{x}^N), \tag{5.4}$$

as estimate for μ and the discrete sample variance with respect to the sample mean

$$\sigma_{ML}^{2} = \frac{1}{dN} \sum_{j=1}^{N} \|\mathbf{x}_{j} - \mu_{ML}\|_{2}^{2}$$
(5.5)

as an estimate for σ^2 .

Proof of Proposition 8: Maximizing $p(\mathbf{x}^1, \dots, \mathbf{x}^N)$ is most conveniently done by maximizing its logarithm

$$\log p(\mathbf{x}^{1}, \dots, \mathbf{x}^{N}) = -\frac{1}{2\sigma^{2}} \sum_{j=1}^{N} \|\mathbf{x}_{j} - \mu\|_{2}^{2} - \frac{dN}{2} \log(2\sigma^{2}) - \frac{dN}{2} \log(\pi) \quad \text{(log-likelihood function).}$$
(5.6)

Maximization over μ is independent of σ^2 . Taking $E(\mu) := \sum_{j=1}^N \|\mathbf{x}_j - \mu\|_2^2$, one has $\nabla E(\mu) = 2 \sum_{j=1}^N (\mathbf{x}^j - \mu) = 0 \iff \mu = \mu_{ML}$.

Take $a := (2\sigma^2)^{-1}$, it suffices to maximize over *a*. Differentiation with respect to *a* and setting the derivative to zero, yields the unique solution a_{ML} by

$$0 = -\sum_{j=1}^{N} \|\mathbf{x}_{j} - \mu_{N}\|_{2}^{2} + \frac{dN}{2} \frac{1}{a_{ML}} \quad \Rightarrow \quad 2\sigma_{ML}^{2} = \frac{1}{a_{ML}} = \frac{2}{dN} \sum_{j=1}^{N} \|\mathbf{x}_{j} - \mu_{N}\|_{2}^{2}$$

which is (5.5)

Remark 9

The estimates μ_{ML} , σ_{ML}^2 are independent of wether the data are sampled according to $\mathcal{N}(\cdot|\mu, \sigma^2 \mathbf{I})$ or $w\mathcal{N}(\cdot|\mu, \sigma^2 \mathbf{I})$ where w > 0 is any "weight factor". How to determine such a weight?

Maximum Likelihood Estimator (MLE)

Remark 10

This can be generalized to non-spherical Gaussians $\textbf{X} \sim \mathcal{N}(\mu; \textbf{A}),$ i.e.,

$$\mathcal{N}(\mathbf{x}|\mu, \mathbf{A}) := rac{1}{(2\pi)^{d/2} |\det \mathbf{A}|^{1/2}} \exp\Big\{-rac{1}{2} (\mathbf{x}-\mu)^{\top} \mathbf{A}^{-1} (\mathbf{x}-\mu).$$

One obtains $\mu_{ML} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{x}^{j}$ as before and

$$\boldsymbol{A}_{ML} = \frac{1}{N} \sum_{j=1}^{N} (\boldsymbol{x}^{j} - \mu_{ML}) (\boldsymbol{x}^{j} - \mu_{ML})^{\top}.$$

Hint: the joint density of $X^1, \ldots, X^N \sim \mathcal{N}(\mu; A)$ is (by independence)

$$p(\mathbf{x}^{1},...,\mathbf{x}^{N}) = \prod_{j=1}^{N} \mathcal{N}(\mathbf{x}^{j}|\mu, \mathbf{A}) = \frac{1}{(2\pi)^{dN/2} |\det \mathbf{A}|^{N/2}} e^{-\frac{1}{2} \sum_{j=1}^{N} (\mathbf{x}^{j} - \mu) \mathbf{A}^{-1}(\mathbf{x}^{j} - \mu)} \rightsquigarrow$$

maximize over μ and $\mathbf{R} = \mathbf{A}^{-1}$

$$0 \stackrel{!}{=} \log p(\mathbf{x}^1, \dots, \mathbf{x}^N) = -\frac{dN}{2} \log(2\pi) - \frac{N}{2} \log |\det \mathbf{A}| - \frac{1}{2} \sum_{i=1}^N (\mathbf{x}^i - \mu) \mathbf{A}^{-1} (\mathbf{x}^i - \mu).$$

Maximizing over $\mu \rightsquigarrow$

$$\partial_{\mu} \log p(\mathbf{x}^{1}, \dots, \mathbf{x}^{N}) \stackrel{!}{=} 0 \quad \rightsquigarrow \quad 0 = \sum_{j=1}^{N} \mathbf{A}^{-1}(\mathbf{x}^{j} - \mu) = \mathbf{A}^{-1} \Big(\sum_{j=1}^{N} (\mathbf{x}^{j} - \mu) \Big) \Leftrightarrow \sum_{j=1}^{N} \mathbf{x}^{j} = N\mu.$$

Maximizing over $\mathbf{R} := \mathbf{A}^{-1} \rightsquigarrow$

$$0 \stackrel{!}{=} \frac{N}{2} \frac{d}{d\boldsymbol{R}} \log |\det \boldsymbol{R}| - \frac{1}{2} \frac{d}{d\boldsymbol{R}} \sum_{j=1}^{N} (\boldsymbol{x}^{j} - \mu_{ML}) \boldsymbol{R} (\boldsymbol{x}^{j} - \mu_{ML})$$

Notice: (chain rule)

$$\frac{d}{d\boldsymbol{R}}\log|\det\boldsymbol{R}| = \boldsymbol{R}^{-1} = \boldsymbol{A}, \quad \frac{d}{d\boldsymbol{R}}\sum_{j=1}^{N}(\boldsymbol{x}^{j}-\mu)\boldsymbol{R}(\boldsymbol{x}^{j}-\mu) = \sum_{j=1}^{N}(\boldsymbol{x}^{j}-\mu_{ML})(\boldsymbol{x}^{j}-\mu_{ML})^{\top}.$$

 \rightarrow

 \square

How good are these estimates?

Note: for each draw $\mathbf{x}^1, \ldots, \mathbf{x}^N$ one obtains estimates $\mu_{ML} = \mu_{ML}(\mathbf{X}^1, \ldots, \mathbf{X}^N)$, $\sigma_{ML} = \sigma_{ML}(\mathbf{X}^1, \ldots, \mathbf{X}^N)$ which will vary over repeated draws and are therefore also random variables.

Exercise 11

 μ_{ML} , σ_{ML} are random variables distributed according to $p(\mathbf{x}^1, \dots, \mathbf{x}^N)$. Hence we can compute the expectation of these quantities: show that

$$\mathbb{E}[\mu_{ML}] = \mu, \qquad \mathbb{E}[\sigma_{ML}^2] = \left(\frac{dN-1}{dN}\right)\sigma^2.$$
(5.7)

Thus, the maximum likelihood estimate systematically <u>underestimates</u> the true variance by the factor $\frac{dN-1}{dN}$. This results from computing σ_{ML}^2 based on the sample mean not the true mean. (5.7) \rightsquigarrow

$$\tilde{\sigma}_{ML}^{2} := \frac{dN}{dN-1} \sigma_{ML}^{2} = \frac{1}{dN-1} \sum_{j=1}^{N} \|\mathbf{x}_{j} - \mu_{ML}\|_{2}^{2}$$

is an unbiased estimator. These are special effects reflecting a more general feature of maximum likelihood methods.

Gaussian Mixtures revisited

Mixture Models: form an important class of stochastic models. They have the form

$$p = w_1 p_1 + w_2 p_2 + \dots + w_k p_k, \quad w_j \ge 0, \sum_{j=1}^k w_j = 1, \ p_j \text{ are known densities.}$$
 (5.8)

The mixture weights w_i quantify the proportion of the density p_j in the whole stochastic process. Clearly, p is again a probability density.

In this section we consider the case: $p_j(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mu_j, \sigma^2), \ \mu_j, \mathbf{x} \in \mathbb{R}^d$, under the assumptions:

- d large
- *k* ≪ *d*
- σ ~ 1

Task: Given data $\mathfrak{X} = {\mathbf{x}^1, \dots, \mathbf{x}^N} \subset \mathbb{R}^d$, estimate $w_i, \mu_i, \sigma, j = 1, \dots, k$.

Recall: before k = 2, $\|\mu_1 - \mu_2\|_2 \ge Cd^{1/4}$; now k > 2 is permitted and centers are allowed to be closer to each other.

Strategy:

- (i) Cluster the set of samples into k clusters C_j , j = 1, ..., k, where C_j corresponds to the set of samples generated according to p_i ; This is based on the discussion over the next slides
- (ii) determine μ_j , σ^2 for the Gaussian corresponding to the cluster C_j , j = 1, ..., k, as described in the previous section;
- (iii) determine the weights by a least squares method.

(i) Is Based on: Invariance of Spherical Gaussians under Projection

Lemma 12

Let $\mathbb{U} \subset \mathbb{R}^d$ be a k-dimensional subspace. Then a spherical Gaussian density $\mathcal{N}(\mathbf{x}|\mu, \sigma^2 \mathbf{I})$ restricted to \mathbb{U} is (up to normalization) again a sperical Gaussian density with the same variance.

Proof: Let $\{\mathbf{u}^1, \dots, \mathbf{u}^k\} \subset \mathbb{R}^d$ be an orthonormal basis for U. Complete the matrix \mathbf{U}_k with columns $\mathbf{u}^i, i = 1, \dots, k$, to an orthonormal matrix $\mathbf{U} = (\mathbf{U}_k, {}_{N-k}\mathbf{U})$ for \mathbb{R}^d by adding columns $\mathbf{u}^{k+1}, \dots, \mathbf{u}^N$. Then, for $\mathbf{x} = \mathbf{U}_{\mathbf{z}} = \mathbf{U}_k \mathbf{z}' + {}_{N-k} \mathbf{U} \mathbf{z}''$, where $\mathbf{z}' = (z_1, \dots, z_k), \mathbf{z}'' := (z_{k+1}, \dots, N)$,

$$\mathcal{N}(\mathbf{x}|\mu,\sigma\mathbf{I}) = \frac{1}{(\sigma^2 2\pi)^{d/2}} e^{-\frac{1}{2\sigma^2} \|\mathbf{U}(\mathbf{z} - \mathbf{U}^\top \mu)\|_2^2} = \frac{1}{(\sigma^2 2\pi)^{d/2}} e^{-\frac{1}{2\sigma^2} \|\mathbf{z} - \mathbf{U}^\top \mu\|_2^2}$$

where we have used that the Euclidean norm is invariant under orthogonal transformations. Writing $\mathbf{U}^{\top}\mu = (\mu', \mu'')$, noting that the restriction of \mathbf{x} to \mathbb{U} is $\mathbf{U}_{k}\mathbf{z}'$, and that $\|\mathbf{z} - \mathbf{U}^{\top}\mu\|_{2}^{2} = \|\mathbf{z}' - \mu''\|_{2}^{2} + \|\mathbf{z}'' - \mu''\|_{2}^{2}$ we get

$$\mathcal{N}(\mathbf{U}_{k}\mathbf{z}'|\mu,\sigma^{2}\mathbf{I}) = \frac{1}{(\sigma^{2}2\pi)^{\frac{d-k}{2}}} e^{-\frac{1}{2\sigma^{2}}||\mu''||_{2}^{2}} \frac{1}{(\sigma^{2}2\pi)^{\frac{k}{2}}} e^{-\frac{1}{2\sigma^{2}}||\mathbf{z}'-\mu'||_{2}^{2}} = C\mathcal{N}(\mathbf{z}'|\mu',\sigma^{2}\mathbf{I}),$$

as claimed.

Remark 13

When $\mu \in \mathbb{U}$, i.e., $\mu = \mathbf{U}_k \mathbf{y}$, $\mathbf{y} \in \mathbb{R}^k$, one has $\mathbf{U}^\top \mu = \mathbf{U}^\top \mathbf{U}_k \mathbf{y} = \mathbf{y}$, i.e., the projected Gaussian has the same mean as the original one. Goal: find the subspace \mathbb{U}_k spanned by the means of a Gaussian mixture.

W. Dahmen, J. Burkardt (DASIV) IV - High-Dimensional Geometry and Some

Invariance of Spherical Gaussians under Projection

Remark: Perhaps a better way to understand a "projection" of a density to a subspace \mathbb{U} is to see how it acts on functions that do not depend on variables orthogonal to \mathbb{U} . Specifically, for $\mathbf{U}, \mathbf{U}_{k, N-k}\mathbf{U}, \mathbf{z}', \mathbf{z}'', \mu'\mathbf{u}''$ as above, consider any g such that $g(\mathbf{x}) = g(\mathbf{U}\mathbf{z}) = g(\mathbf{U}_k\mathbf{z}' + _{N-k}\mathbf{U}\mathbf{z}'') = g(\mathbf{U}_k\mathbf{z}') =: \tilde{g}(\mathbf{z}')$

$$\int_{\mathbb{R}^{d}} g(\mathbf{x}) \mathcal{N}(\mathbf{x}|\mu, \sigma^{2}\mathbf{I}) d\mathbf{x} = \frac{1}{(\sigma^{2}2\pi)^{d/2}} \int_{\mathbb{R}^{d}} g(\mathbf{U}\mathbf{z}) e^{-\frac{1}{2\sigma^{2}} \|\mathbf{U}\mathbf{z}-\mu\|_{2}^{2}} d\mathbf{z} \quad \text{(since } |\det\mathbf{U}| = 1)$$

$$= \frac{1}{(\sigma^{2}2\pi)^{d/2}} \int_{\mathbb{R}^{d}} \tilde{g}(\mathbf{z}') e^{-\frac{1}{2\sigma^{2}} \|\mathbf{U}(\mathbf{z}-\mathbf{U}^{\top}\mu)\|_{2}^{2}} d\mathbf{z}$$

$$= \frac{1}{(\sigma^{2}2\pi)^{d/2}} \int_{\mathbb{R}^{d}} \tilde{g}(\mathbf{z}') e^{-\frac{1}{2\sigma^{2}} \|\mathbf{z}-\mathbf{U}^{\top}\mu\|_{2}^{2}} d\mathbf{z}$$

$$= \frac{1}{(\sigma^{2}2\pi)^{\frac{d-k}{2}}} \int_{\mathbb{R}^{d-k}} e^{-\frac{1}{2\sigma^{2}} \|\mathbf{z}'-\mu''\|_{2}^{2}} d\mathbf{z}' \cdot \frac{1}{(\sigma^{2}2\pi)^{\frac{k}{2}}} \int_{\mathbb{R}^{k}} \tilde{g}(\mathbf{z}') e^{-\frac{1}{2\sigma^{2}} \|\mathbf{z}'-\mu''\|_{2}^{2}} d\mathbf{z}'$$

$$= \frac{1}{(\sigma^{2}2\pi)^{\frac{k}{2}}} \int_{\mathbb{R}^{k}} \tilde{g}(\mathbf{z}') e^{-\frac{1}{2\sigma^{2}} \|\mathbf{z}'-\mu'\|_{2}^{2}} d\mathbf{z}'$$

$$= \int_{\mathbb{R}^{k}} \tilde{g}(\mathbf{z}') \mathcal{N}(\mathbf{z}'|\mu', \sigma^{2}\mathbf{I}) d\mathbf{z}'.$$

Let $\mathbb{U} \subset \mathbb{R}^d$ be a *k*-dimensional subspace. Therefore there exists an orthonormal basis $\{\mathbf{u}^1, \ldots, \mathbf{u}^k\} \subset \mathbb{R}^d$ forming the matrix \mathbf{U}_k . By Lecture I, page 47, (5.26),

$$\mathbf{P}_{\mathbb{U}}\mathbf{x} = \sum_{j=1}^{k} (\mathbf{x} \cdot \mathbf{u}^{j})\mathbf{u}^{j} = \mathbf{U}_{k}\mathbf{U}_{k}^{\top}\mathbf{x}$$
(5.9)

is the orthogonal projection to $\ensuremath{\mathbb{U}}.$

Definition 14

Given a probability density p on \mathbb{R}^d . Then the subspace

$$U_{k} := \underset{U \subset \mathbb{R}^{d}, \dim U = k}{\operatorname{argmax}} \mathbb{E}\left[\| \mathcal{P}_{U} \mathbf{X} \|_{2}^{2} \right]$$
(5.10)

is called the best-fit *k*-dimensional subspace (w.r.t. *p*).

Remark 15

Intuitively, $\mathbb{U}_k = \mathbb{U}_k(p)$ is the subspace that "sees most" of the density p among all k-dimensional subspaces. Compare this with Lecture I, Theorem 42, when the density p is replaced by a point cloud forming the matrix \mathbf{A} . This subspace will be seen to contain the means of the Gaussian mixture.

A first central step is to identify the best-fit subspace for a mixture of *k* spherical Gaussians.

Theorem 16

Let the density p on \mathbb{R}^d have the form (5.8) where $p_j = \mathcal{N}(\cdot|\mu_j, \sigma^2 \mathbf{I}), \mu_j \in \mathbb{R}^d, j = 1, ..., k$. Then the best-fit k-dimensional subspace \mathbb{U}_k for this mixture contains the centers $\mu_j \in \mathbb{R}^d$, j = 1, ..., k. If the μ_i are linearly dependent, the uniquely define the subspace \mathbb{U}_k .

The proof is based on several lemmas.

Lemma 17

For
$$p = \mathcal{N}(\cdot | \mu, \sigma^2 \mathbf{I})$$
, $\mathbf{X} \sim \mathcal{N}(\mu; \sigma^2 \mathbf{I})$, $\mathbf{u} \in \mathbb{R}^d$, $\|\mathbf{u}\|_2 = 1$, one has

$$\mathbb{E}[(\mathbf{u}^{\top}\mathbf{X})^2] = \sigma^2 + (\mathbf{u}^{\top}\mu)^2.$$
(5.11)

Proof:

$$\mathbb{E}[\|P_{\mathbb{U}_{1}}\mathbf{X}\|_{2}^{2}] = \mathbb{E}[|\mathbf{u}\cdot\mathbf{X}|^{2}] = \mathbb{E}[(\mathbf{u}^{\top}(\mathbf{X}-\mu)+\mathbf{u}^{\top}\mu)^{2}]$$

$$= \mathbb{E}[(\mathbf{u}^{\top}(\mathbf{X}-\mu))^{2}+2(\mathbf{u}^{\top}\mu)(\mathbf{u}^{\top}(\mathbf{X}-\mu))+(\mathbf{u}^{\top}\mu)^{2}]$$

$$= \mathbb{E}[(\mathbf{u}^{\top}(\mathbf{X}-\mu))^{2}]+2(\mathbf{u}^{\top}\mu)\mathbf{u}^{\top}\mathbb{E}[\mathbf{X}-\mu]+(\mathbf{u}^{\top}\mu)^{2}$$

$$= \mathbb{E}[(\mathbf{u}^{\top}(\mathbf{X}-\mu))^{2}]+(\mathbf{u}^{\top}\mu)^{2}=\sum_{j=1}^{d}u_{j}^{2}\mathbb{E}[(X_{j}-\mu_{j})^{2}]=\sigma^{2}+(\mathbf{u}^{\top}\mu)^{2}.$$

Lemma 18

For $p = \mathcal{N}(\cdot | \mu, \sigma^2 \mathbf{I})$ a k-dimensional subspace is a best-fit subspace for p if and only if it contains μ .

Proof: For $\mu = \mathbf{0}$, by symmetry, every *k*-dimensional subspace is a best-fit subspace. Assume now $\mu \neq \mathbf{0}$.

For k = 1, $\mathbb{U} = \operatorname{span} \{\mathbf{u}\}$, one has $P_{\mathbb{U}}\mathbf{x} = (\mathbf{u} \cdot \mathbf{x})\mathbf{u}$ and hence $\|P_{\mathbb{U}}\mathbf{X}\|_2^2 = (\mathbf{u} \cdot \mathbf{X})^2$. In view of (5.11), $\mathbb{E}[\|P_{\mathbb{U}}\mathbf{X}\|_2^2]$ is maximized if and only if \mathbf{u} is parallel to μ , i.e., $|\mathbf{u} \cdot \mu| = \|\mathbf{u}\|_2 \|\mu\|_2 = \|\mu\|_2 \rightsquigarrow \mu \in \mathbb{U}$.

For k > 1: suppose $\mu \notin \mathbb{U}$. Since the orthogonal complement μ^{\perp} of μ in \mathbb{R}^d has dimension d - 1 and \mathbb{U} has dimension k we must have dim $(\mathbb{U} \cap \mu^{\perp}) = k - 1$. Therefore, there exists an orthonormal basis $\{\mathbf{u}^1, \ldots, \mathbf{u}^{k-1}, \mathbf{u}^k\}$ of \mathbb{U} where

$$\mu^{\top} \mathbf{u}^{j} = 0, \quad j = 1, \dots, k - 1.$$
 (5.12)

As before, denoting by \mathbf{U}_r the matrices with columns $\mathbf{u}^1, \ldots, \mathbf{u}^r$, we recall from (5.9) that $P_{\mathbb{U}}\mathbf{x} = \mathbf{U}_k \mathbf{U}_k^\top \mathbf{x}$ and (since $\mathbf{U}_k^\top \mathbf{U}_k = \mathbf{I}_k$)

$$\|P_{\mathbb{U}}\mathbf{x}\|_{2}^{2} = (P_{\mathbb{U}}\mathbf{x})^{\top}P_{\mathbb{U}}\mathbf{x} = \mathbf{x}^{\top}\mathbf{U}_{k}\mathbf{U}_{k}^{\top}\mathbf{U}_{k}\mathbf{U}_{k}^{\top}\mathbf{x} = \mathbf{x}^{\top}\mathbf{U}_{k}\mathbf{U}_{k}^{\top}\mathbf{x} = \sum_{j=1}^{k}(\mathbf{x}^{\top}\mathbf{u}^{j})^{2} \quad \rightsquigarrow \text{ consider} \quad (5.13)$$

$$\mathbb{E}\big[\|P_{\mathbb{U}}\mathbf{X}\|_{2}^{2}\big] = \sum_{j=1}^{k} \mathbb{E}\big[(\mathbf{X}^{\top}\mathbf{u}^{j})^{2}\big] \stackrel{(5.11),(5.12)}{=} (k-1)\sigma^{2} + (\mathbf{u}^{k} \cdot \mu)^{2} \text{ maximal iff } \mathbf{u}^{k} = a\mu. \qquad \Box$$

Proof of Theorem 16: Let $p = w_1 p_1 + \cdots + w_k p_k$ be the Gaussian mixture (i.e., $p_j(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mu_j, \sigma^2 \mathbf{I})$) and let \mathbb{U} be any subspace of \mathbb{R}^d of dimension k. It can be spanned by an orthonormal basis $\{\mathbf{u}^1, \dots, \mathbf{u}^k\}$.

Then, by (5.13) and linearity of \mathbb{E} ,

$$\mathbb{E}_{\sim p}\Big[\|P_{\mathbb{U}}\mathbf{X}\|_{2}^{2}\Big] = \sum_{l=1}^{k} w_{l} \mathbb{E}_{\sim p_{l}}\big[\|P_{\mathbb{U}}\mathbf{X}\|_{2}^{2}\big].$$

This sum is maximized if each summand is maximized. By Lemma 18, this is the case if and only if \mathbb{U} contains the means $\mu_j, j = 1, ..., k$.

- (Ideally) find the best-fit subspace \mathbb{U}_k that contains the centers μ_j , $j = 1, \ldots, k$.
- 2 By Lemma 12, the projection of a spherical Gaussian to \mathbb{U}_k is still (now a *k*-dimensional) Gaussian with the same variance σ^2 .
- Suppose $\mathfrak{X} = \{\mathbf{x}^{1}, \dots, \mathbf{x}^{N}\} \subset \mathbb{R}^{d}$ is the given set of samples from the mixture distribution. Let $\mathfrak{X}^{k} = \{\mathbf{x}^{1,k}, \dots, \mathbf{x}^{N,k}\} | \subset \mathbb{U}_{k}$ be the projected sample set, i.e., $\mathbf{x}^{j,k} = P_{\mathbb{U}_{k}}\mathbf{x}^{j}$, $j = 1, \dots, k$, and denote by $\Delta_{i,j} := \|\mathbf{x}^{j,k} - \mathbf{x}^{i,k}\|_{2}$ the mutual distances in \mathbb{U}_{k} . Note: since the centers μ_{j} already belong to \mathbb{U}_{k} their distances don't change under projection

$$\|\mu_j - \mu_i\|_2 = \|P_{\mathbb{U}_k}(\mu_j - \mu_i)\|_2, \quad i \neq j \le k.$$
(5.14)

9 By the methods discussed in the preceding section, one can separate Gaussians in \mathbb{R}^k provided that their centers satisfy

$$\|\mu_i - \mu_j\|_2 \ge Ck^{1/4},\tag{5.15}$$

which is only a small threshold (independent of d) when k is bounded uniformly.

- **5** Exploit the latter fact to cluster \mathfrak{X}^k into *k* clusters \mathcal{C}_j , j = 1, ..., k, where now with high probability the points in \mathcal{C}_j come from the Gaussian $p_j = \mathcal{N}(\cdot | \mu_j, \sigma^2 \mathbf{I})$.
- 6 Compute for each C_j estimates μ_{j,ML}, σ²_{j,ML} by means of the Maximum-Likelihood Estimator (in ℝ^k, see Remark 13) from the previous section, and set σ² = ¹/_k Σ^k_{i=1} σ²_{i,ML}.

Set
$$\mathbf{M} := (\mu_{1,ML}, \dots, \mu_{k,ML}) \in \mathbb{R}^{d \times k}$$
, $\mathbf{y} := \frac{1}{N} \sum_{j=1}^{N} \mathbf{x}^{j}$, $\rightsquigarrow \mathbf{y} \approx \mathbb{E}_{\sim p}[\mathbf{X}] = \sum_{l=1}^{k} w_{l} \mu_{l}$,
 $\rightsquigarrow \mathbf{y} \approx \sum_{l=1}^{k} w_{l} \mu_{l,ML}$; compute $\mathbf{w} = (w_{1}, \dots, w_{k})^{\top} \in \mathbb{R}^{k}$ by $\mathbf{w} = \operatorname{argmin}_{\mathbf{y} > \mathbf{0}} \|\mathbf{M}\mathbf{v} - \mathbf{y}\|_{2}^{2}$.

Items (1) and (5) in the above sketch require further comments:

ad (1): One cannot compute the exact best-fit subspace \mathbb{U}_k because one cannot carry out the required maximization exactly.

Simple idea: maximize instead with respect to the empirical mean, i.e.,

$$\underset{\dim \mathbb{U}=k}{\operatorname{argmax}} \mathbb{E}\Big[\| \boldsymbol{P}_{\mathbb{U}} \boldsymbol{X} \|_{2}^{2} \Big] \iff \underset{\dim \mathbb{U}=k}{\operatorname{argmax}} \Big\{ \frac{1}{N} \sum_{i=1}^{N} \| \boldsymbol{P}_{\mathbb{U}} \boldsymbol{x}^{i} \|_{2}^{2} \Big\}$$
(5.16)

Consider first k = 1, $\mathbb{U} = \operatorname{span} \{\mathbf{u}\}, \|\mathbf{u}\|_2 = 1, \rightsquigarrow$

$$\mathbf{u}^{1} = \underset{\|\mathbf{u}\|_{2}=1}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{i} \cdot \mathbf{u})^{2}.$$
(5.17)

Let **A** denote the matrix whose rows are the \mathbf{x}^i , i.e., $\mathbf{A} \in \mathbb{R}^{N \times d}$. Then, (5.17) can be equivalently restated as

$$\mathbf{u}^{1} = \mathbf{u}^{1}(\mathfrak{X}) = \underset{\|\mathbf{u}\|_{2}=1}{\operatorname{argmax}} \|\mathbf{A}^{\top}\mathbf{u}\|_{2}^{2} = \underset{\|\mathbf{u}\|_{2}=1}{\operatorname{argmax}} \mathbf{u}^{\top}\mathbf{A}\mathbf{A}^{\top}\mathbf{u}.$$
(5.18)

As shown in Lecture I (see e.g. the proof of Theorem 39, or Lemma 43), \mathbf{u}^1 is the first left singular vector of the matrix \mathbf{A} and

$$\max_{\|\mathbf{u}\|_{2}=1} \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{i} \cdot \mathbf{u})^{2} = \frac{\sigma_{1,\mathfrak{X}}^{2}}{N}, \quad \text{(where } \sigma_{1,\mathfrak{X}} \text{ is the largest singular value of } \mathbf{A}.\text{)}$$
(5.19)

Returning to (5.16), we take up on the PCA Greedy Construction of the SVD in Lecture I, page 75, (6.16) and successively maximize at the *i*th stage $\mathbf{u}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{u}$ over those unit vectors \mathbf{u} , $\|\mathbf{u}\|_2 = 1$, which are orthogonal to the previously computed directions $\mathbf{u}^1, \ldots, \mathbf{u}^{i-1}$ for $i \leq k$. Hence, for $r \leq k$

$$\frac{1}{N}\sum_{i=1}^{N} (\mathbf{x}^{i} \cdot \mathbf{u}^{r})^{2} = \max_{\|\mathbf{u}\|_{2}=1; \mathbf{u} \perp \mathbf{u}^{s}, s < r} \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{i} \cdot \mathbf{u})^{2}.$$
 (5.20)

Let us again denote by \mathbf{U}_k the matrix whose columns are these pairwise orthonormal vectors \mathbf{u}^i . Thus $P_{\mathbb{U}_k}\mathbf{x} = \mathbf{U}_k\mathbf{U}_k^\top \mathbf{x}$ and

$$\begin{split} \frac{1}{N} \sum_{i=1}^{N} \|P_{\mathbb{U}_{k}} \mathbf{x}^{i}\|_{2}^{2} &= \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{i})^{\top} \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{x}^{i} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{i})^{\top} \mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{x}^{i} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{k} (\mathbf{u}^{j} \cdot \mathbf{x}^{j})^{2} \\ &= \sum_{j=1}^{k} \left\{ \frac{1}{N} \sum_{i=1}^{N} (\mathbf{u}^{j} \cdot \mathbf{x}^{i})^{2} \right\} = \sum_{j=1}^{k} \frac{\sigma_{j,\mathfrak{X}}^{2}}{N}, \end{split}$$

i.e., in view of (5.20), each summand in the curly brackets is maximized by the greedy basis.

Corollary 19

Step (1) in the algorithm can be realized approximately by computing the SVD of the point cloud $\mathbf{A}^{\top} \leftrightarrow \mathfrak{X}$. The subspace generated by the first left singular vectors \mathbf{u}^i , $i = 1, \ldots, k$, is an approximation to the exact best-fit subspace. The larger the number N of samples \mathbf{x}^i , the closer is the empirical mean to the true expectation, i.e., the discrete maximization in (5.16) yields better and better approximations to the exact best-fit subspace. The singular values $\sigma_{j,\mathfrak{X}}^2$ are approximations of σ^2 .

The accuracy of the SVD based subspace affects the accuracy of the estimation for the means $\mu_{i,ML}$ taking place in the approximate subspace.

ad (5):

- Compute first all pairwise distances $\Delta_{i,j}$ (in \mathbb{U}_k) and order them by increasing size Δ_{i_r,j_r} ; pick the smallest r = s such that $\Delta_{i_s,j_s} \ge \sqrt{2d} + a =: \delta$; find a, c such that $\Delta_{i_s,j_s} \ge \sqrt{2d} + ck^{1/4} =: \Delta$ holds for all s > r.
- Put all pairs (i, j) into S, for which ||x^{i,k} x^{i,k}||₂ ≤ δ, put all pairs with ||x^{j,k} x^{i,k}||₂ ≥ Δ into L.

Consider the triangular array

$$T = \begin{pmatrix} (1,2), & (1,3), & (1,4), & \dots & , (1,N) \\ & (2,3), & (2,4), & \dots & , (2,N) \\ & & \vdots & \dots & & \vdots \\ & & & & & , (N-1,N) \end{pmatrix}$$

Let T_S be the sub-array for which all pairs belong to S. Two pairs are connected if the have a common index. A subset of pairs is connected if any two of them can be connected by a path of connected pairs. The "content" of a connected subset is the set of involved indices. Each cluster C_i corresponds to the content of a maximal connected set of pairs in T_S .

• Exercise: Design an efficient way of finding these sets.