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Introductory Comments

What is this about? ...

Statements quantifying the probability that certain events exceed some threshhold are called “tail
bounds”; examples are Markov’s or Chebyshev’s inequality or the Law of Large Numbers (see
Lecture II, Theorems 11, 12 14.)

While these results hold almost without or with only very little additional structural assumptions
on the underlying probability measure, refined estimates can be obtained when more is known
about the probability distribution. There are different categories of such structural assumptions
important representatives of which will be discussed.

More comments:

The Central Limit Theorem, (Lecture II, Theorem 20) gives an asymptotic statement that
large sums of random variables behave like a Gaussian in the limit N →∞. The results to
be discussed in this Lecture offer quantified bounds for all N.

The Law of Large Numbers, which in turn is based on Chebyshev’s and Markov’s
inequalities, are the most basic examples of probability tail bounds which, however, ensure
only algebraic decay rates of excess probabilities.

In this lecture we discuss more refined such bounds
for (large) sums of random variables;
under additional structural assumptions on the underlying probability distribution;

which exhibit even exponential decay rates.
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Introductory Comments

What are these Bounds Good for?

In Machine Learning tail bounds help quantifying the extraction of information from large
data sets by estimating the probability for a learning algorithm to be approximately correct.
Typical bounds quantify the deviation of sample means from the exact expectation.

They help understanding Concentration of Measure Phenomena in high-dimensional
geometry underlying unsupervised learning concepts.

They are important tools in statistical estimation.

Countless applications involve sums of random variables, e.g., Xi is the amount of good
the i th consumer buys; Xi is the length of the i th message sent over a network; Xi is the
indicator random variable of whether the i th record in a large data base has a certain
property; etc. Each Xi is modeled by a simple probability distribution like a Gaussian, an
exponential (p(t) = e−t , t > 0), or a Bernoulli distribution.

A central issue is therefore to bound the probability of deviations of a (large) sum of
random variables (e.g. i.i.d samples) from the expectation of this sum.
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Introductory Comments

Some Simple Consequences of Chebyshev’s
Inequality

Deviation from the mean: let X1, . . . ,XN be independent random variables and Sn =
∑N

j=1 Xj

Chebyshev’s inequality (Lecture II, Theorem 14, (9.3)) and Lecture II, Lemma 7, (8.9) imply

Prob
(
|SN − E[SN ]| ≥ t

)
≤

var[SN ]

t2
=

∑N
j=1 var[Xj ]

t2
. (2.1)

Setting σ2 := 1
N
∑N

j=1 var[Xj ], replacing t/N by ε, this can be rephrased as

Prob
(∣∣∣ 1

N

N∑
j=1

(Xj − E[Xj ])
∣∣∣ ≥ ε) ≤ σ2

Nε2
. (2.2)

Hence, the average deviation of the random variables from their expectation is controlled by the
average variance, the number of variables, and the deviation threshhold.

This can be further quantified once one has bounds for the var[Xj ].
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Chernoff Bounding

Basic Chernoff Bounds

Chernoff bounds actually represent a method for deriving upper bounds for the probabilities of
deviations from the mean.

Since for any s > 0, φ(x) = esx is positive strictly increasing we have by Markov’s inequality
(Lecture II, Theorem 12, (9.2))

Prob(X ≥ t) = Prob(esX ≥ est ) ≤
E
[
esX ]
est

(3.1)

see also Lecture II, Exercise 15, (2). Idea: choose s so that the right hand side becomes small.

Application: X1, . . . ,XN be independent random variables and SN =
∑N

j=1 Xj , (3.1) 

Prob
(
SN − E[SN ] ≥ t

)
≤ e−stE

[
es

∑N
j=1(Xj−E[Xj ])

]
= e−st

N∏
j=1

E
[
es(Xj−E[Xj ])

]
, (3.2)

where we have used independence in the last step, see Lecture II, Lemma 7, (8.8).

To exploit these inequalities further, one needs bounds for expressions like E[esX ] (see the
notion of moment generating function (4.5) introduced later).
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Chernoff Bounding

Hoeffding’s Inequality

(3.2) one needs a bound for E
[
esX ] when E[X ] = 0: this works, for instance, when X has a

bounded range.

Lemma 1

Let X be a random variable with mean zero E[X ] = 0, taking values a ≤ X ≤ b. Then for s > 0
one has

E
[
esX ] ≤ es2(b−a)2/8. (3.3)

Proof: Since the exponential function is convex, we have

esX = e
b−X
b−a sa+ X−a

b−a sb ≤
b − X
b − a

esa +
X − a
b − a

esb

Using E[X ] = 0, this gives

E
[
esX ] ≤ b

b − a
esa +

−a
b − a

esb = e−uλ((1− λ) + λeu), where λ :=
−a

b − a
, u := s(b − a).

One can show (Taylor expansion) that log
(

e−uλ((1− λ) + λeu)
)
≤ u2

8 , monotonicity of the

exponential yields (3.3). �
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Chernoff Bounding

Hoeffding’s Inequality
Combining Lemma 1 with (3.2) and choosing s := 4t∑N

j=1(bj−aj )
2 , yields:

Theorem 2

Let X1,X2, . . . ,XN be independent random variables where Xj takes values in the interval [aj , bj ]
with probability one (P(Xj /∈ [aj , bj ]) = 0), SN := X1 + · · ·+ XN . Then one has for any t > 0

Prob
(
SN −E[SN ] ≥ t

)
≤ e
− 2t2∑N

j=1(bj−aj )
2

and Prob
(
SN −E[SN ] ≤ −t

)
≤ e
− 2t2∑N

j=1(bj−aj )
2
. (3.4)

Hoeffing’s inequality provides tail bounds when the range of the random variables is bounded, so
it applies, for instance, to Binomial random variables. A bounded range is also a typical
assumption in machine learning contexts and “non-parametric statistical estimation”. In this
context one is interested in relating (not the sum SN but) the empirical average 1

N SN to its
expectation. Setting ε := t/N in (3.4), yields

Prob
(∣∣∣SN

N
− E

[SN

N

]∣∣∣ ≥ ε) ≤ e
− 2ε2N2∑N

j=1(bj−aj )
2
. (3.5)

A shortcoming of Hoeffding’s inequality is that it does not use any information about the variance
of the random variables. The following concentration inequalities improve on this aspect and play
therefore a central role in analyzing the performance of machine learning algorithms.
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Chernoff Bounding

Bennett’s Inequality

Theorem 3

Let X1, . . . ,XN be independent real-valued random variables with zero mean E[Xj ] = 0,
j = 1, . . . ,N. Assume that Xj ≤ 1 with probability one and set

σ2 :=
1
N

∑
j=1

E
[
X 2

j
]
. (3.6)

Then for any t > 0,

Prob
( N∑

j=1

Xj > t
)
≤ exp

{
− Nσ2h

( t
Nσ2

)}
, (3.7)

where h(u) := (1 + u) log(1 + u)− u for u ≥ 0.

Rewriting this again in terms of SN :=
∑N

j=1 Xj , this reads tor non-centered variables
Xj − E[Xj ] ≤ 1

Prob
(SN

N
− E

[SN

N

]
> ε
)
≤ exp

{
− Nσ2h

( ε

σ2

)}
. (3.8)
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Chernoff Bounding

Proof of Theorem 3: The starting point is again the Chernoff bound (3.2) which requires further
estimating E

[
esXj

]
. The idea is to write the exponential as a sum of several parts each of which

can be estimated well under the given assumptions on the Xj . To that end, introduce the function

ψ(x) := ex − x − 1 =
∞∑

k=2

xk

k!
.

Observe that
ψ(x) ≤ x2/2 for x ≤ 0,

ψ(sx) ≤ x2ψ(s) for s ≥ 0 and x ∈ [0, 1],

ψ(s) ≥ s2/2 for s ≥ 0.

(3.9)

Defining x+ := max{x , 0}, x− := max{−x , 0} and noticing that ψ(0) = 0, one can write
ψ(sx) = ψ(sx+) + ψ(−sx−). Since ex = ψ(x) + x + 1 and E is a linear functional one obtains

E
[
esXj

]
= 1 + sE[Xj ] + E

[
ψ(sXj )

]
= 1 + E

[
ψ(sXj )

]
(since E[Xj ] = 0)

= 1 + E
[
ψ(s(Xj )+) + ψ(−s(Xj )−)

]
≤ 1 + E

[
ψ(s(Xj )+) +

s2

2
(Xj )

2
−
]

(by the first inequality in (3.9))

Now use that the Xj ≤ 1 and invoke the second inequality in (3.9) to conclude

E
[
esXj

]
≤ 1 + E

[
ψ(s)(Xj )

2
+ +

s2

2
(Xj )

2
−
]
≤ 1 + ψ(s)E

[
(Xj )

2
+ + (Xj )

2
−
]

(by the third inequalityin (3.9))

= 1 + ψ(s)E
[
X 2

j
]
≤ exp

{
ψ(s)E

[
X 2

j
]}
. (3.10)
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Chernoff Bounding

Proof of Theorem 3 continued: Recall the definition of σ2 in (3.6) and insert (3.10) into (3.2) to
obtain (here E[Xj ] = 0)

Prob
( N∑

j=1

Xj > t
)
≤ e−st

N∏
j=1

eψ(s)E
[

X2
j

]
= e−st+ψ(s)

∑N
j=1 E

[
X2

j

]
= eψ(s)Nσ2−st . (3.11)

Now we choose s so as to minimize the upper bound, namely

s = log
(

1 +
t

Nσ2

)
. (3.12)

Substituting this value in (3.11), yields (3.7). �
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Chernoff Bounding

Bernstein’s Inequality

Further bounding the function h in Bennett’s inequality yields another very important inequality.

Theorem 4

Let X1, . . . ,XN be independent real-valued random variables with zero mean E[Xj ] = 0,
j = 1, . . . ,N. Assume that Xj ≤ 1 with probability one. Then for σ2 as in (3.6) and any ε > 0
(ε↔ t/N)

Prob
( 1

N

N∑
j=1

Xj > ε
)
≤ exp

{
−

Nε2

2(σ2 + ε/3)

}
. (3.13)

Proof: Verify that h(u) ≥ u2

2+2u/3 for u ≥ 0, by comparing the derivatives of both sides. �

Remark: When σ2 ≤ ε the decay is like e−cNε instead of e−cNε3
as predicted by Hoeffding’s

inequality (3.5).
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Chernoff Bounding

Useful Reformulations of Bernstein’s Inequality
Corollary 5

Let X1, . . . ,XN be independent real-valued random variables with common mean µ = E[Xj ] and
variance σ2 = var[Xj ], j = 1, . . . ,N. Assume that the Xj take values |Xj − µ| ≤ M with probability
one. Then

Prob
(∣∣∣ 1

N

( N∑
j=1

Xj

)
− µ

∣∣∣ > ε
)
≤ 2 exp

{
−

Nε2

2(σ2 + εM/3)

}
. (3.14)

Proof: Consider the random variable Yj :=
Xj−µ

M , j = 1, . . . ,N. Then E[Yj ] = 0, Yj ≤ 1,
j = 1, . . . ,N, with probability one. Notice that now

σ̃2 :=
1
N

N∑
j=1

E[Y 2
j ] =

1
M2N

N∑
j=1

E[(Xj − µ)2] =
1

M2N

N∑
j=1

var[Xj ] =
1

M2
σ2.

Theorem 4 gives then

Prob
(( 1

N

N∑
j=1

Xj

)
− µ > δ

)
= Prob

( 1
N

N∑
j=1

Xj − µ
M

>
δ

M

)
= Prob

( 1
N

N∑
j=1

Yj >
δ

M

)

≤ exp
{
−

N(δ/M)2

2(σ̃2 + δ/(M3))

}
= exp

{
−

Nδ2

2(σ2 + Mδ
3 )

}
.

Since Prob(|A| > δ) = Prob(A > δ) + Prob(−A > δ) the assertion follows. �
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Moment Based Tail Bounds

Moment Based Tail Bounds

Theorem 6

Let X1,X2, . . . ,XN be mutually independent random variables with zero mean (E[Xj ] = 0) and
variance at most σ2 (var[Xj ] ≤ σ2), and let 0 ≤ a ≤

√
2Nσ2. Assume that for a positive integer m

one has
|E[X r

j ]| ≤ σ
2r !, r = 3, 4, . . . ,m. (4.1)

Then one has

Prob
(
|X1 + · · ·+ XN | ≥ a

)
≤


(

2mNσ2

a2

)m/2
, if m ≤ Nσ2/2,

3e−
a2

12Nσ2 if m ≤ b(a2/6Nσ2)c.
(4.2)

Suppose the Xj are i.i.d. jointly distributed with mean µ so that the Yj := Xj − µ are centered
(E[Yj ] = 0). Then, if the Yj satisfy (4.1), the second relation in (4.2) becomes

Prob
(∣∣∣X1 + · · ·+ XN

N
− µ

∣∣∣ ≥ a
N

)
≤ 3e−

a2

12Nσ2 if m ≤ b(a2/6Nσ2)c. (4.3)

or with a/N =: δ

Prob
(∣∣∣X1 + · · ·+ XN

N

∣∣∣ ≥ δ) ≤ 3e−
Nδ2

12σ2 if m ≤ b(Nδ2/6σ2)c. (4.4)
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Moment Based Tail Bounds

Comments

Gaussians satisfy these moment bounds, see Lecture II, p. 40, (10.3).
A systematic way of calculating (estimating) moments of probability distributions is to
employ the so called moment generating function which is very similar to the characteristic
function (replacing Fourier transforms by Laplace transforms, see Lecture II, (8.12)):

M(t) = M(t ; p) =
∑
x∈X

etx p(x) or M(t) = M(t ; p) =
∫
X

etx dP(x). (4.5)

In fact, the r th derivative of M(t ; p) is

M(r)(t ; p) =
∑
x∈X

x r etx p(x) ⇒ M(r)(0; p) = E
[
X k ]. (4.6)

Example: X ∼ B(1, p) (Bernoulli variable) for some p ∈ [0, 1]; Lecture II, (10.17) 

M(r)(t) =
∑

k∈{0,1}
k r etk pk (1− p)1−k  

M′(0) = E[X ] = 0 + p = p, E
[
X 2] = M′′(0) = 02p0(1− p)1 + 12p(1− p)0 = p  

var[X ] = E
[
X 2]− E[X ]2 = p − p2 = p(1− p)

see Lecture II, (10.18).
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Moment Based Tail Bounds

Proof of Theorem 6: Step 1: derive upper bound for E[X r ] any even r ∈ N:

Notation: r = (r1, . . . , rN)
> ∈ NN

0 , r! := r1!r2! · · · rN !, |r| = ‖r‖1 = r1 + · · ·+ rN ,
xr := x r1

1 x r2
2 · · · x

rN
N ;

Multinomial Theorem⇒

( N∑
j=1

xj

)r
=

∑
r∈NN

0 ,|r|=r

( r
r1, r2, . . . , rN

)
x r1

1 x r2
2 · · · x

rN
N =

∑
r∈NN

0 ,|r|=r

r !
r!

xr.

By independence of the Xi (see Lecture II, (7.5) and Lemma 7) for X := X1 + X2 + · · ·+ XN

E
[
X r ] = ∑

r∈NN
0 ,|r|=r

r !
r!
E
[
X r1

1

]
E
[
X r2

2

]
· · ·E

[
X rN

N

]

Note: rj = 1⇒ E
[
X r1
]
= E[X ] = 0, by assumption. Consider

R := {r : |r| = r , all non-zero rj are greater or equal to 2}  

E
[
X r ] =∑

r∈R

r !
r!
E
[
X r1

1

]
E
[
X r2

2

]
· · ·E

[
X rN

N

] (4.1)
≤ r !

∑
r∈R

σ2#(non-zero entries in r), (4.7)

where we have used the moment bound (4.1) in the last step.

W. Dahmen, J. Burkardt (DASIV) III - Probability Tail Bounds 16 / 19



Moment Based Tail Bounds

Proof of Theorem 6 continued: Since |r| = r there are at most r/2 non-zero entries in each
r ∈ R. We now rearrange the summation properly, collecting all r ∈ R with q non-zero entries in
the batch Bq .Since q can run from 1 to r/2, (4.7) can be reqritten as

E
[
X r ] ≤ r !

r/2∑
q=1

∑
r∈Bq

σ2q = r !
r/2∑
q=1

#(Bq)σ
2q . (4.8)

Now we need to count #(Bq). To that end, fix a subset Sq of q slots from {1, 2, . . . ,N} occupied
by the non-zero entries of an element r ∈ Bq . To count the number of such possible candidates,
we ask in how many ways we can distribute the total budget r by assigning a sub-budget rj to
each slot j in Sq . Since each rj ≥ 2, we can assign to each slot the value 2 which leaves the
remaining budget r − 2q yet to bet distributed. In other words in how many ways can we write
r − 2q as a sum of q integers (counting positions). This number is known to be

(r−2q+q−1
q−1

)
.

Since there are
(N

q

)
subsets Sq we conclude

σ2q#(Bq) = σ2q
(N

q

)(r − 2q + q − 1
q − 1

)
= σ2q

(N
q

)(r − q − 1
q − 1

)
=: n(q),

and hence from (4.8)

E
[
X r ] ≤ r !

r/2∑
q=1

n(q). (4.9)
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Moment Based Tail Bounds

Proof of Theorem 6 continued: To bound next n(q), notice first that
(N

q

)
≤ Nq/q!. Since(r−q−1

q−1

)
is the number of subsets of cardinality q − 1 of a set of cardinality r − q − 1 and hence

less than or equal to the number of all subsets of a set of cardinality r − q − 1 which is 2r−q−1.
Hence,

n(q) ≤
(σ2N)q

q!
2r−q−1 =: u(q). (4.10)

When r ≤ m ≤ Nσ2/2 and hence q ≤ r/2 ≤ Nσ2/4 (see the first inequality in (4.2)) we have

u(q)
u(q − 1)

=
σ2N
2q
≥ 2 ⇒ u(q − 1) ≤

u(q)
2

.

Now we infer from (4.9) and (4.10) that

E
[
X r ] ≤ r !

r/2∑
q=1

u(r/2)
(

1 +
1
2
+ · · ·+

1
4
+ · · ·

)
≤ 2r !u(r/2)

(4.10)
=

r !
(r/2)!

2r/2(Nσ2)r/2 (4.11)

Step 2: Now we can apply Markov’s inequality (Lecture II, Theorem 12, (9.2)) and the fact that r
is even to conclude

Prob(|X | ≥ a) = Prob(X r ≥ ar ) ≤
E[X r ]

ar
≤

r !
(r/2)!

(2Nσ2

a2

)r/2
:= g(r) ≤ r r/2

(2Nσ2

a2

)r/2

=
(2rNσ2

a2

)r/2
. (4.12)

Applying this for r = m, yields the first inequality in (4.2).
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Moment Based Tail Bounds

Proof of Theorem 6 continued: Regarding he second inequality in (4.2), notice that for g(r)
defined in (4.12),

g(r)
g(r − 2)

=
4(r − 1)Nσ2

a2
,

i.e., as long as this quantity is less than one, which means r − 1 ≤ a2

4Nσ2 , g(r) decreases. This
holds, in particular, for r = m = ba2/(6Nσ2)c. Substituting this value into the right hand side of
(4.12), yields

Prob(|X | ≥ a) ≤ 3−m/2 ≤ e−m/2 ≤ e · e−a2/(12Nσ2) ≤ 3e−a2/(12Nσ2),

as claimed. �
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