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Introductory Comments

Why Probability?

Information given in terms of data (measurements, observations,...) is inherently uncertain.

Probability Theory and Statistics provide proper mathemtical tools to quantify and manipulate
uncertainties.

The idea behind quantifying the likelihood of certain events to occur is simple. Suppose you
conduct a random experiment, e.g. a fair coin-toss, and record the number n(N) of “heads”
among N tosses. The limit P of the fraction n(N)/N, as the number N of experiments tends to
infinity, is the “probability” - a number between zero and one - of “heads” to happen.

To put this on firm mathematical grounds one treats “events” as subsets A,B, . . . , of a “sample

space” Ω of possible outcomes from which instances/samples are drawn. “Measure” and

“Probability Theory” serve as a proper framework. An exhaustive treatment of these topics

requires a course by itself. This section introduces some relevant basic notions and a

corresponding “way of thinking” to an extent needed in the context of Data Science and Machine

Learning.

W. Dahmen, J. Burkardt (DASIV) II - Probability Basics 3 / 73



Probability: Basic Notions

Probability Spaces Proper framework: Measure Theory ...

Key notions:
Sample or “outcome” space Ω;
Set of “events” B comprised of subsets of Ω, i.e., B ⊆ 2Ω. Only those subsets of Ω qualify
as events that can be measured;
The probability distribution function or probability measure (function) P returns probabilities
of events, i.e., P : B → [0, 1].

P,B are subject to certain structural requirements:
P(Ω) = 1;
Ωj ⊂ Ω, j ∈ N, Ωj ∩ Ωj = ∅, j 6= k ,⇒

P
( ⋃

j∈N
Ωj

)
=
∑
j∈N

P(Ωj );

B is σ-algebra: (a) Ω ∈ B; (b) A ∈ B ⇒ Ac := Ω\A ∈ B; (c) Ai ∈ B, i ∈ N⇒
⋃

i∈N Ai ∈ B

de Morgan’s law ((A ∪ B)c = Ac ∩ Bc ): (b), (c)⇒
⋂

j∈N Aj ∈ B;

Definition 1

A tripel (Ω,B,P) is called probability space
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Probability: Basic Notions

Examples

Flipping a fair coin: (discrete probability space) Ω = {H,T}, B =
{
∅, {H}, {T}, {H,T}

}
 

P(∅) = 0, P({H}) = P({T}) = 1/2, P({H,T}) = 1

Flipping a fair coin twice: Ω = {HH,HT ,TH,TT}, #(Ω) = 22 = 4;

Maximal σ-algebra: B = 2Ω, #(B) = 16

events: at most one head: {HT ,TH,TT}; at least one head: {HH,HT ,TH}, etc.

P(HH) = P(HT ) = P(TH) = P(TT ) = 1/4, P({HH,HT}) = 1/2, P({HH,HT ,TH}) = 3/4, ...etc.

A sub-σ-algebra: all events with first toss fixed: A := {HH,HT},B := {TH,TT},
B = {∅,A,B,Ω}

P(A) = P(B) = 1/2

Borel field: Suppose Ω is a metric space (openness of subsets is defined) the minimal subset

of σ-algebra in 2Ω that contains all open subsets of Ω is a σ-algebra (Borel- σ-algebra)
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Probability: Basic Notions

Properties of Probability Measures

1 P(Ac) = 1− P(A);

2 P(B ∩ Ac) = P(B)− P(A ∩ B);

3 P(A ∪ B) = P(A) + P(B)− P(A ∩ B);

4 P
(⋃

i∈I Ai ) ≤
∑

i∈I P(Ai );

5 {Ci}i ıI a partition of Ω⇒ P(A) =
∑

i∈I P(A ∩ Ci );

6 A ⊆ B ⇒ P(A) ≤ P(B).
Exercise: verify these statements

Lebesgue measure: measures subsets of Rd (volume measure); details on Lebesque integration
will be provided when needed for essential understanding, here only some comments on the
basic ideas: for D ⊂ Rd define the Lebesgue outer measure as

λ∗(D) := inf
{∑

k∈N
vold (Rk ) : (Rk )k∈N any sequence of d-hyperrectangles with D ⊆

⋃
k∈N

Rk

}
Define the Lebesgue σ-algebra B(Rd ) of Lebesgue measurable sets by

B(Rd ) := {D ⊂ Rd : λ∗(A) = λ∗(A ∩ D) + λ∗(A ∩ Dc), ∀ A ⊂ Rd}

One can show that this is indeed a σ-algebra with measure λ (λ(D) = λ∗(D) when D ∈ B(Rd )).
But there exist subsets of Rd that are not measurable! (see Vitali sets)
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Random Variables

Random Variables
(Ω,B,P) probability space, X a measurable space, a function X : Ω→ X is called measurable if
for any measurable set S ⊆ X

{ω ∈ Ω : X(ω) ∈ S} ∈ B, PX (X ∈ S) := P({ω ∈ Ω : X(ω) ∈ S}).

A measurable function X : Ω→ X is called a (n X -valued) random variable. When X = R we
just say “random variable”.

Example: 2-coin toss

ti :=

 1 if H occurs in i th coin toss

2 if T occurs in i th coin toss

1) X := t1 + t2
X 2 3 3 4

Ω HH HT TH TT

2) X = #(heads): let us illustrate how a random variable can be used to generate from the
original probability space a new one:

Ω P(·) X PX

HH 1/4 2 1/4

HT 1/4 1 1/4

TH 1/4 1 1/4

TT 1/4 0 1/4

 X =


0 with probability 1/4

1 with probability 1/2

2 with probability 1/4

 ({0, 1, 2}, 2{0,1,2}
, PX )
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Random Variables

Induced Probability Space
In general, consider a probability space (Ω,B,P), X : Ω→ X a random variable. This induces a
probability space

(X ,B(X ),PX ), BX (X ) = {X(A) : A ∈ B}, PX (G) = P(X−1(G)), G ∈ BX (X ).

One sometimes writes X ∼ (X ,BX (X ),PX ).

X can be quite general, even a function space. To a large extent it suffices, however, to consider
X = R to introduce the basic facts about random variables. Typical scenario:

sample space X = R (continuous random variable, or X = N ,X = I, I finite or
countable (discrete random variable);
event space B(R) the Borel σ-algebra of the real line, generated by all open intervals (or
half-lines, or closed intervals,...);
probability measure:

PX (A) := P({ω ∈ Ω : X(ω) ∈ A} =: P(X−1(A)) =: P(X ∈ A), A ∈ B(R);

Implicit assumption: B(R) = BX (R), i.e., X−1(A) ∈ B(Ω) for all A ∈ B(R).
Example: X(ω) = |ω|, (Ω = [−1, 1],B([−1, 1]), λ/2) sample space X(Ω) = [0, 1] =: X ,
event space BX ([0, 1]) = B([0, 1]) (Borel-σ-algebra), probability measure

PX (A) = P(X(ω) ∈ A) = λ({ω ∈ [−1, 1] : ω ∈ A,−ω ∈ A})/2 = λ(A), A ∈ B([0, 1]);

e.g.: PX
([ 1

3 ,
2
3

])
=

λ
([

1
3 ,

2
3

])
2 +

λ
([
− 2

3 ,−
1
3

])
2 = λ

([ 1
3 ,

2
3

])
= 1

3
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Conditional Probability and Baye’s Rule

Conditional Probability
Probability space (Ω,B,P)

Definition 2

If A,B ∈ B, and P(B) > 0, then the conditional probability of A given B, denoted P(A|B), is

P(A|B) :=
P(A ∩ B)

P(B)
. (5.1)

Interpretation: P(A|B) is the probability that an outcome of an experiment is in A if one knows it
is in B.

Simple facts:

A ⊂ B ⇒ P(A|B) = P(A)/P(B) < 1;

B ⊂ A⇒ P(A|B) = P(B)/P(B) = 1.

Note: Conditioning on an event B means that B becomes the sample space for a new probability
space for which P(·|B) is the probability measure, i.e.,

Ω → B, B → {A ∩ B : A ∈ B}, P → P(·|B)
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Conditional Probability and Baye’s Rule

Example
3 doors, numbered 1, 2, 3; a prize has been placed randomly behind one door

• Jack bets that the prize is behind door 1;
• Nancy opens door 2 and reveals, no prize behind door 2;
• Nancy asks Jack: “do you want to switch your bet to door 3?”

Jack uses the following probabilistic model to decide whether to switch:

Ω = {1, 2, 3}2 = {(D,N) : D,N ∈ {1, 2, 3}}
D = random variable that prize is behind door D,
N = random variable that Nancy opens door N;

Define a probability measure P:
Since Jack bets 1, Nancy never opens 1; N = D leaves no decision to be made, so should not influence decision; since each
door is equally probable (D = 1,N = 2), (D = 1,N = 3) have probability 1

3 ·
1
2 ; D = 2, 3 happens with pobability 1

3 leaving as
relevant events only N = 3, 2, respectively

D 1 1 1 2 2 2 3 3 3

N 1 2 3 1 2 3 1 2 3

Prob 0 1
3 ·

1
2 = 1

6
1
3 ·

1
2 = 1

6 0 0 1
3 · 1 = 1

3 0 1
3 · 1 = 1

3 0

Jack should switch if P(D = 1|N = 2) < P(D = 3|N = 2). Since P(D = 1|N = 2) + P(D = 3|N = 2) = 1 (why?) Jack
should switch if P(D = 3|N = 2) > 0.5

P(D = 3|N = 2) =
P(D = 3,N = 2)

P(N = 2)
=

1/3
1
6 + 1

3

=
2

3
 switch
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Conditional Probability and Baye’s Rule

Baye’s Rule

Baye’s Rule:

A,B ∈ B

P(A|B) =
P(B|A) · P(A)

P(B)
. (5.2)

In fact,
P(A ∩ B)

Def .2
= P(A|B) · P(B) = P(B|A) · P(A) ⇒ (5.2)

More generally: Ai ∈ B, i ∈ I, disjoint events partitioning Ω, then

P(Ai |B) =
P(B|Ai ) · P(Ai )∑

i∈I P(B|Ai ) · P(Ai )
, (5.3)

since
P(B) =

∑
i∈I

P(B ∩ Ai )
Def .2

=
∑
i∈I

P(B|Ai ) · P(Ai ).
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Conditional Probability and Baye’s Rule

Statistical Independence

Two events A,B ∈ B are (statistically) independent if and only if

P(A ∩ B) = P(A) · P(B). (5.4)

Independence⇒ P(A|B) = P(A), P(B|A) = P(B).

Example: 2-coin-toss: the two events “first toss = head” (HH,HT ) and “second toss = head”
(HH,TH) are independent.

A1, . . . ,An ∈ B are mutually independent iff

for any {i1, . . . , ik} ⊆ {1, . . . , n}, k ≤ n, ⇒ P
( k⋂

j=1

Aij

)
=

k∏
j=1

P(Aij )
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CDF and PDF

CDF and PDF

Consider a probability space (Ω,B,P) and a random variable X ∼ (R,B(R),PX ):

Cumulative Distribution Function

Prob(X ≤ x) := FX (x) := PX (X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}), x ∈ R. (6.1)

Recall: {ω ∈ Ω : X(ω) ≤ x} ∈ B(R).

For a discrete random variable, this is understood as a step function which is continuous from the
right.

Proposition 3

F is a CDF iff
1 limx→∞ F (x) = 1, limx→−∞ F (x) = 0;
2 F is non-decreasing;
3 F is right-continuous, i.e., for every x0 ∈ R, limx↓x0 F (x) = F (x0);

4 for ε > 0 ∃ M such that Prob(|X | > M) < ε (no complete mass concentration at infinity).
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CDF and PDF

CDF and PDF
For a discrete random variable X ∼ (I,B(I),PX ) the Probability Mass Function (PMF) is defind
as

fX (x) = P(X = x) = P({ω ∈ Ω : X(ω) = x}), x ∈ I. (6.2)

For a continuous random variable X ∼ (R,B(R),PX ) the Probability Density Function fX is given
by

Prob(X ≤ x) := FX (x) =

x∫
−∞

fX (t)dt ,  PX (A) = P(X ∈ A) =

∫
A

fX (t)dt =:

∫
A

dFX (6.3)

Note: (Fundamental Theorem of Calculus) if fX is continuous, then fX (x) = F ′X (x)

Proposition 4

A function fX (x) is a PMF or PDF if and only if
1 fX (x) ≥ 0 for all x;
2 ∑

x∈I
fX (x) = 1 if X :→ I is discrete;

∫
R

fX (x)dx = 1 if X is continuous.
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CDF and PDF

CDF and PDF

Blue curve: CDF P(x) = FX (x)

Red curve: PDF p(x)

Interpretation: the probability of X falling into an interval (x , x + δx) is given approximately by

p(x)δx . This becomes precise when δx → 0 which reflects that the density is the derivative of

the cumulative distribution.
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CDF and PDF

Conditional CDF and PDF

Let X ∼ (R,B(R),PX ), A ∈ B(R) Conditional CDF

PX (X ≤ x |X ∈ A) :=
PX ({X(ω) : ω ∈ Ω, X(ω) ≤ x} ∩ A)

PX (A)
briefly:

PX ({X≤x}∩A)

PX (A)

Again: differentiation yields Conditional PDF

Example: fix z ∈ (0, 1), X ∼ ([0, 1],B([0, 1]), λ), conditioning on x > z:

PX (X ≤ x |X ≥ z) =

 0, if x ≤ z,
x−z
1−z , if x > z.

PDF:
fX |X≥z (x) = F ′X |X≥z (x) =

1
1− z

.
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Joint Probability and Marginals

Joint Probability Measure

Consider two random variables X : Ω→ X ,Y : Ω→ Y (on (Ω,B,P)), A ∈ B(X ),B ∈ B(Y),

PX ,Y (A,B) := P(X ∈ A,Y ∈ B) = P({ω ∈ Ω : X(ω) ∈ A, Y (ω) ∈ B})

(in the discrete case PX,Y (x, y) := P(X = x, Y = y), (x, y) ∈ X × Y)

One has the following equivalent ways of expressing this (as an exercise)

PX ,Y (A,B) = P({ω ∈ Ω : X(ω) ∈ A} ∩ {ω ∈ Ω : Y (ω) ∈ B}) = P(X−1(A) ∩ Y−1(B))

(5.1)
= P(X−1(A)|Y−1(B))P(Y−1(B)) = P(X ∈ A|Y ∈ B)P(Y ∈ B)

= P(Y−1(B)|X−1(A))P(X−1(A)) = P(Y ∈ B|X ∈ A)P(X ∈ A) (7.1)

Suppose {J} is a partition of Y:  ∑
J

PX ,Y (A, J) =
∑

J

P(X ∈ A,Y ∈ J) =
∑

J

P(Y ∈ J|X ∈ A)P(X ∈ A)

= P(X ∈ A) = PX (A) (since
∑

J P(Y ∈ J|X ∈ A) = 1) (7.2)

called marginal probability since one variable is “summed out”
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Joint Probability and Marginals

Notational Conventions: Marginals
X ,Y discrete:

PX ,Y (X = x ,Y = y) =: PX ,Y (x , y)  PX (x) = PX ,Y (x) =
∑
y∈Y

PX ,Y (x , y) sum rule

X ,Y continuous, recall (6.3), think of the partition {J} to become finer and finer, summation→
integration, P(Y ∈ J) = PY (J) =

∫
J

dFY  (Fubini’s Theorem)

PX ,Y (A) =
∫
Y

P(X ∈ A,Y = y)dy , fX ,Y (x) =
∫
Y

fX ,Y (x , y)dy ,

fX ,Y (x , y) = fY |X (y |x)fX (x).

(7.3)

Sometimes for p(X ,Y ) = fX ,Y (x , y) = ∂2

∂x∂y FX ,Y (x , y) just briefly:

p(X) =

∫
Y

p(X ,Y )dY , p(X ,Y ) = p(Y |X)p(X)

Baye’s Rule:

p(X |Y ) =
p(Y |X) · p(X)

p(Y )

Interpretation: p(X)↔ “prior distribution”; p(Y )↔ “data distribution”; p(X |Y )↔ “posterior
distribution” given the “data/observations” y ; p(Y |X)↔ “likelihood (of the data, given the prior X )
function.
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Joint Probability and Marginals

Independent Random Variables
The random variables X ,Y are called independent if the joint distribution factors into its
marginals (see (5.4)):

PX ,Y (A,B) = P(X ∈ A,Y ∈ B) = P({ω ∈ Ω : X(ω) ∈ A} ∩ {ω ∈ Ω : Y (ω) ∈ B})
= P(X ∈ A) · P(Y ∈ B) = PX (A) · PY (B), (7.4)

i.e., the events {ω ∈ Ω : X(ω) ∈ A}, {ω ∈ Ω : Y (ω) ∈ B} are statistically independent (see
(5.4)). In particular this means P(X ∈ A|Y ∈ B) = P(X ∈ A).
In terms of densities: p = fX

p(X ,Y ) = p(X |Y )p(Y ) = p(X) · p(Y ) (7.5)

Integration: Simplified notation X ∼ (X ,B(X ),PX ) X ∼ (X ,B,P) (often X = R)

f : X → R measurable ∫
X

f (x)dP := sup
{Ei}i∈I

{∑
i∈I

(
infx∈Ei

f (x)
)
P(Ei )

}
, (7.6)

where the supremum is taken over all partitions {Ei}i∈I of X . Often one writes dP(x) = p(x)dx .
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Joint Probability and Marginals

Identically Distributed Random Variables

Definition 5

Random variables X ,Y are called identically distributed (i.d.) if for every set A ∈ B(R)

PX (X ∈ A) = PY (Y ∈ A) i.e., P({ω ∈ R : X(ω) ∈ A}) = P({ω ∈ R : Y (ω) ∈ A}). (7.7)

Note: two identically distributed (i.d.) random variables X ,Y need not be the same

Example: 2-coint toss X = number of Heads, Y = number of Tails, hower

X and Y are i.d. ⇔ FX (z) = FY (z), ∀ z.
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Joint Probability and Marginals

A “Fruitful” Example a summary of the previous notions

Experiment: two boxes (red and blue), the red one r contains 2 apples, a, and 6 oranges, o, the
blue one b contains 3 apples and 1 orange;

randomly pick a box and from that box select randomly a fruit, each fruit being picked equally
likely. Having observed the type of fruit (a or o), the fruit is put back.

Suppose we repeat this process many times finding that in 40% of the cases the selected box
was r ; probabilistic model: the identity (color) of the box is a discrete random variable B(ox)
taking n = 2 values in X = {r , b}, and P(B = r) = 0.4 P(B = b) = 0.6. Likewise, the identity
of the fruit is also a random variable, denoted by F (ruit), taking m = 2 values in {a, o} = Y.

Question 1: suppose we have picked randomly a box that turned out to be blue b. Then, the
probability of selecting an apple is just the fraction of apples in the blue box which is 3/4, i.e.,
P(F = a|B = b) = 3/4. Similarly

P(F = a|B = r) =
1
4
, P(F = o|B = r) =

3
4
, P(F = a|B = b) =

3
4
, P(F = o|B = b) =

1
4

(7.8)
 overall probability of selecting an apple:

P(F = a) = P(F = a|B = r)P(B = r) + P(F = a|B = b)P(B = b) =
1
4
·

4
10

+
3
4
·

6
10

=
11
20

 P(F = o) = 1− P(F = a) = 9
20

W. Dahmen, J. Burkardt (DASIV) II - Probability Basics 21 / 73



Joint Probability and Marginals

Illustration (see [1, Chapter 1, § 1.2])

Illustration of a distribution over two variables X , taking 9 values, and Y , taking 2 values;

Top left: sample of 60 points drawn from a joint probability distribution over X ,Y ;

Remaining figures: histogram estimates for the marginals p(y), p(x) and the conditional density
p(X |Y = 1).
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Joint Probability and Marginals

A “Fruitful” Example, Cont’d
Question 2: suppose we have selected an orange and we ask which box did it come from most
likely. Now we ask for the probability over the box conditioned on the identity of the fruit. We
know the probability over the fruits conditioned on the boxes. Baye’s Rule allows us to reverse
the conditional probabilities:

P(B = r |F = o) =
P(F = o|B = r)P(B = r)

P(F = o)
=

3
4
·

4
10
·

20
9

=
2
3

Since P(B = r |F = o) + P(B = b|F = o) = 1 P(B = b|F = o) = 1− 2/3 = 1/3

Interpretation of Baye’s Theorem: if we had been asked for the identity of the box before being
told the selected fruit, the most complete information is provided by P(B). This is called Prior
Probability (available before knowing the identity of the fruit). Once we are told F = o, Baye’s
Theorem allows us to compute P(B|F ) which is called the Posterior Probability, the probability
obtained after observing F .
——————————————————–
More generally, in terms of densities p = fX ,Y : F = Y = o represents observed data w while
B = X = r stands for the unknown parameters x whose posterior probability is to be estimated.
Then Baye’s Theorem reads

p(x|w) =
p(w|x)p(x)

p(w)
in words: posterior ∝ likelihood × prior (7.9)

where p(w|x) is called the likelihood function
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Joint Probability and Marginals

A “Fruitful” Example, Cont’d

Note: integrating (7.9) on both sides over x and using that
∫
X d

p(x|w)dx = 1, yields

p(w) =

∫
X d

p(w|x)p(x)dx. (7.10)

———————————————————–
Note: the prior probability of selecting the red box was P(B = r) = 4

10 so we were more likely to
select the blue box. However, after observing the selected fruit, we find that the posterior
probability of selecting the red box is P(B = r |F = o) = 2

3 , so the red box is actually more likely
to be selcted

Intuition: the proportion of oranges in the red box is higher which makes it more likely to come
from the red box likelihood function.

If the fraction of oranges and apples were the same in both boxes, the identity of the fruit would
not provide any additional information and P(F |B) = P(F ) so that P(B,F ) = P(B) · P(F ) and
the probability of selecting a particular fruit is independent of which box has been picked. In this
case the random variables B,F are independent.

Remark: When X ∼ (X ,B,P) is a random variable and f : X → R a measurable function, the
f (X) is also a random variable.
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Joint Probability and Marginals

Baysian Probabilities

So far: probabilities are viewed as frequencies of repeatable events - the “frequentist’s point of
view” in statistics.
Baysian Interpretation of Probability: probabilities provide a quantification of uncertaintiy. For
instance, will the Arctic cap have disappeared by the end of the century? This cannot be
assessed by inference from repeated events numerous times.

Instead: we have an idea of how quickly the ice is melting, e.g. based on an existing physical
(mathematical) model.

If we obtain fresh evidence, e.g. by new satellite measurements or novel forms of diagnostic
information, we may revise our estimation of uncertainty to be used in subsequent actions or
decisions.

Now the issue becomes to quantify “degrees of belief” by numerical values. This can be done in
an axiomatic way which eventually leads to “rules” for manipulating “degrees of belief” that are
equivalent to the sum- and product rules of probability.

We’ll compare later merits or disadvantages of frequentist versus Baysian approaches.
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Expectation and Variance

Statistical Moments Expectation

X ∼ (X ,B,P): the Expectation of a function f : X → R is a “weigted average” of the function
values according to the underlying probability density p(x) = fX (x) (see (7.6)):

E[f ] :=
∑
x∈X

f (x)p(x) (discrete), E[f ] :=

∫
X

f (x)p(x)dx (continuous) (8.1)

Expectations are typically approximated via sampling (see Theorem 11 later below)

E[f ] ≈
1
n

N∑
j=1

f (xj ), (8.2)

where the xj are i.i.d. (independent, identically distributed) random samples from X . Note: the
samples xj will cluster in regions where p attains large values.

Marginals, conditional expectations: X ,Y random variables

EX [f (·, y)] =

∫
X

f (x , y)dx , EX [f |y ] = E[f |y ] :=

∫
X

f (x)p(x |y)dx . (8.3)

Let 1A(x) denote the (set) characteristic function, i.e., 1A(x) = 1 if x ∈ A and zero otherwise.
Then

E
[
1A(X)] =

∫
A

p(x)dx = Prob(X ∈ A), (8.4)

the expectation of set-characteristic functions completely describes the probability distribution.
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Expectation and Variance

Variance d = 1
Variance describes the fluctuation of f around its mean (everything is analogous in the discrete case

∑
↔
∫

):

var[f ] := E
[
(f − E[f ])2] =

∫
X

(f (x)2 − 2f (x)E[f ] + E[f ]2)p(x)dx

=

∫
X

f (x)2p(x)dx − 2E[f ]

∫
X

f (x)p(x)dx + E[f ]2
∫
X

p(x)dx

= E
[
f 2]− 2E[f ]2 + E[f ]2 = E

[
f 2]− E[f ]2. (8.5)

Also since E[c] = c for any constant c one easily verifies

var[X + c] = var[X ], var[cX ] = c2var[X ], c constant. (8.6)

Remark 6

Since
∫
X

(f (x)− E[f ])p(x)dx = E[f ]− E[f ] = 0, Lecture I, Theorem 24 ⇒ var[f ] is the square of

the L2(X , p) best approximation error of f by constants:

var[f ] = inf
c∈R

∫
X

(f (x)− c)2p(x)dx . (8.7)

E[X ], var[X ] are given by the first and second order moments
∫
X

xp(x)dx ,
∫
X

x2p(x)dx .
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Expectation and Variance

Moments for Independent Random Variables
Lemma 7

For random variables X ,Y ∼ (R,B(R),P), one has

E[αX + βY ] = αE[X ] + βE[Y ]. (8.8)

if X ,Y are independent, one has
E[XY ] = E[X ] · E[Y ], (8.9)

and
var[X + Y ] = var[X ] + var[Y ]. (8.10)

Proof: Let p = fX,Y .  E[αX + βY ] =
∫
R2

(αx + βy)p(x, y)dxdy = α
∫
R

xp(x)dx + β
∫
R

yp(y)dy (marginals)⇒ (8.8).

Concerning (8.9), one has

E[XY ] =

∫
R2

xyp(x, y)dxdy
(7.5)
=

∫
R2

xyp(x)p(y)dxdy

=
( ∫

R

xp(x)dx
)( ∫

R

yp(y)dy
)

= E[X ] · E[Y ] ⇒ (8.9)

As for (8.10),

var[X + Y ]
(8.5)
= E

[
(X + Y )2]− E[X + Y ]2 = E

[
X2 + 2XY + Y 2]− E[X ]2 − 2E[X ]E[Y ]− E[Y ]2

= E
[
X2] + 2E[XY ] + E

[
Y 2]− E[X ]2 − 2E[X ]E[Y ]− E[Y ]2 = E

[
X2]− E[X ]2 + E

[
Y 2]− E[Y ]2

= var[X ] + var[Y ]. �
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Expectation and Variance

Variance d > 1

Let X = (X1, . . . ,Xn)>,Y = (Y1, . . . ,Yn)> be vectors of random variables (with joint distribution
P). The Covariance of X and Y is the rank-one matrix

cov[X,Y] := E
[
(X− E[X])(Y− E[Y])>

]
= E

[
XY>

]
− E[X]E[Y]> (8.11)

Exercise: Verify the last equality!

Abbreviate: var[X] := cov[X,X], so that

var[X] = E
[
XX>

]
− E[X]E[X]>. (8.12)
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Expectation and Variance

The Characteristic Function better understanding of PDFs

The characteristic function of a random variable X with density p(x) is defined as

ϕX (s) := E
[
e−is·] =

∫
R

p(x)e−isx dx . (8.13)

In other words, defining the Fourier transform of a function g as

(Fg)(s) :=

∫
R

g(x)e−isx dx ,

the characteristic function of a random variable X with density p is the Fourier transform of the
underlying probability density

ϕX (s) = (Fp)(s). (8.14)

Just as the expectation of the set-charactersitic function completely characterizes a distribution,

the expectation of basic Fourier modes e−isx does as well. By properties of the Fourier

transform, if the characteristic functions of random variables agree so must the random variables.

There are a number of important applications of the characteristic function, among them a

convenient proof of the Central Limit Theorem (see later below).
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Expectation and Variance

Properties of Characteristic Functions
Remark 8

The characteristic function always exists, is uniformly continuous and ϕX (0) = 1, |ϕX (s)| ≤ 1.
Moreover, if a random variable has kth moments, one has

E
[
X k ] = (−i)kϕ

(k)
X (0),

where i is the imaginary unit i2 = −1. This follows directly from corresponding properties of the
Fourier transform.

Remark 9

For any affine transformation aX + b of a random variable X one has ϕaX+b(s) = e−isbϕX (as).

Proposition 10

Suppose that X ,Y are jointly distributed independent random variables. Then

ϕX+Y (s) = ϕX (s) · ϕY (s). (8.15)

Proof: ϕX+Y (s) =
∫
R2

p(x , y)e−is(x+y)dxdy
(7.5)
=

∫
R×R

p(x)p(y)e−isx e−isy dxdy = ϕX (s) · ϕY (s)�
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Law of Large Numbers and Tail Bounds

Law of Large Numbers ...

Write briefly: Prob(g(x) ≥ ε) := P({x ∈ XN : g(x) ≥ ε}).

The Law of Large Numbers states in great generality that the mean of independent samples of a
random variable with bounded variance becomes arbitrarily close to its expectation.

Theorem 11

Let x1, . . . , xN be i.i.d. samples of a random variable X ∼ (X ,B,P). Then

Prob
(∣∣∣x1 + · · ·+ xN

N
− E[X ]

∣∣∣ ≥ ε) ≤ var[X ]

Nε2
, ε > 0. (9.1)

The proof is based on two basic but important inequalities: Markov’s inequality and Chebyshev’s

inequality as well as on Lemma 7.
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Law of Large Numbers and Tail Bounds

Markov’s Inequality

Theorem 12

Let X ∼ (R,B,P) be a nonnegative random variable. Then one has for a > 0

Prob(X ≥ a) ≤
E[X ]

a
. (9.2)

Proof: Let p = fX denote the density so that

E[X ] =

∞∫
0

xp(x)dx =

a∫
0

xp(x)dx +

∞∫
a

xp(x)dx ≥
∞∫

a

xp(x)dx

≥ a

∞∫
a

p(x)dx ≥ a Prob(X ≥ a),

which proves the assertion. The same argument works for the discrete case. �

Corollary 13

Under the above assumption one has Prob(x ≥ bE[X ]) ≤ 1
b , b > 0.

W. Dahmen, J. Burkardt (DASIV) II - Probability Basics 33 / 73



Law of Large Numbers and Tail Bounds

Chebyshev’s Inequality

Markov’s inequality bounds the tail of a distribution in terms of the mean. It is used to prove
Chebyche’s inequality which offers the following (in some sense sharper) tail bound.

Theorem 14

Let X ∼ (R,B,P) be a random variable. Then for c > 0

Prob
(
|X − E[X ]| ≥ c

)
≤

var[X ]

c2
. (9.3)

Proof: Y := |X − E[X ]|2 is a nonnegative random variable and, by definition, E[Y ] = var[X ].
Thus, Markov’s inequality gives

Prob(|X − E[X ]| ≥ c) = Prob(|X − E[X ]|2 ≥ c2) = Prob(Y ≥ c2)
(9.3)
≤

E[Y ]

c2
=

var[X ]

c2
.

�
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Law of Large Numbers and Tail Bounds

Proof of Theorem 11

By Chebyshev’s inequality (9.3)

Prob
(∣∣∣ 1

N

N∑
j=1

Xj − E[X ]
∣∣∣ ≥ ε) ≤

var
[

1
N
∑N

j=1 Xj

]
ε2

(8.6)
=

var
[∑N

j=1 Xj

]
N2ε3

(8.10)
=

∑N
j=1 var[Xj ]

N2ε2

=
var[X ]

Nε2
,

since the Xj are i.e.d. This proves the assertion. �

W. Dahmen, J. Burkardt (DASIV) II - Probability Basics 35 / 73



Law of Large Numbers and Tail Bounds

Exercises
There are some general ideas behind bounding excess probabilities (tail bounds). The following
exercises are to hint at them and will be taken up later again.

Exercise 15

1 Show that for any non-negative random variable X

E[X ] =

∞∫
0

Prob(X ≥ t)dt (9.4)

and re-derive Markov’s inequality (assume that for the CDF F ′X (x) = p(x)).

2 Let φ(t) be any strictly monotonely increasing non-negative function. Show that for any
random variable X and any t ∈ R

Prob(X ≥ t) ≤
E[φ(X)]

φ(t)
. (9.5)

3 Re-derive Chebyshev’s inequality from (2): for an arbitrary random variable X and t > 0
one has

Prob(|X − E[X ]| ≥ t) ≤
var[X ]

t2
. (9.6)
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The Gaussian Basic Definitions, Properties

Gaussians
The perhaps most important distribution is the normal or Gaussian density

p(x) = N (x |µ, σ) :=
1

√
2πσ2

exp
{
−

1
2σ2

(x − µ)2
}

(10.1)

involving two parameters: the mean µ and the variance σ2 (σ is called standard deviation). In
fact, straightforward calculation 

E[X ] =

∞∫
−∞

xN (x |µ, σ)dx = µ, E
[
X 2] =

∞∫
−∞

x2N (x |µ, σ)dx = µ2 + σ2 (10.2)

(8.5)  var[X ] = E[X 2]− E[x ]2 = σ2

β = 1/σ2 is called precision.

Remark 16

N (x |µ, σ) attains its maximum (called “mode”)
at its mean µ and N (µ|µ, σ2) = 1

σ
√

2π
(find the

zero of the derivative).

One writes X ∼ N (µ, σ2)
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The Gaussian Basic Definitions, Properties

More Comments ...
Note: For ϕ(z) := 1√

2π
e−

1
2 z2

one has ϕ′(z) = −zϕ(z), ϕ′′(z) = (z2 − 1)ϕ(z)

N (x |µ, σ2) =
1
σ
ϕ
(x − µ

σ

)
⇒

d
dx
N (x |µ, σ2)|x=µ = 0,

d2

dx2
N (x |µ, σ2)|x=µ±σ = 0,

i.e., N (x |µ, σ2) attains its maximum at the mean µ and has inflection points at µ± σ.
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The Gaussian Basic Definitions, Properties

Higher Moments of Gaussians
Mean and expectations are first and second order moments. Plain and absolute moments are
the expectations of corresponding powers of the random variable: E

[
X k ], E[|X |k ]. Bounds on

moments of a probability density provide important structural information and lead e.g. to so
called tail bounds used in quantifying the performance of estimators in machine learning. For the
centered Gaussian X ∼ N (0, σ2) it can be shown that

E
[
Xk ] =

 0 if k is odd

σk (k − 1)!! if k is even
E
[
|X |k

]
= σ

k (k − 1)!!


√

2
π

if k is odd

1 if k is even
(10.3)

where n!! :=
∏d n

2 e−1
j=1 (n − 2j). For non-centered densities N (·|µ, σ2)
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The Gaussian Basic Definitions, Properties

A First Application of the Law of Large Numbers

Draw two points z, y ∈ Rd where the components zj , yj are realizations of independent random variables Z , Y ∼ N (0, 1). We

are interested in the expected (squared) distance ‖y− z‖2
2 =

∑d
j=1(yj − zj )

2. For each j ∈ {1, . . . , d} one has

E[(Yj − Zj )
2] = E[Y 2

j ] + E[Z 2
j ]− 2E[Yj Zj ] = var[Yj ] + var[Zj ]− 2E[Yj ]E[Zj ]

(8.9)
= var[Yj ] + var[Zj ] = 2

since E[Yj ] = E[Zj ] = 0. Then Theorem 11 says that

Prob
(∣∣∣ 1

d

d∑
j=1

(Yj − Zj )
2 − 2

∣∣∣ ≥ ε) ≤ var[(Y − Z )2]

dε2
→ 0, as d → ∞. (10.4)

As seen above, all higher moments of Gaussians (expectation of powers of Gaussians) are finite, the right hand side indeed

tends to zero as the dimension grows. Thus, with probability at least 1− var[(Y−Z )2 ]

dε2 the instances satisfy

(2− ε)d ≤ ‖y− z‖2
2 ≤ (2 + ε)d (10.5)

Since by the above argument E[(Yj − Zj )
2] = E[Y 2

j ] + E[Z 2
j ] = 2, i.e., E[‖Y‖2

2] = E[‖Z‖2
2] = d , one concludes that y and z

are nearly orthogonal with high probability. Rescaling Y, Z to unit length and choosing y as the north pole, almost all z

concentrate near the equator. A detailed discussion will follow later.
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The Gaussian Advanced Proberties

Properties of Gaussians

(1) The substitution (x − µ)/σ → z transforms X ∼ N (µ, σ2) to standard form Z ∼ N (0, 1)

1

σ
√

2π

∞∫
−∞

e
− 1

2

(
x−µ
σ

)2

dx =
1
√

2π

∞∫
−∞

e−
1
2 z2

= 1

(2) The Fourier transform of a Gaussian is a Gaussian. Specifically, one has: (see (8.14))

Proposition 17

ϕZ (s) = (FN (·|0, 1))(s) =
√

2πN (s|0, 1) = e−
1
2 s2
, Z ∼ N (0, 1). (10.6)

More generally, when X ∼ N (µ, σ2) one has

ϕX (s) = (FN (·|µ, σ2))(s) =
√

2πe−isµN (σs|0, 1) = e−
1
2σ

2s2−isµ. (10.7)

Corollary 18

For independent Gaussian random variables X ∼ N (µX , σ
2
X ), Y ∼ N (µY , σ

2
Y ) the sum X + Y is

also Gaussian. More precisely

X + Z ∼ N (µX + µY , σ
2
X + σ2

Y ). (10.8)
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The Gaussian Advanced Proberties

Proof of Proposition 17 and Corollary 18
Proof of Proposition 17: Abbreviate g(z) := (2π)−1/2e−

1
2 z2

= N (z|0, 1) and note that g′(z) = −zg(z). Applying the
Fourier transform to both sides, yields on the one hand

(Fg′)(s) =

∫
R

g′(z)e−isz dz = −
∫
R

(−is)g(z)e−isz dz = (is)(Fg)(s),

which has to equal

−
∫
R

zg(z)e−isz dz = −
∫
R

g(z)(−i)−1 d

ds
e−isz dz = −i

d

ds
(Fg)(s).

Therefore

d
ds (Fg)(s)

(Fg)(s)
= −s, ⇒

s∫
0

d
ds (Fg)(s′)

(Fg)(s′)
ds′ = −

s2

2
, ⇒ ln((Fg)(s))−ln((Fg)(0)) = ln((Fg)(s)) = −

s2

2
⇒ (10.6).

Since X = σZ + µ, Remark 9 says that

ϕX (s) = ϕσZ+µ(s) = e−isµ
ϕZ (σs)

(10.6)
=
√

2πe−isµN (σs|0, 1),

which is (10.7). �

Proof of Corollary 18: Let pX+Y denote the density of X + Y . Then, by (8.14) and Proposition 10,

(FpX+Y )(s) = ϕX+Y (s)
(8.14)

= ϕX (s)ϕY (s)
(10.7)

= e−is(µX +µY )e−
1
2 s2(σ2

X +σ2
Y ) (10.7)

= (FN (·|µX + µY , σ
2
X + σ

2
Y ))(s),

which confirms (10.8). �
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The Gaussian Advanced Proberties

Further Properties of Gaussians
It follows, as in the proof of Corollary 18 from the same factorization of the characteristic function
of independent random variables, that for independent Xj ∼ N (µj , σ

2
j )

n∑
j=1

Xj ∼ N
( n∑

j=1

µj ,
n∑

j=1

σ2
j

)
,

1
n

n∑
j=1

Xj ∼ N
(1

n

n∑
j=1

µj ,
1
n2

n∑
j=1

σ2
j

)
. (10.9)

Convolutions: f , g ∈ L2(R), (f ? g)(x) =
∫
R

f (x − y)g(y)dy ∈ L1(R). One easily verifies that

(F(f ? g))(s) = (F f )(s) · (Fg)(s), (10.10)

i.e., under the Fourier transform convolution becomes a pointwise multiplication.

Proposition 19

The convolution of two Gaussians densities is a Gaussian density, i.e.,

(N (·|µX , σ
2
X ) ?N (·|µY , σ

2
Y ))(x) = N (x |µX + µY , σ

2
X + σ2

Y ). (10.11)

Proof: By (10.10), (F(N (·|µX , σ
2
X ) ?N (·|µY , σ

2
Y ))(s) = (F(N (·|µX , σ

2
X ))(s) · (F(N (·|µY , σ

2
Y ))(s) which by (10.7),

equals e−is(µX +µY )e−
1
2 (σ2

X +σ2
Y )s2

. Again by (10.7), this is (FN (·|µX + µY , σ
2
X + σ2

Y ))(s). �
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The Gaussian Advanced Proberties

An Approximation Aspect

One sees from the figures that small variance concentrate the density around the mean. The corresponding PDFs become closer
and closer to a a step function. Since the integrals of the densities (by normalization) stay always equal to one the family
{N (·|0, σ2)}σ>0 form a so called approximate identity. This means that for a given function f , the convolutions

(f ?N (·|0, σ2))(x) =

∫
R

f (y)N (x − y|0, σ2)dy =

∫
R

f (x − y)N (y|0, σ2)dy

tend to f in Lp(R), say

lim
σ→0

‖f − (f ?N (·|0, σ2))‖Lp (R) = 0. (10.12)

This agrees with (10.11) since limσ→0(N (·|µ, σ2
X ) ?N (·|0, σ2))(x) = limσ→0N (x|µ, σ2

X + σ) = N (x|µ, σ2
X ).
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The Gaussian Advanced Proberties

Multivariate Gaussians

For a vector X ∈ Rd of random variables the d-variate (or spherical) Gaussian density is:

N (x|µ,A) :=
1

(2π)d/2|det A|1/2
exp

{
−

1
2

(x− µ)>A−1(x− µ)
}

(10.13)

where: µ ∈ Rd is called the mean and A ∈ Rd×d , symmetric positive definite, the (co)variance of
X. We’ll verify that this terminology is justified.

A special case: suppose that X is a vector of independent random variables X1, . . . ,XN , which
are jointly distributed Xj ∼ N (·|µ, σ2), j = 1, . . . ,N. Independence means (see (7.5)) that the
joint probability density is the product of the marginals which are the univariate Gaussians. That
is

p(x) =
N∏

j=1

N (xj |µ, σ2) = N (x|(µ, . . . , µ)>,Σ), Σ := diag (σ2, . . . .σ2) = σ2I, (10.14)

which is an N-variate Gaussian with mean (µ, . . . , µ)> ∈ RN and variance σ2I.
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The Gaussian Advanced Proberties

Transformation to Standard Form a useful tool

By Lecture I, Theorem 32: A = UΛU>, A−1 = UΛ−1U> for some orthogonal matrix U and
diagonal matrix Λ

(x− µ)>A−1(x− µ) = (U>(x− µ))>Λ−1U>(x− µ) = ‖Λ−1/2z‖2
2 where z := U>(x− µ).

Setting σ2
j := λj , this yields (since |det(U>)| = 1, see section on unitary matrices in Lecture I)

∫
Rd

g(x)N (x|µ,A)dx =
1

(2π)d/2|detA|1/2

∫
Rd

g(x)e−
1
2 (x−µ)>A−1(x−µ)dx

=
1

(2π)d/2∏d
j=1 σj

∫
Rd

g(Uz + µ)e
−
∑d

j=1
1

2σ2
j

z2
j
dz

=

∫
Rd

g(Uz + µ)
d∏

j=1

N (zj |0, σ2
j )dz

=

∫
Rd

g(Uz + µ)N (z|0,Λ)dz. (10.15)
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The Gaussian Advanced Proberties

Multivariate Gaussian: Expectation, Variance

Proposition 20

Let X ∼ N (µ,A), µ ∈ Rd , A ∈ Rd×d , symmetric positive definite. Then

E[X] = µ, var[X] = A. (10.16)

Proof: By (10.15),
E[X] =

∫
Rd

xN (x|µ,A)dx =

∫
Rd

(Uz + µ)N (z|0, Λ)dz, A = UΛU>.

The subsequent arguments use thatN (z|0, Λ) =
∏d

j=1N (zj |0, σ2
j ) (λj =: σ2

j > 0) is a product of 1d-centered (normalized)
Gaussians, i.e.,

∫
R

N (zj |0, σ
2
j ) = 1,

∫
R

zjN (zj |0, σ
2
j )dzj = 0,

∫
R

z2
j N (zj |0, σ

2
j )dzj = µ

2
j + σ

2
j . (10.17)

By (10.15),

E[X] =

∫
Rd

(Uz + µ)N (z|0, Λ)dz = U
( ∫
Rd

zN (z|0, Λ)dz
)

+ µ

∫
Rd

N (z|0, Λ)dz = 0 + µ = µ ⇒ 1. rel. in (10.16).

Regarding the variance, we use (8.12) and observe first that, by (10.17),∫
Rd

zk zjN (z|0, Λ)dz = δk,j

∫
R

z2
kN (zk |0, σ

2
k )dzk

(10.2)
= δk,j (σ

2
k + µ

2
k ) = δk,jσ

2
k .

Moreover, (Uz + µ)(Uz + µ)> = U(zz>)U> + Uzµ> + µz>U> + µµ> =: a1 + a2 + a3 + a4. Again, by (10.17),∫
Rd

a1N (z|0, Λ)dz = Udiag(σ2
1 , . . . , σ

2
d )U> = A,

∫
Rd

aqN (z|0, Λ)dz = 0, q = 2, 3,
∫
Rd

a4N (z|0, Λ)dz = µµ
>
.

 second relation in (10.16). �
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The Central Limit Theorem

The Gaussian distribution plays a pivotal role in a number of contexts. We briefly mention some
of them here.

The Central Limit Theorem (CLT): states that properly normalized sums of independent random
variables with bounded variance tend to a normal distribution. This result comes in numerous
quantified formulations. A classical variant reads as follows.

Theorem 21

Let X1,X2, . . . ,XN be a sequence of i.i.d random variables with expectation E[Xj ] = µ and
variance var[Xj ] = σ2 for all j . Consider the sample mean

SN :=
1
N

(X1 + X2 + · · ·+ XN ).

Then
√

N(SN − µ)
d→ N (0, σ2). This convergence in distribution means (see (6.1))

lim
N→∞

sup
z∈R

∣∣∣ProbRN
(√

N(SN − µ) ≤ z
)
−

z∫
−∞

N (x |0, σ2)dx
∣∣∣ = 0. (10.18)

This says that the CDF of the sequence of random variables
√

N(SN − µ) tend uniformly to the
CDF of the Gaussian density N (·|0, σ2).
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Sketch of a Proof of Theorem 21
{X1, . . . , XN} i.i.d. samples of a random variable with mean µ and variance σ2; by Lemma 7, X1 + · · · + XN has mean Nµ
and variance Nσ2. Consider the random variable

1

σ

√
N(SN − µ) =: ZN =

X1 + · · · + XN − Nµ
√

Nσ2
=

N∑
j=1

Xj − µ√
Nσ2

=:
1
√

N

N∑
j=1

Yj , Yj :=
Xj − µ

σ

Then, since the Yj are i.i.d.

ϕZN
(s) = ϕ∑

j≤N
1√
N

Yj
(s)

(8.15)
=

N∏
j=1

ϕYj
(s/
√

N) = ϕY1
(s/
√

N)N ;

Claim:

lim
N→∞

ϕZN
(s) = lim

N→∞
ϕY1

(s/
√

N)N = e−
s2
2 pointwise. (10.19)

To that end, observe

ϕY1
(0) = 1, ϕ

′
Y1

(s) = −i
∫
R

yp(y)e−isy dy  ϕ
′
Y1

(0) = −i E[Y1] = 0,

and
ϕ
′′
Y1

(s) = (−i)2
∫
R

y2p(y)e−isy dy  ϕ
′′
Y1

(0) = −
∫
R

y2p(y)dy = −E[Y 2
1 ] = −var[Y1] = −1.

Taylor’s Theorem then says

ϕY1
(s/
√

N) = ϕY1
(0) +

s
√

N
ϕ
′
Y1

(0) +
s2

2N
ϕ
′′
Y1

(0) + o
(

(
s2

N

)
= 1−

s2

2N
+ o
( s2

N

)
,
( s
√

N

)
→ 0. (10.20)
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Sketch of a Proof of Theorem 21

Since ex = limn→∞
(

1 + x
n

)n
one concludes from (10.20) that

ϕZN
(s) =

(
1−

s2

2N
+ o
( s2

N

))N
→ e−

1
2 s2

, N →∞, (pointwise),

because all higher order terms vanish in the limit. This confirms the claim (10.19).

Recall from (10.6) that e−
1
2 s2

= ϕZ (s) when Z ∼ N (0, 1). Now we invoke Levy’s Continuity Theorem. It states that pointwise
convergence of characteristic functions of a sequence of probability measure implies that the limit is the characteristic function of
a probability measure to which the measures then converge uniformly.

This implies that the densities of ZN approachN (·|0, 1) in distribution. Since ZN =
√

N
σ

(SN − µ) this yields

sup
z∈R

∣∣∣Prob
(√N

σ
(SN − µ) ≤ z′

)
−

z′∫
−∞

1
√

2π
e−

x2
2 dx

∣∣∣→ 0, N →∞

Since Prob
(√

N
σ

(SN − µ) ≤ z′
)

= Prob
(√

N(SN − µ) ≤ σz′
)

, replacing σz′ by z and noting that

z/σ∫
−∞

1√
2π

e−
x2
2 dx =

z∫
−∞

1
σ
√

2π
e
− 1

2

(
x
σ

)2

dx , (10.18) follows. �
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Illustration
Bernoulli distribution: Let p ∈ [0, 1], X ∼ B(1, p) is a random variable taking the value 1 with
probability p and the value 0 with probability q = 1− p. The PDF (PMF) over k ∈ {0, 1} =: X is

fX (k ; p) =

 p if k = 1,

q = 1− p if k = 0,

 = pk (1− p)1−k , k ∈ {0, 1}. (10.21)

One can check (Exercise)
E[X ] = p, var[X ] = p(1− p) = pq. (10.22)

This is a special case of the binomial distribution Y ∼ B(N, p) obtained by taking the sum of i.i.d
Bernoulli trials Xj ∼ B(1, p)

Y =
N∑

j=1

Xj ∼ B(N, p). (10.23)

The Central Limit theorem applies. Here are a few binomial instances for various values of N,
p = 1/2:
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Parameter Estimation

A typical estimation problem: suppose we have a data set of N observations/instances
x = (x1, . . . , xN )> ∈ RN of the scalar random variable X . Suppose that these observations are
drawn independently from a Gaussion N (·|µ, σ2) whose µ and variance σ2 are unknown.

Recall that the samples xj are called i.d.d. - independent identically distributed. We know from
(7.5) and (10.14) that the joint probability density for the random variable X obtained by the i.i.d.
random draws Xj is the product of the marginals which are the univariate Gaussians, i.e.,

N (x|(µ, . . . , µ)>,Σ) =
N∏

j=1

N (xj |µ, σ2) =, Σ := σ2I (10.24)

which is an N-variate Gaussian.

Question: How could one estimate the values of µ and σ2 from an instance x of X?
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Maximizing the Likelihood Function of Gaussians
Suppose a Gaussian process with unknown mean and variance is observed through
independent samples collected in a data vector x.

A possible way of estimating µ, σ from the data x is to maximize the likelihood function
L(µ, σ2; x) = N (x|µ, σ2) over µ, σ2. That means one seeks parameters µ, σ2 that are most likely
for the given data (rather than fitting the specific observations best in a least squares sense).

Maximizing N (x|µ, σ2) is most conveniently done by maximizing its logarithm

logN (x|µ, σ2) = −
1

2σ2

N∑
j=1

(xj − µ)2 −
N
2

log(σ2)−
N
2

log(2π) (log-likelihood function). (10.25)

Maximizing over µ, yields:

µML =
1
N

N∑
j=1

xj sample mean. (10.26)

Maximizing with respect to σ2 yields:

σ2
ML =

1
N

N∑
j=1

(xj − µML)2 sample variance w.r.t. sample mean (10.27)

Note: the joint maximization of µ, σ2 decouples in this case! verify this.

W. Dahmen, J. Burkardt (DASIV) II - Probability Basics 56 / 73



The Gaussian Gaussians in Various Contexts

Illustration ([1, Chapter 1, § 1.2])

Illustration of the likelihood function for a Gaussian density (red curve); the black points denote a

data set of values xn, and the likelihood function corresponds to the product of the blue values.

Maximizing the likelihood involves adjusting the mean and variance of the Gaussian so as to

maximize this product.
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Maximizing the Likelihood Function of Gaussians

Note: for each draw x one obtains estimates µML = µML(x), σML = σML(x) which will vary over
repeated draws.

Exercise 22

µML, σML depend on the random draws X and are therefore random variables. Hence we can
compute the expectation of these quantities: show that

E
[
µML

]
= µ, E

[
σ2

ML
]

=
(N − 1

N

)
σ2. (10.28)

Thus, the maximum likelihood estimate systematically underestimates the true variance by the
factor N−1

N . This results from computing σ2
ML based on the sample mean not the true mean.

(10.28) 

σ̃2
ML :=

N
N − 1

σ2
ML =

1
N − 1

N∑
j=1

(xj − µML)2

is an unbiased estimator. These are special effects reflecting a more general feature of maximum

likelihood methods.
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The Gaussian in Information Theory
Given a (discrete) random variable X , a core question in Information Theory is: how much
information is received when observing a specific value x of X . Intuitively, observing a highly
unlikely event provides more information than observing a probable event (a certain event would
give no additional information). Therefore any “measure of information” must be related to the
underlying probability density p = fX .  

Objective: look for a quantity h(x) which is a monotonic function of p(x) and expresses the
“information content” of realizations of X ;

Structure of h(x): if X ,Y are independent jointly distributed events, commonly observing both
events should provide the same information as observing them separately, i.e.,
h(x , y) = h(x) + h(y). Since by independence (see (7.5)), p(x , y) = p(x) · p(y), the sum has to
stem from a product, i.e., h should be the logarithm of p. It is a convention to use the logarithm
for base two since this relates directly to binary code length:

h(x) : − log2 p(x) ≥ 0. (Note: if p(x) is small h(x) is large). (10.29)

Now suppose a sender wishes to transmit values (samples) x of a random variable X to a
receiver. The average amount of information transmitted in the process is its expectation w.r.t.
the underlying density (convention: p(x) log2 p(x) = 0 if p(x) = 0)

H[X ] := −
∑
x∈X

p(x) log2 p(x), continuous case: H[X ] := −
∫
X

p(x) log2 p(x)dx . (10.30)

H[X ] is called the entropy of the random variable X .
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An Example

Suppose the random variable X has 8 equally likely states, i.e. p(x) = 1/8, x ∈ {1, 2, . . . , 8}.
Thus, a message has 3 bits. Its entropy is

H[X ] = −8 ·
1
8

log2
1
8

= 3 (bits).

Now suppose the possible states xj are unevenly distributed

x x1 x2 x3 x4 x5 x6 x7 x8

p(x) 1
2

1
4

1
8

1
16

1
64

1
64

1
64

1
64

Then

H[X ] = −
(1

2
log2

1
2

+
1
4

log2
1
4

+
1
8

log2
1
8

+
1
16

log2
1

16
+

4
64

log2
1

64

)
= 2 (bits)

Thus non-uniform distribution has a smaller entropy than a uniform one (entropy can be

interpreted as a measure for the amount of “disorder”)
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An Example

How to transmit the states? In the example 3 bits suffice to transmit a value. Can one use less by
exploiting information content?

Idea: use shorter code for probable events and longer codes for less probable events; one hopes
on average the shorter ones will be used more frequently in favor of overall shorter code.

Example:

x x1 x2 x3 x4 x5 x6 x7 x8

code 0 10 110 1110 111100 111101 111110 111111  

average code length
∑

x∈X p(x)code(x):

1
2
· 1 +

1
4
· 2 +

1
8
· 3 +

1
16
· 4 + 4 ·

1
64
· 6 = 2 (bits)

i.e., he amount of entropy. (Note: one cannot use shorter code words because one needs to
distinguish the states).

There is a general relation between entropy and code length. Shannon’s so called Noiseless
Coding Theorem (1948) states that the entropy is a lower bound for the code length = number of
bits needed to transmit the state of a random variable.
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Gaussians Maximize Entropy
Proposition 23

Among all continuous random variables X on R with mean µ and variance σ2 the entropy is
maximized by X ∼ N (µ, σ2).

To see this consider the Lagrangian

L(p, λ0, λ1) := −
∫
R

p(x) ln(p(x))dx + λ0

(
1−

∫
R

p(x)dx
)

+ λ1

(
σ

2 −
∫
R

p(x)(x − µ)2dx
)

The Lagrange multiplier λ0 ensures that the integral of p is one, which is necessary for a density, while λ2 controls the variance
of X . The constrained maximum of the first summand H[X ] is obtained by the global maximizer of L over (p, λ0, λ1). The global
extremum must be a critical point of the Lagrangian, i.e., the tripel (p, λ0, λ1) for which the variation of L vanishes (zero of the
derivative). More precisely, find (p, λ0, λ1) such that

lim
t→0

1

t
(L(p + tδf , λ0, λ1)− L(p, λ0, λ1)) = 0 ∀ δf

Straightforward computation 
∫
R
δf (x)(ln p(x) + 1 + λ0 + λ1(x − µ)2)dx = 0 for all δf ⇒

p(x) = e−(1+λ0+λ1(x−µ)2)
.

Solving the constraint equations
∫
R

e−(1+λ0+λ1(x−µ)2)dx =
∫
R

e−(1+λ0)e−λ1(x−µ)2
dx = 1,

∫
R

e−(1+λ0)e−λ1(x−µ)2
(x − µ)2dx = σ2 yields λ1 = 1/(2σ2), e(1+λ0) = σ

√
2π, which shows that

p(x) = 1
σ
√

2π
e
− 1

2

(
x−µ
σ

)2

= N (x|µ, σ2). �
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Least Squares and Linear Regression

Preliminary Remarks

Model scenario: suppose we have measurements/observations (t1, y1), . . . , (tm, ym) taken to
understand an underlying physical law. For instance, the yj could be fuel consumption rates of
an engine under certain driving conditions tj . The searched for law could be described as a
function of t taking values y . Finding that function would allow one to predict fuel consumption
under any other driving conditions t . This suggests an ansatz

y(t) = y(t ; x1, . . . , xn), (11.1)

where x1, . . . , xn are (unknown) parameters that are to parametrize (a sufficiently good
approximation of) the law. In principle, y(·; x1, . . . , xn) could be a non-linear function of the
parameters xj . Deep Neural Networks are currently very prominent examples of highly-nonlinear
such parametrizations. In many applications a simpler linear ansatz

y(t) =
n∑

j=1

xjφj (t), (11.2)

suffices though and should be understood first. Here the φj (t) are suitably chosen (background
information) ansatz-functions such as polynomials, trigonometric functions, splines, wavelets,
radial basis functions, etc.
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A Simple Regression Model
In this section we adopt the following model assumptions:

1 The values tj (which could by imposed by technological constraints, like boreholes for
geophysical exploration) are considered here as deterministic quantities.

2 Measurements are never accurate. Therefore, the yj are considered as instances/samples
of some random variables Yj . Data uncertainty and model-mismatch are then treated by a
noise model.

3 Statistical inference with reasonable confidence therefore requires (substantially) more
measurements yi than unknown parameters xj , i.e., m ≥ n.

For a linear ansatz (11.2) this leads to the following Linear Regression Model:

Yi =
n∑

k=1

ai,k xk + Fi , i = 1, . . . ,m, (ai,k := φk (ti ), i = 1, . . . ,m, k = 1, . . . , n). (11.3)

In brief: Y = Ax + F. Thus, Y = (Yi , . . . ,Ym)> is a vector of random variables whose
realizations form the vector y = (y1, . . . , ym)>. The vector F = (F1, . . . ,Fm)> is another random
vector representing model- or measurement errors. The xj are unknown and unobservable
parameters “explaining” the measurements.

Goal: find an estimate x̂ for the “true” parameters x = (x1, . . . , xn)> clouded by the noise.

Under such assumptions the Least Squares Estimator turns out to be the best one can do:

X̂ = argmin
z∈Rn

‖Az− Y‖2, A := (ai,k )m,n
i,k=1 ∈ Rm×n, Y = Ax + F. (11.4)
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Linear Estimators

We know from Lecture I, Theorem 45, (6.18) that the solution of (11.4) is characterized by
the normal equations

‖AX̂− Y‖2 = min ⇔ A>AX̂ = A>Y ⇔ X̂ = (A>A)−1A>Y, (11.5)

and thus the result of a linear operator.

Therefore, X̂ is called a linear estimator. Since Y is a random variable, X̂ is also a random
variable. For each realization y of Y, the realization x̂ of X̂ is the solution of the
(deterministic) least squares problem minx∈Rn ‖Ax− y‖2.

We call

X̃ = CY =
m∑

k=1

ck Yk for some C ∈ Rn×m, (ck the columns of C) (11.6)

a linear estimator where the matrix C is independent of (the non-observable) x but may
depend only on the observable A. The following theorem says that the least squares
estimator is in some sense optimal among all linear estimators.
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The Best linear Unbiased Estimator

Model: Y = Ax + F, F noise vector, E[F] = 0⇒ E[Y] = Ax

Theorem 24

Assume that F = (F1, . . . ,Fm)> is a vector of random variables Fi with zero mean E[Fi ] = 0,
i = 1, . . . ,m (no systematic error), uncorrelated, i.e., E[Fi Fj ] = 0, i 6= j , with equal variance
var[Fi ] = σ2, i.e., the covariance matrix has the form

var[F] = E[FF>] =
(
E[Fi Fj ]

)m
i,j=1 = σ2I. (11.7)

Then, if A has full rank,
X̂ = (A>A)−1A>Y (11.8)

is the Best Linear Unbiased Estimator (BLUE), i.e.,
1 it is unbiased which means E[X̂] = x, var[X̂] = σ2(A>A)−1;

2 it minimizes the variance among all linear unbiased estimators, i.e., for any X̃ of the form
(11.6) one has

var[X̃]− var[X̂] is positive semi-definite. (11.9)
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Proof of Theorem 24: We’ll use several times that for any verctor of random variables X and
deterministic matrix B one has E[BX] = BE[X], see (8.8).
- The estimator is linear because Y→ X̂ = (A>A)−1A>Y is a linear mapping.

- Expectation: E[X̂] = (A>A)−1A>Y = (A>A)−1A>Ax = x because E[F] = 0.

- Variance: since

X̂ = (A>A)−1A>Y, (A>A)−1A>(Y− F) = (A>A)−1A>Ax = x,

one obtains X̂− x = (A>A)−1A>Y− (A>A)−1A>(Y− F) = (A>A)−1A>F 

(X̂− x)(X̂− x)> = (A>A)−1A>FF>A(A>A)−1,

and thus (E is linear, (8.8))

E
[
(X̂− x)(X̂− x)>

]
= (A>A)−1A>E

[
FF>

]
A(A>A)−1 = σ2(A>A)−1.

Regarding (11.9), suppose X̃ = CY (C ∈ Rn×m) is an arbitrary linear estimator with E[X̃] = x.
Then

x = E[CY] = E[CAx]︸ ︷︷ ︸
=CAx

+ E[CF]︸ ︷︷ ︸
=CE[F]=0

= CAx.

Since this has to hold for any x one concludes CA = I ∈ Rn×n. The particular choice

C> := B> = A(A>A)−1 (11.10)

satisfies CA = I. We show next that this is the only possible choice that minimizes the variance.
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Proof of Theorem 24 continued: The condition CA = I = A>C> means that the columns c̄j of
C> (rows of C) solve the linear systems

A>c̄j = ej , j = 1, . . . , n. (11.11)

Since m ≥ n this system of linear equations is in general underdetermined in which case the
solutions are not unique. Let bj = B>ej = A(A>A)−1ej denote the j th column of the above
particular choice B from (11.10). Then, any solution c̄j has the form (see Lecture I, Exercise 9,
page 16)

c̄j = bj + wj , wj ∈ ker(A>).

Thus, every solution C that solves A>C> = I is of the form C> = B> + W = A(A>A)−1 + W
with A>W = 0. Now, one verifies (as above)

var[X̃] = E
[
(X̃− x)(X̃− x)>

]
= σ2CC> = σ2((A>A)−1A> + W>

)(
A(A>A)−1 + W)

= σ2(A>A)−1 + σ2W>W.

So, whenever W 6= 0, the variance of X̃ is larger than that of X̂, which finishes the proof. �
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Maximum Likelihood Estimator
There is a further important property of the least squares estimator X̂ from (11.8) which holds
when the noise model F satisfies in addition to the above assumptions from Theorem 24

Fi ∼ N (0;σ2), fi (z) =
1

σ
√

2π
e
− 1

2

(
z
σ

)2

, i = 1, . . . ,m, (11.12)

i.e., the error components centered Gaussians with equal variance σ2. By (10.13) and (10.14),
the joint density of Y = Ax + F is then (because E[Y] = E[Ax] + E[F] = Ax)( 1

2πσ2

)m
2 e−

1
2σ2 ‖y−Ax‖2

2 = N (y|Ax, σ2I) =: L(x; y)

which is called the Likelihood Function. Given the observations y ∈ Rm the vector x̃ that best
explains the observations - “most likely” value - is the one that maximizes the density and hence
the Likelihood Function. An estimator X̃ is called maximum likelihood estimator if

L(x̃; y) ≥ L(x′; y) ∀ x′ ∈ Rn. (11.13)

Clearly, L(x̃; y) is maximal when ‖Ax̃− y‖2 is minimal. Therefore:

Proposition 25

Under the above assumptions on F the least squares estimator X̂ is also the maximum likelihood
estimator.
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Comments
The various optimality properties of the least squares estimator should not be misread regarding
the quality of the resulting estimation:

1 var[X̂] depends not only on F (through the value of σ2) but also on the matrix A. First, A is
required to have full rank. But even if this is the case, the smallest singular value σn of A
could be very close to zero which means that σ−2

n = ‖(A>A)−1‖2 is very large, and so is
the variance. In other words, the estiamted values may fluctuate very much around the
expected components in x.

2 Recall the initial example where A = (φk (ti ))m,n
i,k=1 ∈ Rm×n and the φk (t) were some basis

functions such as polynomials or splines. While the linear combinations
∑n

k=1 xkφk (t)
cannot vanish for all t , unless the coefficients xk are all zero, since they form a basis, it
may very well happen that such a linear combination can vanish at finitely many points. In
this case the matrix A does not have full rank. For instance, a polynomial of degree n can
have n zeros.

3 If, on the other hand, we use more and more measurements, i.e., sample the basis
functions more and more densely, it becomes harder and harder for the linear combination∑n

k=1 xkφk (t) to attain values close to zero simultaneously at all points ti . This is expected
to increase the smallest singular value and therefore decreases the variance of the
estimator. In the limit the smallest singular value of A depends on the condition of the
basis, see Lecture I, page 31.

Upshot: the relation between the number of measurements m and the number n of
parameters to be estimated plays a critical role. This issue will be addressed in more depth
later in the context of learning algorithms for regression.

W. Dahmen, J. Burkardt (DASIV) II - Probability Basics 70 / 73



Least Squares and Linear Regression

Comments

One would, of course, like to understand the behavior of ‖X̂− x‖2 when m and n vary. Since X̂ is
a random variable the quantity g(X̂) := ‖X̂− x‖2 is also a random variable, so a meaningful
question would be to bound quantities like

E
[
‖X̂− x‖2

2
]

or Prob
(
‖X̂− x‖2

2 ≥ η
)
, (11.14)

depending on m, n, where expectation and probabilities refer to the distribution underlying F.
Note that, by Exercise 15, (1), the second quantity gives sharper information.

Remark 26

E
[
‖X̂− x‖2

2
]

= E
[
(X̂− x)>(X̂− x)

]
is different from var[X̂] = E

[
(X̂− x)(X̂− x)>

]
.

Verify: E
[
‖X̂− x‖2

2
]

=
∑n

j=1 var[X̂j ].

Markov’s inequality (Theorem 12) gives a first simple estimate for the second quantity in
(11.14): Prob

(
g(X̂) ≥ η

)
≤ E[g(X̂)]/η. However, that requires knowing E[g(X̂)].

An idea is to estimate E[g(X̂)] from the empirical mean 1
N
∑N

j=1 g(x̂j ), where the x̂j are the
least squares solutions with respect to independently drawn yj of Y.

Central Issue: (addressed in the next lecture) derive refined tail bounds for (large) sums of
random variables on deviations from corresponding expectations.
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Comments on Numerical Aspects

While understanding the effect of noise on estimation is a core issue in this lecture, one should
be aware that the numerical computation itself, needed to compute the least squares solutions, is
subject to numerical errors as well. The theoretical considerations, in particular (11.5), suggest to
simply solve the normal equations A>Ax̂ = A>y. There is, however, a wrinkle about this option:

1 A may have a large condition number κ2(A) = σ1/σn;
2 Using SVD it is easy to show that κ2(A>A) = κ2(A)2 (Exercise), i.e., the actual numerical

system has a possibly much larger condition number σ2
1/σ

2
n , causing significant loss of

accuracy in the computations.

Alternate Strategy:

Calculate the QR factorization A = QR (see Lecture I, Theorem 37) and compute
ỹ := Q>y. We write ỹ as ((ỹ1)>, (ỹ2)>)> with ỹ1 ∈ Rn, ỹ2 ∈ Rm−n. Note, that R has
block form R =

(R̃
0

)
where R̃ ∈ Rn×n is upper triangular.

Note: (using Lecture I, Proposition 15, (3))

‖Ax̂− y‖2
2 = ‖QRx̂− QQ>y‖2

2 = ‖Q(Rx̂− ỹ)‖2
2 = ‖Rx̂− ỹ‖2

2 = ‖R̃x̂− ỹ1‖2
2 + ‖ỹ2‖2

2.

This is minimized if and only if x̂ = R̃
−1

ỹ1 which requires solving an (n × n) upper
triangular system. Note! by Lecture I, Proposition 15, (4), one has κ2(R̃) = κ2(A), so
squaring of the condition is avoided!
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