#! /usr/bin/env python3 # def knn_demo ( ): from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn import neighbors import numpy as np import matplotlib.pyplot as plt import seaborn as sns n_neighbors = 15 # # import data # iris = datasets.load_iris() # # we only take the first two features. We could avoid this ugly # slicing by using a two-dim dataset # X = iris.data[:, :2] y = iris.target # # mesh stepsize # h = 0.02 # # Create color maps # cmap_light = ListedColormap(["orange", "cyan", "cornflowerblue"]) cmap_bold = ["darkorange", "c", "darkblue"] for weights in ["uniform", "distance"]: # # Create an instance of Neighbours Classifier and fit the data. # clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. # x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # # Put the result into a color plot # Z = Z.reshape(xx.shape) plt.figure(figsize=(8, 6)) plt.contourf(xx, yy, Z, cmap=cmap_light) # # Plot also the training points # sns.scatterplot( x=X[:, 0], y=X[:, 1], hue=iris.target_names[y], palette=cmap_bold, alpha=1.0, edgecolor="black", ) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title( "3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights) ) plt.xlabel(iris.feature_names[0]) plt.ylabel(iris.feature_names[1]) filename = 'knn_demo_' + weights + '.png' plt.savefig ( filename ) plt.show() plt.close ( ) if ( __name__ == "__main__" ): knn_demo ( )