
Applications of the Singular Value Decomposition

John Burkardt (Substituting for Professor Dahmen)
Math 728-D

Machine Learning and Data Science
Department of Mathematics
University of South Carolina

...
LeConte 121

1:15-2:30, 12+14 February 2019

John Burkardt SVD Applications 12+14 February 2019 1 / 77

SVD in Machine Learning

Machine learning extracts information from massive sets of data.

The singular value decomposition (SVD) starts with “data” which is a matrix A,
and produces “information” which is a factorization A = U ∗ S ∗ V ′ that explains
how the matrix transforms vectors to a new space;

In many machine learning problems, the massive sets of data can be regarded as a
collection of m-vectors, which can be arranged into an m × n matrix.

SVD application examples:

1 least squares line, data: points in 2D;
2 curve-fitting, data: polynomial coefficients;
3 matrix approximation, data: entries in a matrix;
4 image compression, data: columns of an image;
5 facial recognition, data: pictures of a face .

John Burkardt SVD Applications 12+14 February 2019 2 / 77

Vectors

Any numeric list of M real-valued entries will be a vector v .

In mathematics, we primarily think of vectors as column vectors, that is, a vertical
stack of numbers. There is a complementary concept of row vectors, which are
not important for us right now.

Interesting MATLAB commands:

v = [1 ; 2 ; 3] ; <−− 3 x1 column v e c t o r
w = [4 , 5 , 6 , 7] ; <−− 1 x4 row v e c t o r
A = [11 , 12 , 1 3 ;

21 , 22 , 23] . <−− 2 x3 m a t r i x
u = v ’ ; <−− t r a n s p o s e column to row ;

John Burkardt SVD Applications 12+14 February 2019 3 / 77

Vector Length

By vector “length” we won’t mean the number of entries in the vector, but rather
a geometric length, known as the (Euclidean) length, or l2-norm, and represented
by ||v || or ||v ||2:

||v || =

√√√√ M∑
i=1

v2
i

A unit vector has length 1; unit vectors are often denoted by u.

In MATLAB, we can write:

vnorm = norm (v) ;

or, to use the l1 norm instead of the default l2 norm:

vnorm = norm (v , 1) ;

John Burkardt SVD Applications 12+14 February 2019 4 / 77

Angle Between Vectors

Any two vectors v1 and v2 lie in a common plane, defining an angle α.

The dot product reveals the cosine of this angle:

v1 · v2 =
n∑

i=1

v1(i) v2(i) = ||v1|| ||v2|| cos(α)

We can solve for the angle:

α = arccos (
v1 · v2
||v1|| ||v2||

)

If a unit vector u is involved, then v · u is the projection of v onto u.

If u1 and u2 are unit vectors, then the formula is simply:

α = arccos(u1 · u2)

In MATLAB, transpose first vector before multiplying:

v1dotv2 = v1 ’ ∗ v2 ;

John Burkardt SVD Applications 12+14 February 2019 5 / 77

Angle Measures Similarity

Looking just at | cos(α)| for vectors v1 and v2, we can say:

| cos(α)| =

{
1 vectors have same direction

0 vectors are perpendicular, orthogonal

Moreover, values near 1 indicate that the vectors are very similar in direction,
while values near 0 indicate the vectors have little in common.

Because we are working in a linear algebra setting, it’s the direction of the vectors
that’s important, not the length.

If we have N vectors, and we want to select a subset that contains the most
information, then we are looking for a set of dissimilar vectors. The vector dot
product gives us that information in | cos(α)|.

John Burkardt SVD Applications 12+14 February 2019 6 / 77

Norms, Dot Products, and Angles in MATLAB

Given vectors v1, v2, v3, v4:

v1 = [3 ; 4] ; norm (v1) = 5
v2 = [− 4 ; 3] ; norm (v2) = 5
v3 = [4 ; 4] ; norm (v3) = 5.6569
v4 = [0 . 5 ; 0 . 8 6 6] ; norm (v4) = 1

we can measure pairwise cosines:

ca11 = (v1 ’ ∗ v1) / norm (v1) / norm (v1) = 1
ca12 = (v1 ’ ∗ v2) / norm (v1) / norm (v2) = 0
ca13 = (v1 ’ ∗ v3) / norm (v1) / norm (v3) = 0.9899
ca14 = (v1 ’ ∗ v4) / norm (v1) / norm (v4) = 0.9928
ca23 = (v2 ’ ∗ v3) / norm (v2) / norm (v3) = −0.1414
ca24 = (v2 ’ ∗ v4) / norm (v2) / norm (v4) = 0.1196
ca34 = (v3 ’ ∗ v4) / norm (v3) / norm (v4) = 0.9659

John Burkardt SVD Applications 12+14 February 2019 7 / 77

Matrix Norms

Suppose a vector is the result of a matrix-vector multiplication:

w = A ∗ v

The l2 norm for a matrix A is defined as the square root of the maximum
eigenvalue of this matrix A′ ∗ A. We use the matrix norm to write:

||w || ≤ ||A|| ||v ||

The norms of A and v limit how big w can be.

If A is an M ×M diagonal matrix, then ||A|| = maxMi=1 |Ai,i |

If A is an M ×M matrix whose columns have unit l2 norm, then A is an
orthogonal matrix, and ||A|| = 1 (and inverse(A)=A’).

If A is an orthogonal matrix, v any M vector, B any M × N matrix:

||A ∗ x || = ||x ||
||A ∗ B|| = ||B||

John Burkardt SVD Applications 12+14 February 2019 8 / 77

Matrix Norms

Commonly-used matrix norms:

l1: maximum sum of entries in a column of A;

l2: maximum eigenvalue of A′A or maximum singular value of A;

l∞: maximum sum of entries in a row of A;

Frobenius: square root of sum of squares of all entries of A;

MATLAB evaluation:

l1: norm(A,1)

l2: norm(A) or norm(A,2)

l∞: norm(A,Inf)

Frobenius: norm(A,’fro’)

John Burkardt SVD Applications 12+14 February 2019 9 / 77

Column Space

Any matrix A can be looked at as a collection of column vectors.

The column space of A is the linear space formed by all possible linear
combinations of the columns. If A is m × n, then the column space is the set of
all m-vectors y = A ∗ x where x is any n-vector.

Given a matrix A, we can always use Gram-Schmidt or other orthogonalization
schemes to construct an m × k matrix U whose columns are of unit l2 norm and
which are pairwise orthogonal. This matrix has the property that

U ′ ∗ U = Ik , the k × k identity matrix.

Unless m = k , U is not, strictly speaking, an orthogonal matrix, because it is not
square.

John Burkardt SVD Applications 12+14 February 2019 10 / 77

The Projection Matrix

Let’s assume that k < m, so that U does not have full rank.

We know that U ′ ∗ U = Ik , but what about the product U ∗ U ′?

This cannot be Im, since U has rank k < m.

But in fact, U ∗ U ′ is a very useful matrix; it’s the projection matrix that maps
m-vectors into the column space of U.

A projection matrix is a linear operator P such that P ∗ P = P. It is easy to see
that U ∗ U ′ must be a projection matrix:

(U ∗ U ′) ∗ (U ∗ U) = U ∗ (U ′ ∗ U) ∗ U ′ = U ∗ Ik ∗ U ′ = U ∗ U ′

Let’s look in detail at how a projection matrix is used.

John Burkardt SVD Applications 12+14 February 2019 11 / 77

Projection

If x is any vector, we can map it, or project it, into the column space of the
orthonormal basis matrix U by a simple operation:

c = U ′ ∗ x

Here, c describes a combination of the columns of U which is the nearest vector
to x , the least-squares approximation to x .

Notice: left-multiplying x by the transpose of the basis, U ′ reveals a recipe c for
creating the vector x as a multiple of the columns of U.

x = [1] U = [-0.169 0.897] c=U’*x=[-7.944]

[2] [-0.507 0.276] [-1.311]

[8] [-0.842 -0.345]

Notice: the column space of U is 2-dimensional, because there are just 2 columns.
So c is a vector of length 2, because it is in that column space. That means it’s
hard for us to see how x and c are related.

John Burkardt SVD Applications 12+14 February 2019 12 / 77

Representation

The vector c is a representation of the vector x in the column space of U.

To see what c really means, we just have to do what is says, that is, add the
appropriate amounts of each column of U. And we do that with multiplication:

x2 = U ∗ c

Notice: left-multiplying the coefficients c by the orthonormal basis U recovers the
original form of the vector x .

x = [1] U = [-0.169 0.897] c=U’*x=[-7.944] x2=U*c= [0.167]

[2] [-0.507 0.276] [-1.311] [3.667]

[8] [-0.842 -0.345] [7.166]

|| x - x2 || = 2.041 <-- lowest possible approximation error

= distance from x to column space of U

So, given a vector x , we get the coefficients by c = U ′ ∗ x and we see the
resulting approximate vector by x2 = U ∗ c = U ∗ U ′ ∗ x .

John Burkardt SVD Applications 12+14 February 2019 13 / 77

Building a Basis

From m-vectors v1, v2, ...vN we seek basis vectors u1, u2, ...uK .

The u vectors should have unit norm, and be pairwise orthogonal:

ui · uj =

{
1 i = j

0 otherwise

We could pack them as columns into an M × K basis matrix U:

U = [u1|u2|...|uK]

This makes it easy to project any vector v onto the set of u vectors:

c = U ′ ∗ v

The c coefficients approximate v using only the u vectors:

v ≈ v̂ =
K∑
i=1

ui ∗ c(i) = U ∗ c

With enough u vectors, the approximation is exact. But if we economize, using a
small value K << N, we seek U to minimize approximation error.

John Burkardt SVD Applications 12+14 February 2019 14 / 77

Singular Value Decomposition

A = U ∗ D ∗ V ′ where

U is orthogonal, and m ×m;

D is diagonal, and m × n, with nonnegative diagonal entries σi ;

V is orthogonal, and n × n;

The min(m, n) diagonal elements of D, written σi , are nonnegative, and in
decreasing order. The value σ1 is the l2 norm of A.

In MATLAB, get the factors by writing:

[U, D, V] = svd (A) ;

John Burkardt SVD Applications 12+14 February 2019 15 / 77

Singular Value Decomposition

Define n ×m diagonal matrix D+ with entries

{
1/σi if σi 6= 0

0 otherwise;

Inverse A−1 or pseudoinverse A+ is V ∗ D+ ∗ U ′;
Solve A*x=b by x = V ∗ D+ ∗ U ′ ∗ b;

Same procedure for singular/nonsingular, square/rectangular A;

Singular and underdetermined systems: minimal L2 norm of solution;

Overdetermined systems: minimal L2 norm of residual;

| det(A)| =
∏min(m,n)

j=1 σj ;

Condition(A) =
max(|σj |)
min(|σj |) ;

Rank(A) = k = number of nonzero σi ;

Economy SVD: A=U(:,1:k)*D(1:k,1:k)*V’(:,1:k);

Range(A) = U(:,1:k), Null space(A) = V’(:,k+1:n);

Factors can produce a sequence of low rank approximants to A:

John Burkardt SVD Applications 12+14 February 2019 16 / 77

SVD Case 1, Square Nonsingular Matrix:

A = [5, -1, 1; -4, -1, 2; 1, 1, 3];

[U, D, V] = svd (A);

A2 = U * D * V’

UtU = U’ * U

x = [1;2;10];

b = A * x

Dp = D’; Dp(1,1) = 1/Dp(1,1); Dp(2,2) = 1/Dp(2,2);

Ap = V * Dp * U’

inv (A)

x2 = A \ b

x3 = inv (A) * b

x4 = V * Dp * U’ * b

A1 = U(:,1) * D(1,1) * V(:,1)’

A2 = A1 + U(:,2) * D(2,2) * V(:,2)’

A3 = A2 + U(:,3) * D(3,3) * V(:,3)’
John Burkardt SVD Applications 12+14 February 2019 17 / 77

SVD Case 2, Square Singular Matrix:

A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

[U, D, V] = svd (A); <-- Zero singular value on diagonal

A2 = U * D * V’

UtU = U’ * U

x = [1;2;10];

b = A * x

Dp = D’; Dp(1,1) = 1/Dp(1,1); Dp(2,2) = 1/Dp(2,2);

Ap = V * Dp * U’

pinv (A) <-- Use pseudoinverse!

x2 = A \ b

x3 = pinv (A) * b

x4 = V * Dp * U’ * b

A1 = U(:,1) * D(1,1) * V(:,1)’

A2 = A1 + U(:,2) * D(2,2) * V(:,2)’

A2 = U(:,1:2) * D(1:2,1:2) * V(:,1:2)’
John Burkardt SVD Applications 12+14 February 2019 18 / 77

SVD Case 3, Rectangular (wide) Underdetermined System:

A = [1, 1, 1; 1, 2, 3];

[U, D, V] = svd (A);

A2 = U * D * V’

UtU = U’ * U

x = [1;2;10];

b = A * x

Dp = D’; Dp(1,1) = 1/Dp(1,1); Dp(2,2) = 1/Dp(2,2);

Ap = V * Dp * U’

pinv (A) <-- Use pseudoinverse!

x2 = A \ b <-- bigger solution norm than x!

x3 = pinv (A) * b <-- minimum solution norm

x4 = V * Dp * U’ * b. <-- same as x3

A1 = U(:,1) * D(1,1) * V(:,1)’

A2 = A1 + U(:,2) * D(2,2) * V(:,2)’

John Burkardt SVD Applications 12+14 February 2019 19 / 77

SVD Case 4, Rectangular (tall) Overdetermined System:

A = [1, 1; 1, 2; 1, 3];

[U, D, V] = svd (A);

A2 = U * D * V’

UtU = U’ * U

x = [1;2];

b = [3;5,10]; <-- b is NOT in range of A!

Dp = D’; Dp(1,1) = 1/Dp(1,1); Dp(2,2) = 1/Dp(2,2);

Ap = V * Dp * U’

pinv (A) <-- Use pseudoinverse!

x2 = A \ b <-- Look at nonzero residual norm

x3 = pinv (A) * b

x4 = V * Dp * U’ * b.

A1 = D(1,1) * U(:,1) * V(:,1)’

A2 = A1 + D(2,2) * U(:,2) * V(:,2)’

John Burkardt SVD Applications 12+14 February 2019 20 / 77

SVD Case 5, Rank 1 Matrix:

u = [1;2;3]

v = [1;1;1]

A = u * v’ = [1 1 1]

[2 2 2]

[3 3 3]

[U, D, V] = svd (A);

[-0.267 0.948 0.172] [6.481 0 0] [-0.577 -0.817 0.000]’

[-0.535 0.003 -0.845] * [0 0 0] * [-0.577 0.408 0.707]

[-0.802 -0.318 0.506] [0 0 0] [-0.577 0.4082 -0.707]

Similarly, a rank 2 matrix will have 2 nonzero singular values, and so on.

John Burkardt SVD Applications 12+14 February 2019 21 / 77

Example #1: The Least Squares Line

A common problem involves approximating data with a formula; often we plot a
vector x against y , and believe there is roughly a linear relationship.

Although, in this example, x and y will be 1-dimensional vectors, keep in mind
that this same thing happens in higher dimensions; we seek a linear relationship
between two sets of possibly multidimensional data.

Finding a linear relationship allows us to

hypothesize a “law” explaining the data;

predict new values y from x values;

estimate the error in our data;

replace all our data by simple formula;

John Burkardt SVD Applications 12+14 February 2019 22 / 77

Linear versus Affine

The classical slope/intercept formula

y = a ∗ x + b (affine relationship!)

is not, strictly speaking, a linear relationship!

Strictly speaking, a linear relationship must produce a zero when given zero input,
and so must have the form:

y = a ∗ x (linear relationship)

However, it is easy to go back and forth from an affine relationship to a linear
relationship using a simple transformation of variables.

This fact will matter in a moment.

John Burkardt SVD Applications 12+14 February 2019 23 / 77

Height and Weight Data

Suppose we measure the height and weight of 237 students. We can expect
almost any combination of values within a certain range, but there ought to be an
underlying pattern: tall people are heavier.

Is it possible that, at least over this age range, the relationship between height
and weight is linear? We can’t explain all the results this way, but if we make a
plot, our visual sense can often convince us, if there is a pattern.

data = l o a d (’ s e x a g e h e i g h t w e i g h t . t x t ’) ;
h = data (: , 3) ;
w = data (: , 4) ;
p l o t ([0 ; h] , [0 ; w] , ’ bo ’ , ’ l i n e w i d t h ’ , 1) ;

John Burkardt SVD Applications 12+14 February 2019 24 / 77

Plot Height and Weight Data

hw_plot01.png

John Burkardt SVD Applications 12+14 February 2019 25 / 77

Finding a Linear Relationship

We want use the SVD to find a linear relationship.

The plot shows that a line through the data won’t go near the origin, so we have
some work to do. We start by “centering” the data, that is, by subtracting the
average.

h2 = h − mean (h) ;
w2 = w − mean (w) ;

Now we create a 2× 237 matrix A. Row 1 is the (transposed) centered height
vector, row 2 the (transposed) centered weight vector.

A = [h2 ’ ; w2 ’] ;

and now we ask for the SVD:

[U, S , V] = svd (A) ;

John Burkardt SVD Applications 12+14 February 2019 26 / 77

Identify the direction

For our data, the 2× 237 matrix S has diagonal entries 302.3 and 37.8; in other
words, 90 % of the information is in the first dimension.

The columns of the 2× 2 vector U give the dominant and secondary directions:

U = [−0.1578 −0.9875
−0.9875 0 .1578]

In other words, the line:

− 0 .1578 y = − 0 .9875 x

or

y = 6 . 2 5 6 ∗ x

or, using our variable names

w2 = 6 . 2 5 6 ∗ h2

Let’s plot the approximate linear relationship that the SVD has discovered in our
centered data.

John Burkardt SVD Applications 12+14 February 2019 27 / 77

Linear Relationship

hw_plot02.png

John Burkardt SVD Applications 12+14 February 2019 28 / 77

Recovering the Affine Relationship

The SVD has discovered the linear relationship for us:

w2 = 6.256 ∗ h2

but of course we want to work with the actual heights and weights, which means
we need to work out the affine relationship:

w2 =6.256 ∗ h2

w −mean(w) =6.256 ∗ (h −mean(h))

w − 101.308 =6.256 ∗ (h − 61.365)

w =6.256 ∗ h − 282.644

John Burkardt SVD Applications 12+14 February 2019 29 / 77

Affine Relationship

hw_plot03.png

John Burkardt SVD Applications 12+14 February 2019 30 / 77

What if We Skipped the Centering?

If we didn’t use centered variables h2 and w2, but filled up the matrix A with the
raw h and w values, the algorithm will still “work”... that is, it will produce a
result.

Unfortunately, the result must be a linear function y = a ∗ x , so it will be a line
that goes through (0,0) and roughly the center of the cloud of data. This is not
at all a good approximation to the (affine) behavior we can see.

But that’s because the SVD approach expects to analyze linear behavior, not
affine behavior. Centering the data beforehand is one way to fix this issue.
Another option, which you will see when you look at various regression problems,
is to add an extra variable that has the fixed value of 1.

John Burkardt SVD Applications 12+14 February 2019 31 / 77

Example #2: Curve Fitting

Suppose we have n-vectors of x and y data but we find that a straight line does
not seem to capture the behavior of the data.

Instead of a linear model, we might be tempted to look at a quadratic model,
involving unknown coefficients c :

y = a + b ∗ x + c ∗ x2

Ideally, we would hope that the values of a, b, c would allow us to match our data
perfectly. The equations that express this hope are:

a + b ∗ x1 + c ∗ x21 =y1

a + b ∗ x2 + c ∗ x22 =y2

... =...

a + b ∗ xn + c ∗ x2n =yn

John Burkardt SVD Applications 12+14 February 2019 32 / 77

An Overdetermined Linear System

Let’s replace the values a, b, c by a 3-vector c . Then we can write
1 x1 x21
1 x2 x22
...
1 xn x2n

 ∗
 c1

c2
c3

 =


y1
y2
...
yn


which has the form:

A2 ∗ c = y

where A2 is an n × 3 matrix, and hence overdetermined.
From the SVD we can derive the pseudoinverse, sometimes written A+, which can
be used to find the best approximate solution c+ to this system, in the least
squares sense.

A2 ∗ c =y (Equation we want to solve)

A2+ ∗ A2 ∗ c =A2+ ∗ y (Imagine multiplying by A2+)

c+ =A2+ ∗ y (Best approximate solution)

We are not saying that A2+ ∗ A2 = I !
John Burkardt SVD Applications 12+14 February 2019 33 / 77

Sort of Quadratic Data:

xd = [0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6]
yd = [9 . 5 , 7 . 6 , 4 . 6 , 7 . 8 , 8 . 1 , 1 4 . 1 , 2 0 . 1]
p l o t (xd , yd , ’ bo ’))

fitting_data.png

John Burkardt SVD Applications 12+14 February 2019 34 / 77

Piecewise Linear “Fit”:

p l o t (xd , yd , ’ b−’)

fitting_pwl.png

John Burkardt SVD Applications 12+14 February 2019 35 / 77

SVD Approximation, Degree 2 Fit:

A2 = [xd . ˆ 0 , xd . ˆ 1 , xd . ˆ 2]
c2 = p i n v (A2) ∗ yd % c2 = [9 . 7 6 , −3.89 , 0 . 9 3]
% D e f i n e xp , p l o t yp = 9.76−3.89∗ xp +0.93∗ xp ˆ2

fitting_degree2.png

Why always at least one data point above, and one below, the approximation?
John Burkardt SVD Applications 12+14 February 2019 36 / 77

An Overdetermined Linear System

In Matlab, we determine the coefficients c from the data yd in this way:

c = p i n v (A2) ∗ yd

Then, if we wish create a set of plot points (xp, yp), we can evaluate the
quadratic formula with coefficients c by:

yp = c (1) + c (2) ∗ xp + c (3) ∗ xp . ˆ 2 ;

Our matrix A2 went up to quadratic powers in xd . If we wished, we could have
looked for a higher degree formula, say up to 6th degree, simply by defining the
matrix

A6 = [xd . ˆ 0 , xd . ˆ 1 , xd . ˆ 2 , xd . ˆ 3 , xd . ˆ 4 , xd . ˆ 5 , xd . ˆ 6] ;

which will give us a coefficient vector c6 of length 7.

What does our greater effort buy us?

John Burkardt SVD Applications 12+14 February 2019 37 / 77

SVD Approximation, Degree 2 (red) and 6 (green) Fits:

A6 = [xd . ˆ 0 , xd . ˆ 1 , xd . ˆ 2 , xd . ˆ 3 , xd . ˆ 4 , xd . ˆ 5 , xd . ˆ 6]
c6 = p i n v (A6) ∗ yd % c6 = p o l y n o m i a l c o e f f i c i e n t s
% Set p l o t p o i n t s xp , e v a l u a t e f o r m u l a f o r yp

fitting_degree6.png

John Burkardt SVD Applications 12+14 February 2019 38 / 77

Example #2 Comments: Overfitting

If our goal was to match the data, then the 6th degree polynomial is great. But
if our goal is to make a plausible formula that generates the data, then the wild
wiggles in the curve seem wrong, and the 2nd degree polynomial might be more
believable.

When we try too hard to fit our data exactly, we may be forcing the mathematical
model to fit meaningless errors as well as our data.

The notion of “trying too hard” to model data is known as overfitting.

This is a common problem in machine learning; a model might work perfectly on
your data because it has simply “memorized” all the answers.

When a model too tightly matches a set of data, it may not be able to be
generalized to other sets of related data.

John Burkardt SVD Applications 12+14 February 2019 39 / 77

Example #2 Comments: Our quadratic model

The SVD can be used to solve overdetermined linear systems, such as this curve
fitting example.

In this case, we can think of the SVD as starting with the data, and extracting the
simplifying information, that is, the approximate quadratic formula

y = 9.76− 3.89x + 0.93x2

Discovering this formula, we might feel free to discard all our data, or make some
guesses about the process that generated the data.

In machine learning, we intentionally split our data into training and testing
subsets. We build the model with training data, and then evaluate it on testing
data it has never seen.

If we believe the formula is a good model for the process that generated the data,
we can plot the formula, differentiate it or integrate, and use it in other ways.

John Burkardt SVD Applications 12+14 February 2019 40 / 77

Example #3: Matrix Approximation

A idealized data set:

a single item of data consists of M values;

we have N data observations;

M and N are large (thousands, or millions);

the data is stored in an M × N array A;

The data has patterns, and could be replaced by a simpler model;

Suppose we form the SVD of A. Then

A1 = D(1, 1) ∗ U(:, 1) ∗ V (:, 1)′ models the data using 1 + M + N numbers,
and is the best such rank 1 approximation (in L2 norm);

A2 = A1 + D(2, 2) ∗ U(:, 2) ∗ V (:, 2)′ is best rank 2 approximation.

We can construct a sequence of approximations;

If data does have patterns, we may be able to get an acceptable result with a
rank K approximation, where K ∗ (1 + M + N)� M ∗ N;

John Burkardt SVD Applications 12+14 February 2019 41 / 77

Best Rank-K Approximation

Recall that, if the m × n matrix A has SVD factors U,D,V , then the rank k
approximation to A is

Ak = U(1 : m, 1 : k) ∗ D(1 : k , 1 : k) ∗ V ′(1 : n, 1 : k).

Theorem (Best Rank k Approximation)

Let A be an m × n matrix, and k a rank satisfying 1 ≤ k ≤ min(m, n). Let Ak be
the rank k approximation to A derived from the SVD. Then, A is closer to Ak

than to any other rank k matrix B, when error is measured in the Frobenius norm:

||A− Ak ||F ≤ ||A− B||F

So, if we want to approximate A by a rank k matrix, Ak is our best choice.

John Burkardt SVD Applications 12+14 February 2019 42 / 77

Best Rank-K Approximation

If A is random, then there is a limit to how well we can approximate it with a
simpler model.

If A is very regular, or has some structure or linearity, then it’s likely that some of
the values are redundant, or can be approximated using much less information.

As we go through this example, think about when we can approximate a string of
3 y values by just 2 numbers:

x: 1, 2, 3

y1: 1, 2, 3

y2: 1, 99, 3

y3: 1, 2.1, 3

John Burkardt SVD Applications 12+14 February 2019 43 / 77

Random Matrix Example

Given this table A of 66 random numbers, is it possible to approximate it using
fewer numbers?

1 -5 -2 -3 -1 9

-7 2 1 -7 -8 -10

-7 -1 -8 6 -5 5

-5 -3 -9 -4 8 6

7 7 1 1 -7 7

-5 2 6 -7 7 -8

6 1 9 2 1 -2

-5 8 -7 -5 10 -5

9 -4 1 3 -8 6

-3 5 -1 4 -1 -1

-6 5 -10 5 -8 8

norm(A,’fro’) = 47.25

John Burkardt SVD Applications 12+14 February 2019 44 / 77

Random Matrix Example

If we compute the SVD for this matrix, the singular values tell us whether
information is concentrated in the first few dimensions:

D =

29.6176 0 0 0 0 0

0 25.8722 0 0 0 0

0 0 18.8619 0 0 0

0 0 0 13.6690 0 0

0 0 0 0 10.4910 0

0 0 0 0 0 5.8097

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Unfortunately, while the singular values go down, it seems a fairly gradual process.

John Burkardt SVD Applications 12+14 February 2019 45 / 77

Compare A and A2 in Columns 1 and 4

Column 1 Column 4

A A2 A A2

1 0.62 -3 2.49

-7 -2.49 -7 -2.90

-7 -3.95 6 2.96

-5 -7.58 -4 -0.76

7 5.03 1 3.91

-5 -3.16 -7 -5.71

6 6.04 2 -0.27

-5 -9.22 -5 -4.76

9 7.66 3 4.95

-3 -1.63 4 0.04

-6 -4.17 5 4.18

Most of the signs are right, and some of the values are...not too bad, but overall,
it’s not much of a match.

John Burkardt SVD Applications 12+14 February 2019 46 / 77

Random Matrix Example

We can watch the Frobenius approximation error for k from 0 to 6 using
commands like:

norm (A−U (: , 1 : 3) ∗D(1 : 3 , 1 : 3) ∗V (: , 1 : 3) ’ , ’ f r o ’)

||A-A0|| = 47.2546

||A-A1|| = 36.8212

||A-A2|| = 26.1998 <-- At A2, half the error persists.

||A-A3|| = 18.1840

||A-A4|| = 11.9923

||A-A5|| = 5.8097

||A-A6|| = 0.0000

John Burkardt SVD Applications 12+14 February 2019 47 / 77

Tiny Matrix Example

This is also a table of 66 numbers, but it comes from a physical example, and
that means there may be some patterns in the values.

10.0000 8.0400 9.1400 7.4600 8.0000 6.5800

8.0000 6.9500 8.1400 6.7700 8.0000 5.7600

13.0000 7.5800 8.7400 12.7400 8.0000 7.7100

9.0000 8.8100 8.7700 7.1100 8.0000 8.8400

11.0000 8.3300 9.2600 7.8100 8.0000 8.4700

14.0000 9.9600 8.1000 8.8400 8.0000 7.0400

6.0000 7.2400 6.1300 6.0800 8.0000 5.2500

4.0000 4.2600 3.1000 5.3900 19.0000 12.5000

12.0000 10.8400 9.1300 8.1500 8.0000 5.5600

7.0000 4.8200 7.2600 6.4200 8.0000 7.9100

5.0000 5.6800 4.7400 5.7300 8.0000 6.8900

norm(A,’fro’) = 68.13

John Burkardt SVD Applications 12+14 February 2019 48 / 77

The Singular Values

Looking at the singular values, we suspect that a very large proportion of the
information is in the first two components of the singular value decomposition.

65.9197 0 0 0 0 0

0 15.6834 0 0 0 0

0 0 4.8767 0 0 0

0 0 0 3.9058 0 0

0 0 0 0 2.8167 0

0 0 0 0 0 2.0286

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Let’s see if a 1 or 2 term approximation does well.

John Burkardt SVD Applications 12+14 February 2019 49 / 77

Approximant A1

A1=U(: , 1) ∗ S (1 , 1)∗V (: , 1) ’

10.2141 8.1324 8.1899 8.0390 7.7625 6.8756

8.6104 6.9678 6.9782 6.9562 7.5758 6.4772

12.5272 9.8381 9.9548 9.6424 8.2723 7.6088

9.8335 7.9801 7.9842 7.9802 8.8580 7.5333

10.8390 8.6607 8.7113 8.5800 8.5208 7.4833

12.4329 9.7068 9.8420 9.4783 7.6832 7.2039

7.0947 5.8846 5.8444 5.9605 7.5581 6.2056

3.3005 4.3875 3.8085 5.4085 18.6737 12.8913

11.9884 9.3333 9.4727 9.0971 7.1656 6.7859

7.2596 6.1177 6.0439 6.2530 8.6192 6.9342

5.7494 5.0153 4.8990 5.2242 8.3904 6.5241

norm(A-A1,’fro’) = 17.23

John Burkardt SVD Applications 12+14 February 2019 50 / 77

Approximant A2

A2=U (: , 1 : 2) ∗ S (1 : 2 , 1 : 2) ∗V (: , 1 : 2) ’

10.2141 8.1324 8.1899 8.0390 7.7625 6.8756

8.6104 6.9678 6.9782 6.9562 7.5758 6.4772

12.5272 9.8381 9.9548 9.6424 8.2723 7.6088

9.8335 7.9801 7.9842 7.9802 8.8580 7.5333

10.8390 8.6607 8.7113 8.5800 8.5208 7.4833

12.4329 9.7068 9.8420 9.4783 7.6832 7.2039

7.0947 5.8846 5.8444 5.9605 7.5581 6.2056

3.3005 4.3875 3.8085 5.4085 18.6737 12.8913

11.9884 9.3333 9.4727 9.0971 7.1656 6.7859

7.2596 6.1177 6.0439 6.2530 8.6192 6.9342

5.7494 5.0153 4.8990 5.2242 8.3904 6.5241

norm(A-A2,’fro’) = 7.14

John Burkardt SVD Applications 12+14 February 2019 51 / 77

Approximant A3

A3=U (: , 1 : 3) ∗ S (1 : 3 , 1 : 3) ∗V (: , 1 : 3) ’

10.0525 8.5868 8.3993 7.5761 7.8396 6.7830

8.4444 7.4347 7.1933 6.4806 7.6550 6.3822

13.4295 7.3008 8.7857 12.2273 7.8420 8.1255

9.5482 8.7824 8.3539 7.1628 8.9940 7.3699

10.7867 8.8079 8.7791 8.4301 8.5458 7.4533

12.4866 9.5558 9.7725 9.6321 7.6576 7.2346

6.8006 6.7118 6.2256 5.1178 7.6984 6.0371

3.3802 4.1632 3.7051 5.6370 18.6357 12.9369

11.5959 10.4370 9.9812 7.9727 7.3527 6.5611

7.4222 5.6604 5.8332 6.7189 8.5417 7.0273

5.7201 5.0978 4.9371 5.1401 8.4044 6.5073

norm(A-A3,’fro’) = 5.22

John Burkardt SVD Applications 12+14 February 2019 52 / 77

Compare A and A2 in Columns 1 and 4

Column 1 Column 4

A A2 A A2

10.00 10.21 7.46 8.03

8.00 8.61 6.77 6.95

13.00 12.52 12.74 9.64

9.00 9.83 7.11 7.98

11.00 10.83 7.81 8.58

14.00 12.43 8.84 9.47

6.00 7.09 6.08 5.96

4.00 3.30 5.39 5.40

12.00 11.98 8.15 9.09

7.00 7.25 6.42 6.25

5.00 5.74 5.73 5.22

John Burkardt SVD Applications 12+14 February 2019 53 / 77

Matrix Compression

In this small example, we could approximate the 11× 6 entries of A by a rank
k = 2 approximation using 2*11 entries in U, 2 entries in S , and 2*6 entries of V ,
dropping from an exact representation using 66 numbers to an approximate
representation that uses 36 numbers.

The singular values of the SVD can indicate when a matrix is strongly patterned.
If the first few singular values are much larger than later ones, then the
information in the array can be greatly compressed.

In real applications, the data sizes are in the thousands and millions. Using a
typical approximation of rank k = 10 or k = 20 can result in enormous reductions
in storage and efficiency.

John Burkardt SVD Applications 12+14 February 2019 54 / 77

Example #4: Compression of an Image using SVD

In a black and white image, a single number records the brightness of each pixel.
Such an image is an M × N numeric array A. M and N are typically of the order
of 1,000

We can think of each pixel of the image as a data item. An image will have many
regions of the same color, and so it’s likely that neighboring pixels in A will have
roughly the same values. In other words, we are not dealing with random data.
And that means it is likely we can compress the data.

For any value K , we can ask the SVD to find Ak , the best rank K approximation
of A. The storage of Ak can be much less than A requires, while Ak preserves
most of the information in A.

Let’s take a sample image, compute its SVD, and then look at some typical
approximating images.

John Burkardt SVD Applications 12+14 February 2019 55 / 77

Image Compression: Original

svd_gray_original.png

John Burkardt SVD Applications 12+14 February 2019 56 / 77

Image Compression: Approximant A1

svd_gray_approximation_1.png

John Burkardt SVD Applications 12+14 February 2019 57 / 77

Image Compression: Approximant A2

svd_gray_approximation_2.png

John Burkardt SVD Applications 12+14 February 2019 58 / 77

Image Compression: Approximant A5

svd_gray_approximation_5.png

John Burkardt SVD Applications 12+14 February 2019 59 / 77

Image Compression: Approximant A10

svd_gray_approximation_10.png

John Burkardt SVD Applications 12+14 February 2019 60 / 77

Image Compression: Approximant A20

svd_gray_approximation_20.png

John Burkardt SVD Applications 12+14 February 2019 61 / 77

Image Compression: Approximant A40

svd_gray_approximation_40.png

John Burkardt SVD Applications 12+14 February 2019 62 / 77

Image Compression: Approximant A80

svd_gray_approximation_80.png

John Burkardt SVD Applications 12+14 February 2019 63 / 77

Image Compression: The 360 Singular Values

Each singular value represents the size of the next addition to the approximation.
For the photographic image, these values drop rapidly, suggesting that a low rank
approximation gets most of the information.

svd_gray_singular_values.png

John Burkardt SVD Applications 12+14 February 2019 64 / 77

Image Compression: Comments

Assumptions:

Choose the pixels of the image as our data items.

Neighboring pixel values are usually related, not random.

Groups of similar pixels have low information, and can be approximated.

Approximations:

Rank 5 approximation shows light / dark patterns in the room;

Rank 10 approxmation made 2 1
2 people visible;

Rank 40 approximation shows all important features;

Conclusions:

The photograph is a combination of information and minor details;

SVD approximations expose important information first;

Importance decreases with singular value size;

A low rank SVD approximation may store all information we need;

John Burkardt SVD Applications 12+14 February 2019 65 / 77

Example #5: Facial Data: Preprocessing

Our image approximation treated each column of the image as a data item, and
used the SVD to look for patterns and structure.

Can we use the SVD to process a collection of facial images?

In order to compare images of the same face, we will:

seek images in which the subject faces forward;

simplify the image from color to black and white (actually gray);

crop each image to ear-to-ear and chin-to-top-of-head;

resample all images to use M × N pixels;

emma09_raw.jpgemma09_head.jpgemma09_gray.jpg

John Burkardt SVD Applications 12+14 February 2019 66 / 77

Facial Data: Averaging

If the preprocessed images of a single subject are reasonably aligned, then we can
take what amounts to an average of all the images, which we can use as our basic
representation of the subject.

In MATLAB, a gray scale images stores only integer values between 0 and 255.
To average an M × N × K array A of K images, we convert to a numeric array,
average, and convert back.

A_double = double (A);

A_double_average = mean (A_double, 3);

A_average = uint8 (A_double_average);

emma_average.jpg

John Burkardt SVD Applications 12+14 February 2019 67 / 77

Facial Data: Subtract Average

Once we have the average face, we simplify our image collection by subtracting
this average, so we have the basic face, plus a set of relatively small changes to
the basic face.

images_minus_average.jpg

John Burkardt SVD Applications 12+14 February 2019 68 / 77

Facial Data: Classification by Distance from Average

Given a new face, measure distance to each average:

Image - Emma average = 10769.2

Image - Taylor average = 9864.3

Image - Arnold average = 17007.8

Image - Sylvester average = 14557.9

taylor_minus_average.jpg

.

John Burkardt SVD Applications 12+14 February 2019 69 / 77

Facial Data: A Basis for Face Space

Let A be an (M × N)× K array of images of a person after subtracting the
average A0.

Apply the SVD: A = U ∗ D ∗ V ′

The columns of U indicate the facial variations needed to approximate all the
images, with the most important ones coming first.

Thus, we can rebuild a face F from the set A by starting with the average, and
adding small portions of each column of U.

These amounts are the projections of the face onto each component. The first
one is c(1) = U(:, 1)′ · F , and we can compute them all by

c = U ′ ∗ F

so that
F = A0 + U ∗ c

John Burkardt SVD Applications 12+14 February 2019 70 / 77

Facial Data: Reconstruction Example

pgm_project_display_test.png

John Burkardt SVD Applications 12+14 February 2019 71 / 77

Facial Data: A Reduced Basis for Face Space

Using the SVD basis, each face can be exactly reconstructed from a small set of
coefficients, and all the columns of the new basis U.

Suppose we are willing to accept approximations of our faces.

The columns of U are ordered by importance. If we keep just the average face A0
and the first 5 columns of U, then we can throw away all our face data, replacing
each face by just 5 coefficients.

If our original set was large, then this will be a huge saving.

John Burkardt SVD Applications 12+14 February 2019 72 / 77

Facial Data: Reduced Basis Example

pgm_approx_display_test.png

John Burkardt SVD Applications 12+14 February 2019 73 / 77

Facial Data: Reduced Basis Example

We can use the average face and a few singular vectors to approximate each set
of faces in our database

Each snapshot of a person can then be approximated by starting with the average
face, and adding the appropriate amount of the singular vectors, as recorded in a
coefficient vector c .

Given an unknown face, we can try to find the closest match in our database. Our
first guess is to find the nearest averaged face. If that’s not definitive, we can
select several averaged faces that seem close, and look at the linear spaces defined
by their singular vectors. Projection will give us the distance between the
unknown face and each linear space, from which we can seek a match.

Obviously, much more is going on in this process, since the photo of the unknown
face may be blurred, at an unusual angle, in bad light, and so on.

These details keep facial recognition technicians happily employed!

John Burkardt SVD Applications 12+14 February 2019 74 / 77

Related MATLAB Labs

If you are interested in:

the singular value decomposition, you can work though the example as part
of Lab #2, “Linear Algebra”;

the image compression application, you can work though this example as part
of Lab #11, “Principal Component Analysis”;

the facial data problem in Lab #14, “Facial Recognition”;

These should be available on

the Blackboard site for this course;

the website
http://people.math.sc.edu/burkardt/classes/ml 2019/ml 2019.html

the website
http://people.sc.fsu.edu/∼jburkardt/classes/ml 2019/ml 2019.html

John Burkardt SVD Applications 12+14 February 2019 75 / 77

Remarks

The SVD is not the only tool that can be used for facial recognition. Other
methods are based on wavelets or the local cosine transform, and can provide
superior performance.

In this simplified discussion, we have concentrated on the fact that the SVD can
be used to compress the existing facial database, by identifying the most
important features in each person’s set of images.

We spent less time on the other vital task, of determining whether a new image
corresponds to some subject in our database.

John Burkardt SVD Applications 12+14 February 2019 76 / 77

Conclusion

Some machine learning applications involve an M × N array A of data, were N
counts the number of data instances, and M measures the size of each data item.

The array A can be exactly represented by the full SVD, A = U ∗ D ∗ V ′

Often, the data items have a great deal of similarity and correlation. Then the
entries of the D matrix will vary greatly in size.

Then the information in A can be well approximated by a low rank approximation
using only the first K columns of the SVD factors.

John Burkardt SVD Applications 12+14 February 2019 77 / 77

