Linear Algebra Questions: Given a matrix A

- Can we solve A * x = b?
- How accurate is a numerical solution x going to be?
- If A is singular, or rectangular, can I still "solve" A * x = b?
- What is the determinant, rank, condition number, inverse of A?
- Can A be described in terms of special directions and values?
- What is the range of A? (vectors y such that y = Ax)
- What is the null space of A? (vectors x such that A * x = 0)
- Can we approximate A by a simpler matrix B?
- How do we measure closeness of two matrices A and B?

- What is the average element \overline{x} in X?
- What is a good basis V for the subspace containing X?
- How do we represent vector x in basis V?
- How do we measure closeness of two vectors x_i and x_j?
- Does new data vector y "belong" to set X?

A = P' * L * U, where

- P is a permutation matrix;
- L is a unit lower triangular matrix;
- U is an upper triangular matrix;
- Solve A*x=b by solving triangular systems;
- Determinant is product of diagonal elements of U * sign of P;
- Inverse can be computed by inverting P, L and U;
- Rank = number of nonzero diagonal elements of U;
- Condition can be "guessed" by range of diagonal elements of U;
- Underdetermined systems (M<N) solved using degrees of freedom;

A = Q * R, where

- Q is an orthogonal matrix: $Q' = Q^{-1}$;
- R is an upper triangular matrix, with nonnegative diagonal entries;
- Solve A*x=b by solving triangular system R * x = Q' * b;
- Inverse is $R^{-1} * Q'$ (upper triangular system is easy to invert);
- Determinant is product of diagonal of R and determinant of Q;
- Rank = number of nonzero diagonal elements of *R*;
- If $R_{i,i}$ is zero (A is singular):
 - row *i* and subsequent rows must be completely zero;
 - can compute *R*'s pseudoinverse *R*⁺;
 - can compute A's pseudoinverse $A^+ = R^+ * Q'$;
 - "solution" $x = A^+ * b$ minimizes L2 norm of error;
- Solution of overdetermined system minimizes L2 norm of error;
- Solution of underdetermined system minimizes L2 norm of solution;

Eigen Factorization for square symmetric A

- $A = X * \Lambda * X'$ where
- Λ is a diagonal matrix;
- X is orthogonal: $X' = X^{-1}$;
- Solve A*x=b by x = X * Λ⁻¹ * X' * b;
- Inverse is $X * \Lambda^{-1} * X'$;
- Determinant is $\prod_{j=1}^n \lambda_j$;
- Rank = number of nonzero diagonal elements of Λ ;
- Condition = $\frac{\max(|\lambda_j|)}{\min(|\lambda_j|)}$;
- The columns of X are eigenvectors;
- The diagonal of Λ are eigenvalues;
- For eigenvector j, $A * x_j = \lambda_j * x_j$;
- Eigenvectors form a special basis in which A is diagonal;
- Eigenvalues measure expansion from x to A * x along each direction;

