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Egyptian god Maat weighed the sins of your heart against a feather.

The Logistic Regression Problem

Logistic regression handles simple decision making.

• We often need to make a Yes or No choice using imperfect knowledge;
• Perhaps the only evidence we have is a record of our previous decisions;
• We seek a formula that can “explain” our previous decisions;
• This formula can be used to predict the right choice in new cases;
• We would also like to estimate how likely our decision is to be correct.

As a classic example of decision making under uncertain knowledge, consider almost any medical diagnosis.
The human body is a complicated and varied object, and few mathematical formulas are available to tell
us exactly how to deal with a given case. After collecting a number of measurements, a doctor must often
decide Yes or No, perform a certain procedure or not. In the absence of a real scientific theory, this means
the decision, even though it is based on the evidence of the measurements, is ultimately made simply by
intuition built up over years of experience. So what’s a new doctor supposed to do?

Suppose that a doctor must decide whether a pregnant woman should have her baby by Caesarian section.
A number of medical measurements would seem to be relevant before making the decision, but ultimately,
the doctor has to make the choice. If the patient expresses concerns about this decision, the doctor would
like to be able to explain whether the decision is strongly recommended or not.

This is an example of a classification problem. Our task is to look at a particular case, and decide which
class it belongs to. In the logistic regression problem, there are only 2 such classes, which might be Yes/No,
0/1, Admit/Reject, Pass/Fail.

We will try to construct a formula that will produce a good decision based on our past experience. To do so,
our first tool will be a mathematical function that does a reasonable job of representing a Yes/No function
as a sequence of values that smoothly transition from 0 (No!) to 1 (Yes!).
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1 The logistic function

To begin with, let us suppose that the output decision y is to made based on the value of just a single
input x. Our decision will be simplified if we can somehow come up with a function y(x) that automatically
returns a reasonable Yes or No value. The simplest such function might simply apply some cutoff value x∗:

y(x) =

{
No = 0 if x ≤ x∗

Yes = 1 if x∗ < x

The Heaviside function has this behavior:

The Heaviside function.

However, this approach does not give us the additional information of how sure we are of our classification,
and it does not generalize easily to situations involving multiple input variables x.

Consider the formula known as the logistic or sigmoid function:

y(x) =
l

1 + e−m(x−b)

which has parameters l (maximum value), m (slope) and b (cutoff). For our purposes, we will always set
l = 1.

The logistic curve for l = 1, b = 2,m = 3.
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The function y(x) is near 0 for values to the left of the cutoff, hits 1
2 at the cutoff value, and then rises to 1

on the right. The location of the cutoff is controlled by the value of b. The sharpness of the rise, and the
width of the “uncertainty” region, depend on the slope m.

For a given problem, if we can determine good values of b and m, then we will have a way of classifying our
data, as well as reporting how sure we are of our decision:

y(x) =



No! (90% sure) if y(x) <= 0.10

No if 0.10 < y(x) < 1
2

50/50 if y(x) = 1
2

Yes if 1
2 < y(x) < 0.90

Yes! (90% sure) if 0.90 < y(x)

We could tabulate the value of the logistic function with parameters l = 1, b = 2,m = 3, over the range
−2.0 ≤ x ≤ 8.0.

x y=l o g i s t i c ( 1 , 2 , 3 , x )

−2 0.000006
−1 0.000123
0 0.002472
1 0.047425
2 0.500000
3 0.952574
4 0.997527
5 0.999877
6 0.999994
7 1.000000
8 1.000000

Listing 1: Sample logistic function values.

The table verifies that the logistic function starts out essentially 0 and climbs to its maximum value l (
which here is 1), and at the cutoff point b (which here is 2) it reaches its halfway value l/2 (which here is
1/2). The role of the slope m is harder to see except in a plot. It controls how rapidly the function jumps
from its low to high value.

For our purposes, l will always be 1, and, assuming we are working with a scalar variable x, we will rewrite
the formula in terms of two weights stored in the vector w:

y(x) =
1

1 + e(−w0−w1x)

We will now investigate how to determine the values w that help us to systematize our decision making.

2 logistic regression()

To construct this formula, we will work with a version of the logistic function. As we have done in the
past, we will modify our original data items x by inserting an initial value x0 = 1. In that case, our formula
becomes

y(x) ==
1

1 + e(−w0x0−w1x1)
=

1

1 + e−w′x

The missing information here is the value for the weight vector w.

Suppose we want to set up our formula based on a set of n data items X and 0/1 classification vector y.
We can determine the values w if we assume we want to minimize the mean square error between the actual
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and computed class values for the data items, that is:

minimize mse(w) =
1

n

i<n∑
i=0

(yi − y(xi))
2

We have solved this kind of problem before, using the method of gradient descent. We can construct a
similar procedure for problems that have been posed with the logistic function.

Consider the following function: logistic regression(X,y,alpha,kmax), where

• X is our normalized input data, a n× d array with an initial column of 1’s
• y is our output data, a vector of values of 0 or 1, of length n

• alpha is a learning rate, which might be 0.1 or 0.01
• kmax is the maximum number of iterations

The function has the form:

def l o g i s t i c r e g r e s s i o n ( X, y , alpha , kmax ) :

import numpy as np

n , d = X. shape
w = np . z e r o s ( d )

for k in range ( 0 , kmax ) :

y2 = 1 .0 / ( 1 .0 + np . exp ( − np . matmul ( X, w ) ) )

for j in range ( 0 , d ) :
w[ j ] = w[ j ] − ( alpha / n ) ∗ np . dot ( ( y2 − y ) , X[ : , j ] )

return w

While we probably have to experiment to determine satisfactory values of alpha and kmax, this function has
the potential to compute the necessary weight values for our logistic formula.

Now we need a sample data set in order to try this idea out.

3 Apples and Oranges

A fruit company receives truckloads of apples and oranges mixed together. A robot is to be used to sort
them. The robot can determine the weight x of each item, and then must compute y(x), which is 0 if the
item should go in the orange box, and 1 if it should go in the apple box. This is an example of “logistic
classification”. We have two categories or classes, and we need to assign each data item x to one of those
classes.

In order for the robot to do its job, we need to construct a formula for y(x). Instead of simply returning 0 or
1, our formula will return a number between 0 and 1, representing how strongly it thinks a given fruit is an
orange or apple. All values below 1

2 would be regarded as oranges, while those above the limit are assumed
to be apples.

Here is how it would be used for our apples and oranges problem:

import numpy as np

data = np . l oadtx t ( ’ app le data . txt ’ )

g = data [ : , 0 ]
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y = data [ : , 1 ]
n = len ( g )

gmin = np .min( g )
gmax = np .max( g )
gn = ( g − gmin ) / ( gmax − gmin )

X = np . z e r o s ( [ n , 2 ] )
X[ : , 0 ] = 1
X[ : , 1 ] = gn

alpha = 0.02
kmax = 100000

from l o g i s t i c r e g r e s s i o n import l o g i s t i c r e g r e s s i o n

wn = l o g i s t i c r e g r e s s i o n ( X, y , alpha , kmax )

Listing 2: Linear regression for gold coin data.

The weights nw = [−8.99, 17.88] are returned for the normalized data values gn. Since it is more natural for
us to work with data in the original units, we need to work backwards now.

y = 1.0 / ( 1.0 + np.exp ( - wn[0] - wn[1] gn[1] ) )

- wn[0] - wn[1] gn[1] = - wn[0] - wn[1] * ( g - gmin ) / ( gmax - gmin )

= - wn[0] + wn[1] * gmin / ( gmax - gmin )

- wn[1] / ( gmax - gmin ) * g

w[0] = wn[0] - wn[1] * gmin / ( gmax - gmin )

w[1] = wn[1] / ( gmax - gmin )

So now we know how to convert the weights so that they can be used with our original data.

w = np . array ( [ wn [ 0 ] − wn [ 1 ] ∗ gmin / ( gmax − gmin ) , wn [ 1 ] / ( gmax − gmin ) ] )
print ( ’ ’ )
print ( ’ Weights f o r o r i g i n a l data W = (%g,%g ) ’ % ( w[ 0 ] , w [ 1 ] ) )
c u t o f f = − w[ 0 ] / w[ 1 ]
print ( ’ Cutof f va lue i s ’ , c u t o f f )

So now we can plot our data and our formula using the original units. The converted coefficients are w =

(-116.606,1.65557), and the cutoff value is - w[0]/w[1] = 70.432, which tells us the weight at which
we can separate the fruit.

To make a nice plot of the results, we want to show our original data, split into the two fruit kinds, and our
logistic regression function which tries to summarize the situation.

gp lo t = np . l i n s p a c e ( gmin , gmax , 101 )
yp lot = 1 .0 / ( 1 .0 + np . exp ( − ( w [ 0 ] + w[ 1 ] ∗ gp lo t ) ) )

p l t . p l o t ( g [ y==0] , y [ y==0] , ’mo ’ ) # oranges in magenta
p l t . p l o t ( g [ y==1] , y [ y==1] , ’ go ’ ) # app l e s in green
p l t . p l o t ( gplot , yplot , ’b− ’ , l i n ew id th = 3 ) # l o g i s t i c func t i on in b lue
p l t . p l o t ( [ cu to f f , c u t o f f ] , [ 0 , 1 ] , ’−− ’ , c o l o r = ’ r ’ ) # cu t o f f in red
p l t . show ( )

Our plot suggests how the function y(x) tries to sort the apples and oranges by weight:
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The logistic regression curve for the apples and oranges weight data.

4 LogisticRegression from Scikit-Learn

We’d like to avoid having to worry about the right settings of alpha and kmax for the simple logistic regression()

function. Hence we will prefer to use a professionally-written implementation of logistic regression, as sup-
plied by Scikit-Learn. However, to do so, we will have to figure out some of the quirks of that code.

We will do so by applying logistic regression to a new dataset, which involves two independent variables.
Thus the data will appear as dots scattered across the plane, and logistic regression will try to determine a
line that separates the data into the two kinds that have been identified.

Thus, we will have two headaches: dealing with the Scikit-Learn function, and properly handling a dataset
involving two variables.

5 Exercise: Admission Statistics

The file admit data.txt contains n = 100 records relating to college admission applications. Each record
contains a student’s scores on an English exam (eng), on a math exam, (mat), and an admissions decision
adm, which is 0 (not admitted) or 1 (admitted).

Our task is to find a logistic formula which for student i, is given the data xi = [1, eng,mat] and returns
a y value between 0 and 1, estimating the probability that the student will be admitted. We hope that
in general, y(xi) ≈ admi. If so, we can fire the dean of admissions and just use a robot and this formula
instead!

We start by reading the data in the usual way. Because we will be using better software, we won’t need to
normalize this data in advance!

#
# Read the data : ( x1=eng l i sh , x2=math , adm=admit (0/1) )
#

data = np . l oadtx t ( ’ admit data . txt ’ )
eng = data [ : , 0 ]
mat = data [ : , 1 ]
adm = data [ : , 2 ]
n = len ( eng )

#
# Create arrays X and y .
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#
X = np . z e r o s ( [ n , 3 ] )
X[ : , 0 ] = 1
X[ : , 1 ] = eng [ : ]
X [ : , 2 ] = mat [ : ]

y = adm [ : ]

Listing 3: Read and prepare admissions data.

Now we need to crank out the formula. First we have to import the LogisticRegression() function. Then
we feed it our X,y data, and it returns an object classifier which contains the logistic regression model.
By calling classifier.predict(), we can see how the model classifies our original data. Since we need
them for plotting, we have to retrieve the coefficient array w; doing this is a little tricky, involving underscores
in variable names, and also getting w[0] from a separate location. But once we’ve done all that, we have
the information we need.

from s k l e a rn . l i n ea r mode l import Log i s t i cReg r e s s i on
#
# Fit the l o g i s t i c r e g r e s s i on model to the data .
#

c l a s s i f i e r = Log i s t i cReg r e s s i on ( random state=0) . f i t ( X, y )
#
# Evaluate the model on the o r i g i n a l data .
#

yp = c l a s s i f i e r . p r ed i c t ( X )
#
# Compute MSE
#

mse = ( 1 .0 / n ) ∗ sum ( ( yp − adm ) ∗∗2 )
#
# Construct the c o e f f i c i e n t array W.
#

w0 = c l a s s i f i e r . i n t e r c e p t
w = c l a s s i f i e r . c o e f [ 0 ]
w [ 0 ] = w0

print ( ’ ’ )
print ( ’ Computed weights W = ’ , w )

We know how to display our data, but drawing the separating line is a little complicated now. But we know
that all points (eng,mat) on the separating line satisfy the equation

−w0 − w1eng − w2mat = 0

So, if emin is the minimum value of eng, the plot of the dividing line can start at emin, (-w[0]-w[1]*emax)/w[2]),
with a corresponding endpoint at emax.

#
# Disp lay data .
#

emin = np .min ( eng )
emax = np .max ( eng )
mmin = ( − w[ 0 ] − w[ 1 ] ∗ emin ) / w[ 2 ]
mmax = ( − w[ 0 ] − w[ 1 ] ∗ emax ) / w[ 2 ]

p l t . p l o t ( X[ y==0 ,1] , X[ y==0 ,2] , ’ r . ’ , markers i ze = 15 )
p l t . p l o t ( X[ y==1 ,1] , X[ y==1 ,2] , ’ b . ’ , markers i ze = 15 )
p l t . p l o t ( [ emin , emax ] , [mmin ,mmax] , ’ k− ’ , l i n ew id th = 3 )
p l t . show ( )

Listing 4: Display the data
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Our plot shows that most students were admitted or not according to a linear formula, although there are
clearly some exceptions!

The logistic regression curve for the college admissions data.

Three students apply late. We will use the weights w to decide whether to admit them. The raw data is:

eng mat
46 81
26 75
30 66

We create a new X2 array for this data. If we call classifier.predict(), we will get a 0 or 1 result
returned, meaning don’t admit/admit. If instead we call classifier.predict proba(), we get two values,
the probability that the student should not be admitted, and the probability that the student should be
admitted.

X2 = np . array ( [ \
[ 1 . 0 , 46 , 81 ] , \
[ 1 . 0 , 26 , 75 ] , \
[ 1 . 0 , 30 , 66 ] ] )

y2 = c l a s s i f i e r . p r ed i c t ( X2 )
p2 = c l a s s i f i e r . p r ed i c t p roba ( X2 )

Listing 5: Do we admit these new students?

Here are the results for this data:

New student data: (X2)

[[ 1. 46. 81.]

[ 1. 26. 75.]

[ 1. 30. 66.]]

Admit new student? (y2)

[1. 0. 0.]

Strength of decision (p2)

[[0.00626659 0.99373341]

[0.61183432 0.38816568]

[0.84456637 0.15543363]]

So...fire the dean of admissions!
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6 Gopher Heads

Last summer, our biology project required students to go into the prairie in search of gophers. There are
two gopher species there, “Arctic Gophers” (species A) and “Balkan Gophers” (species B). The students
measured the width and length of each the skull of each gopher, and the instructor was able to determine
the species. Unfortunately, the instructor wrote down a “1” for Arctic gophers, and a “-1” (not 0!) for the
Balkan gophers.

This summer, the instructor cannot accompany the students, so they will go back to the prairie and make
their measurements, but they need help to estimate the species for each skull. If we are lucky, we will be
able to come up with a formula which relates the species to the measurements they have made.

Our data is stored in the file gopher data.txt, and holds n = 50 records of the form swi, sle, spe, that is,
skull length, skull width, and species. We will create the n× 3 array X containing [1,swi,sle]. To create
the result vector y, we can’t simply copy the values in spe since those involve -1 instead of 0. One way to
handle this would be to consider a logical expression, and turn the result back into an integer:

y = ( spe == 1 )
y = y . astype ( int )

Now the computation of the logistic regression classifier proceeds in the same way as for the college admission
data, and we can create a plot of our findings:

The logistic regression classification for gopher species.

Suppose the students report the following data from their followup project:

swi sle

--- ---

6.5 10.8

6.0 10.0

5.6 9.3

Using classifier.predict() we compute [1,0,0]. Using classifier.predict proba() we get the more
informative probability results:

prob not A prob A

---------- ----------

0.29986994 0.70013006 <-- somewhat sure

0.88461229 0.11538771 <-- pretty sure

0.98901838 0.01098162 <-- extremely sure!
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7 Diabetes Prediction

A medical team has compiled records on n = 768 female patients who were tested for diabetes. The
measurements included:

• prg: number of pregnancies;
• glu: plasma glucose concentration;
• dbp: diastolic blood pressure;
• tri: triceps skinfold thickness;
• ins: insulin level;
• bmi: body mass index;
• ped: diabetes pedigree function;
• age: age;
• dia: nondiabetic(0) / diabetic(1);

Because they can easily make the 8 medical measurements, while the diabetic diagnosis itself is more expen-
sive and time consuming, they would appreciate a formula that allows them to estimate the likelihood that
a patient is diabetic.

Because this case involves so many independent variables, we won’t be able to make a simply plot that cleary
summarizes the results. We also have to consider that having so many factors tends to make it easier to
separate the two classes, but having so many cases makes it more difficult. We will have to see how well our
formula does.

Unfortunately, when we run our code, we get an error message, whose content involves a warning we have
seen before:

Logistic regression for diabetes diagnosis data.

ConvergenceWarning: lbfgs failed to converge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:

https://scikit-learn.org/stable/modules/preprocessing.html

We are familiar with the fact that badly scaled data can make convergence difficult. Rather than normalize
the data ourselves, we can actually rely on a built in Scikit-Learn function, as described on the preprocessing
web page. Our use is as follows:

#
# Sca le the data .
#

from s k l e a rn import pr ep ro c e s s i ng
s c a l e r = pr ep ro c e s s i ng . StandardSca ler ( ) . f i t ( X )
X sca led = s c a l e r . t rans form ( X )

#
# Fit the l o g i s t i c r e g r e s s i on model to the data .
#

c l a s s i f i e r = Log i s t i cReg r e s s i on ( random state=0) . f i t ( X scaled , y )
#
# Evaluate the model on the o r i g i n a l data .
#

yp = c l a s s i f i e r . p r ed i c t ( X sca led )

As you can see, once we have computed X scaled, we have to use these scaled values instead of X for our
calls to classifier(). If we compute the weights w, then these also must use the scaled data.

Once we have converted to scaled data, our results come quickly:
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diabetes():

Logistic regression for diabetes diagnosis data.

MSE = 0.21614583333333331

Computed weights W = [-0.86678294 0.40864687 1.10711197 -0.25086804 0.00905046 -0.13083627

0.69630872 0.30883724 0.17649782]

If we need to use classifier() to predict the results for new data X new, then we can simply apply
X new scaled = scaler.transform(X new). If, on the other hand we really really want to work with our
unscaled data, then we have seen before how to convert coefficients of normalized data to coefficients for
original data.
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