exercise3: Find best linear model for medical billing data. bill = c0 + c1 * age + c2 * sex + c3 * bmi + c4 * kids + c5 * smoker Data from insurance_data.txt involves n = 1338 items with dimension d = 7 Data statistics: Min = [1.8000000e+01 0.0000000e+00 1.5960000e+01 0.0000000e+00 0.0000000e+00 1.0000000e+00 1.1218739e+03] Max = [6.4000000e+01 1.0000000e+00 5.3130000e+01 5.0000000e+00 1.0000000e+00 4.0000000e+00 6.3770428e+04] Range = [4.60000000e+01 1.00000000e+00 3.71700000e+01 5.00000000e+00 1.00000000e+00 3.00000000e+00 6.26485541e+04] Mean = [3.92070254e+01 5.05231689e-01 3.06633969e+01 1.09491779e+00 2.04783259e-01 2.54484305e+00 1.32704223e+04] Variance = [1.97253852e+02 2.49972629e-01 3.71600900e+01 1.45212664e+00 1.62847076e-01 1.27638970e+00 1.46542766e+08] Graphics saved as "exercise3_histogram.png" C = [-12052.46198566 257.73498767 -128.63985357 322.36421449 474.41112061 23823.39253065] MSE = 36676355.794577315 For age = 19 sex = 1 bmi = 24.6 kids = 1 smoker = 0 the model predicts a bill of 1120.4337234513266 The actual bill was 1837.23 For age = 34 sex = 0 bmi = 31.92 kids = 1 smoker = 1 the model predicts a bill of 31298.196972750375 The actual bill was 37701