
Variance and KMeans
ML 2022: Machine Learning

https://people.sc.fsu.edu/∼jburkardt/classes/ml 2022/cluster lab/cluster lab.pdf

Using KMeans, we can discover how data has formed cluster patterns.

Variance reduction!

We are interested in how much our data clusters around one or more centers.

• variance measures the tightness of the clustering;
• If we suspect a single cluster, we may want to standardize the data first;
• For multidimensional data, the covariance matrix reports variance, independence, and correla-

tion of the data;
• If there are multiple centers, a better model is available through kmeans;
• To use kmeans, we need to choose the number of clusters;
• The behavior of the inertia suggests the right number of clusters;

1 Copying the data

Each of the exercises will be carried out on a particular datafile. These datafiles are available on the datasets
page at the class website:
https://people.sc.fsu.edu/∼jburkardt/classes/ml 2022/datasets/datasets.html

You might go ahead now and download them all:
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• hw data.txt
• faithful data.txt
• ruspini data.txt
• blobs data.txt
• blobs clusters.txt
• blobs centers.txt

2 Exercise 1:

We want to plot a sample of the height and weight data in hw data.txt, to show how a two-dimensiona set
of data can form a single cluster: Write a program exercise1.py and:

• use np.loadtxt() to read data from hw data.txt;
• use np.shape() to get and print the number of rows and columns;
• print the first five rows of data;
• make a copy of data that omits column 0, the data index;
• make a copy of data that keeps only the first 350 records;
• compute and print min, max, range, mean, variance, std of data;
• create data2, a standardized copy of data;
• use plt.scatter ( x values, y values ) to plot height (column 0) versus weight (column 1);
• draw 3 rings around your data:

tc = np . l i n s p a c e ( 0 , 2 . 0 ∗ np . pi , 51 )
xc = np . cos ( tc )
yc = np . s i n ( tc )
p l t . p l o t ( xc , yc , ’ r− ’ , l i n ew id th = 2 )
p l t . p l o t ( 2 .0∗ xc , 2 .0∗ yc , ’ r− ’ , l i n ew id th = 2 )
p l t . p l o t ( 3 .0∗ xc , 3 .0∗ yc , ’ r− ’ , l i n ew id th = 2 )

• Compute and print the covariance matrix of data2 using the command

cov = np . cov ( data2 , rowvar = False )

Because the data is standardized, the variance and standard deviation are both 1. The rings therefore
indicate data that is no more than 1, 2, and 3 standard deviations from the mean, and should contain almost
all of your data.

There is a directional bias in your data. Large heights tend to do with large weights, and small heights with
small weights. How does the covariance matrix tell you that this is happening?

3 Prepare for Exercise 2:

In Exercise 2, we will read two-dimensional data that clearly forms two separate clusters. We will use the
letter d to represent the spatial dimension, so here d=2. Each cluster has a center, and points belong to the
cluster with the nearest center. The original data has a variance that we already know how to compute.
Once we divide the data into two clusters, we can recompute a new version of the variance, known as the
inertia. It is the sum of the variance of the points in cluster 0 from center 0, plus the variance of points in
cluster 1 from center 1:

inertia = var0 + var1

as described in the lecture. If the clustering is done correctly, the two-cluster inertia must be less than the
original variance (which we could also call the “one-cluster inertia”.
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There is a standard algorithm for splitting up our data into k clusters, known as the K Means algorithm.
We will use the implementation available in scikit-learn. For more detail, search for scikit learn

kmeans.

To use the algorithm, we need the statement

from s k l e a rn import KMeans # Capi ta l K, Cap i ta l M!

If we wish to create k clusters, we must define the word kmeans as follows:

kmeans = KMeans ( n c l u s t e r s = k )

To cluster the n values in data, we then write

y = kmeans . f i t p r e d i c t ( data )

Here, each of the n values y[i] satisfies 0 ≤ y[i] < k, and indicates that data item i belongs to cluster y[i].

If we wish to plot all the points belonging to cluster 0, we might use a command like this:

p l t . s c a t t e r ( data [ y==0, 0 ] , data [ y==0, 1 ] , c = ’ red ’ )

with similar commands to plot points from other clusters, perhaps in blue, green, and so on.

Each cluster has a center. The coordinates of these centers are in the k×d array kmeans.cluster centers

(Notice the trailing underscore!)

It’s important to know how the inertia changes as we increase the number of clusters. Once you define
kmeans and apply it to the data, the corresponding inertia is available as the quantity kmeans.inertia .
(Again, notice the trailing underscore!) Therefore, if we want to compare the intertia for the one-cluster and
two-cluster cases, then for k = 1 and then k = 2, we have to:

• set k;
• define kmeans;
• apply kmeans() to our data;
• print kmeans.inertia ;

This was a lot of preparation, but now we are ready to deal with our tricky two-cluster data from the Old
Faithful geyser.

4 Exercise 2:

Write a program exercise2.py and:

• use np.loadtxt() to read data from faithful data.txt;
• use np.shape() to get and print the number of rows and columns;
• print the first five rows of data;
• compute and print min, max, range, mean, variance, std of data;
• create data2, a standardized copy of data;
• use plt.scatter ( x values, y values ) to plot eruption time (column 0) versus wait (column 1);
• apply the KMeans algorithm to data2, requesting k=1 clusters, and print the inertia;
• apply the KMeans algorithm to data2, requesting k=2 clusters, and print the inertia;
• in a scatter plot show cluster 0, using c = ’red’;
• in the same scatter plot, show cluster 1 using c = ’cyan’;
• in the same scatter plot, add the two cluster centers, using c = ’black’ and marker = ’*’

You should notice that the inertia decreased a lot when we went from k=1 to k=2. In your scatterplot, you
should expect the red and cyan dots to be correctly clustered around a cluster center.
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5 Exercise 3:

The Ruspini data naturally breaks into a number of clusters. We will use KMeans to cluster the data into
1 ≤ k ≤ 10 clusters, compute the inertia each time, and plot the sequence of inertia values, looking for a
sort of “elbow” in the plot, which suggests a natural value of k to choose.

Write a program exercise3.py and:

• use np.loadtxt() to read data from ruspini data.txt;
• use np.shape() to get and print the number of rows and columns;
• print the first five rows of data;
• create data2, a standardized copy of data;
• use plt.scatter ( x values, y values ) to plot x (column 0) versus y (column 1);
• for 1 ≤ k < 11, set up kmeans, cluster the data, set inertia[k-1]=kmeans.inertia ;
• print the values k,inertia[k-1];
• plot the values k,inertia[k-1];
• based on the inertia plot, choose a value of k;
• using k, define kmeans, use kmeans() to cluster data2;
• in a scatter plot, display each set of clustered data;
• in the same scatter plot, add the cluster centers, using c = ’black’ and marker = ’*’

If you have chosen k well, your plot should show nicely clustered data.

6 Prepare for Exercise 4

For this exercise, we will consider an artificial dataset X,y of n=2020 points in dimension d=2, with each
point X[i,:] already assigned to a cluster y[i]. This data will break up naturally into a small number of
clusters k ≤ 10. As we did in the previous exercise, we will try to determine a value of k less than 10 that
has a relatively small inertia.

Before we start our analysis, we will split the data into 2000 items of training data, X1,y1, and 20 items
of testing data, X2,y2. We will do an intertia test on the X1 data, choose a good value of k, and then
cluster the data and plot it.

Then we will pretend that we have just found 20 new items of data, X2,y2. We can use KMeans to assign
to each item X2[i,:] a cluster index y2*[i]. Now we compare the cluster information in y2 (where the
data item came from) to y2* (where KMeans thought it should go) and see how well we did in classifying
the new data.

This may sound a little complicated, but the only bad part is some tricky indexing we have to do at the end.

7 Exercise 4:

Write a program exercise4.py and:

• use np.loadtxt() to read X from blobs data.txt;
• use np.loadtxt() to read y from blobs clusters.txt;
• force y to integer type by y = y.astype ( int );
• use np.loadtxt() to read C from blobs centers.txt;
• copy the first 2000 rows of X and y into X1 and y1;
• copy the remaining 20 rows of X and y into X2 and y2;
• make a scatterplot of X1;
• for 1 ≤ k < 11, set up kmeans, cluster X1, set inertia[k-1]=kmeans.inertia ;
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• plot the values k,inertia[k-1];
• based on the scatter plot and the inertia plot, choose a value of k;
• now, using only the value of k that you chose...
• * again define kmeans=KMeans(n clusters=k);
• * again compute y1 pred=kmeans.fit predict(X1), to cluster the data;
• now, we want to add the X2 data, without affecting the clustering we’ve already done.
• compute y2 pred=kmeans predict(X2 ... Notice the difference?;
• For each new data item X2[i,:], print C[y2[i],:] and cluster centers [y2 pred[i],:] ;

Data item X2[i,:] was generated by a random deviation from blob center C[y2[i],:]. KMeans doesn’t know
the values of these blob centers, but the cluster centers are its approximation to those values. Therefore, the
best we can hope for is that every new data item X2[i,;] is matched with a cluster center that is the closest
to its original blob center.

What we have done is to use the initial data X1 as a training set to estimate where the centers are. After
that, we are able to try to classify the new data X2, according to which center it should be assigned. As
long as we believe that KMeans did a good clustering job on the first set of data, then we have worked out
a way to classify the new data automatically.
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