
Using CUDA on NewRiver
Math5414: Finite Elements and GPU Computing

The ARC NewRiver cluster involves three subclusters, characterized by their processor type, IvyBridge, Haswell,
and Broadwell. Each of the 39 Broadwell processors has two attached NVidia P100 GPU’s, with 512 GB of
memory. This document shows how a user CUDA program can be compiled and executed to run on a P100 GPU.

1 Exercise: Login to NewRiver, Copy Examples

Log into either NewRiver login node newriver1 or newriver2 with your PID and password + 2FA:

ssh PID@newriver1.arc.vt.edu

or, if you are planning to use emacs, or display graphics information, include the -X switch:

ssh -X PID@newriver1.arc.vt.edu

Copy the example files from my directory:

cp ~burkardt/5414/* .

The examples for this CUDA discussion are mixed up with examples for the earlier MPI discussion. In some cases,
the file names will give you a hint of what is going on:

• hello.cu is a CUDA version of Hello, world!;

• hello cpu.sh compiles and runs hello.cu using the CPU;

• hello cpu.sh.e12345 is an error file from hello cpu.sh;

• hello cpu.sh.o12345 is an output file from hello cpu.sh;

• hello gpu.sh compiles and runs hello.cu using the GPU;

• hello gpu.sh.e12345 is an error file form hello gpu.sh;

• hello gpu.sh.o12345 is an output file form hello gpu.sh;

Note that in most cases, the “error file” is printing one or two pointless warnings of no interest to us. (Unfortunately,
this encourages us to ignore the error file, when its very purpose is to provide prominent warnings.)

2 Background: Module Command for CUDA

Before accessing CUDA, you must issue a module command. To load the default 7.0.28 version, just type:

module load cuda

To see a list of all the available versions of CUDA, type

module spider cuda

To load the most recent version, type

module load cuda/8.0.61

The module command defines some symbolic names, including CUDA DIR, CUDA DOC, CUDA BIN and CUDA LIB.

CUDA DOC has CUDA documentation in html, man and pdf formats. Try a command like:

ls $CUDA_DOC/pdf

CUDA BIN is the directory with CUDA binaries (executable programs). If we list this directory, we see the following:
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Figure 1: 2 blocks and 5 threads per block makes 10 threads.

bin2c* cuda-gdb* fatbinary* nvdisasm* ptxas*

computeprof@ cuda-gdbserver* filehash* nvlink* uninstall_cuda_7.0.pl*

crt/ cuda-install-samples-7.0.sh* nsight* nvprof*

cudafe* cuda-memcheck* nvcc* nvprune*

cudafe++* cuobjdump* nvcc.profile nvvp*

All these files are now “in your path”; that is, you can run any of these programs simply by typing the name. The
program that is of most interest to us is nvcc, the CUDA compiler.

3 Background: Hello, World! in CUDA

One of the example files that you copied is called hello.cu. The .cu extension indicates that this is the text of a
C program that includes some CUDA extensions. Take a look at the program text using more or emacs.

While the file has a C-like structure, several features indicate that we are working with CUDA. The function doing
the work, called the kernel function, is declared with the global statement; the main program calls the kernel
using an unfamiliar triple angle brackets notation <<< blocks, threads >>>; inside the kernel, there is no loop,
but we seem to refer to loop indices using structure variables blockIdx.x and threadIdx.x.

For now, you can think of this program an unusual way of writing:

for ( j = 0; j < blocks; j++ ) <-- j is blockIdx.x

{

for ( i = 0; i < threads; i++ ) <-- i is threadIdx.x

{

k = threadIdx.x + blockDim.x * blockIdx.x;

printf ( "Hello #%d from CUDA block %d, thread %d\n", k, j, i );

}

}

4 Exercise: Hello, World! Interactively

As our first exercise, we’d like to try to compile and run the program interactively. However, we can’t do this on
the NewRiver login nodes. We have to request short term interactive access to a NewRiver P100 node. There
aren’t many of them, and we have to wait our turn, so in the future we will prefer to use the batch system.

The interact command requests interactive access to one of the 4 P100 nodes. There are 28 processors, and 2
GPU’s on such a node. To grab everything, which means no one else can use this node until you are done, you
would type:
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interact -q p100_dev_q -lnodes=1:ppn=28:gpus=2 -A MATH5414

To grab half the node, which means another GPU user can work on the same node, you would type:

interact -q p100_dev_q -lnodes=1:ppn=14:gpus=1 -A MATH5414

To get up to 28 users on a node, with everyone sharing partial access to a GPU, half of you would type

interact -q p100_dev_q -lnodes=1:ppn=1 -A MATH5414

export CUDA_VISIBLE_DEVICES=0

and half of you would type

interact -q p100_dev_q -lnodes=1:ppn=1 -A MATH5414

export CUDA_VISIBLE_DEVICES=1

In this “very shared” environment, performance would be terrible, but you’d all have access.

Your interact request actually goes into a queue, and you wait an unknown span of time between the first line
below, and the second:

qsub: waiting for job 106059.master.cluster to start

qsub: job 106059.master.cluster ready

nr161: <-- Now you have access to a P100 node!

We set up CUDA, and compile with the nvcc command.

nr161: module load cuda

nr161: nvcc -o hello hello.cu

The nvcc compiler creates a program that starts execution on the CPU, but is able to cooperate with the GPU,
transferring data and work as prescribed. Starting the program happens in the usual way:

nr161: ./hello

Now blocks was 2, and threads was 5, explaining why we get 10 messages, with 2 blocks between 0 and 1, and
5 threads between 0 and 4, as though we had executed a for loop.

Once your experiment is over, you need to release the node so other people can use it and the usage is no longer
billed to your account:

nr161: logout

qsub: job 106059.master.cluster completed

5 Exercise: Hello, World! in Batch

Interactive access to a GPU can be helpful if you’re debugging, but there’s an unknown waiting time for a small
number of available nodes. Large and lengthy jobs should preferably be run in batch mode. It is necessary that
the batch file request access to a GPU, and that the correct queue be selected. Here is a typical header for a PBS
file:

#! /bin/bash

#

#PBS -l walltime=00:05:00

#PBS -l nodes=1:ppn=1:gpus=1 <- need access to a GPU

#PBS -W group_list=newriver

#PBS -q p100_dev_q <- send job to queue with P100 access

#PBS -A MATH5414

#

cd $PBS_O_WORKDIR

#

module purge

module load cuda
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The file hello gpu.sh has the appropriate PBS header commands, and carries out the same process of compiling
and running a “Hello, World!” program that we previously did interactively. We can submit the job to the batch
queue like this:

qsub hello_gpu.sh

The qsub command will respond with a job number, like 12345, that you can use to track the progress of your job
or to delete it:

qstat -u PID <- Show all jobs for my PID

checkjob 12345 <- What’s up with job 12345?

qdel 12345 <- Kill or delete job 12345.

If the job runs to completion, you’ll find a file with a name like hello gpu.sh.o12345 with your results.

6 Background: vecadd.cu moves data to and from the GPU

The file vecadd.cu adds two vectors, and demonstrates how data can be copied from the CPU to the GPU, and
results copied back. The CPU defines and sets two vectors A and B, and then expects the GPU to compute the
sum C = A + B. Here is the “interesting” portion of the main program:

float *a_cpu, *a_gpu, *b_cpu, *b_gpu, *c_cpu, *c_gpu;

int memsize;

int n = 10;

memsize = n * sizeof ( float );

a_cpu = ( float * ) malloc ( memsize );

b_cpu = ( float * ) malloc ( memsize );

loadArrays ( a_cpu, b_cpu, n );

cudaMalloc ( ( void** ) &a_gpu, memsize );

cudaMalloc ( ( void** ) &b_gpu, memsize );

cudaMalloc ( ( void** ) &c_gpu, memsize );

cudaMemcpy ( a_gpu, a_cpu, memsize, cudaMemcpyHostToDevice );

cudaMemcpy ( b_gpu, b_cpu, memsize, cudaMemcpyHostToDevice );

add_vectors <<< 1, n >>> ( a_gpu, b_gpu, c_gpu );

c_cpu = ( float * ) malloc ( memsize );

cudaMemcpy ( c_cpu, c_gpu, memsize, cudaMemcpyDeviceToHost );

The kernel function is:

__global__ void add_vectors ( float *a_gpu, float *b_gpu, float *c_gpu )

{

int k = threadIdx.x + blockDim.x * blockIdx.x;

c_gpu[k] = a_gpu[k] + b_gpu[k];

}

Since blocks is 1, we could write instead k = threadIdx.x; however, the way we have written it will work just
as well if we use blocks=n and threads=1, or any pair of values that multiply to n=10.

For a calculation in which both blocks and threads are scalars (in other words, not vectors!), the following values
are all that the kernel needs to figure things out:

• threadIdx.x, the current thread index;
• blockDim.x, the number of threads per block;
• blockIdx.x, the current block index;
• gridDim.x, the number of blocks.
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The main new feature in vecadd is how the user’s program must manage the allocation and assignment of memory
on the GPU, as well as transfers back and forth. Notice the following features of the program:

1. The arrays a, b and c will “live” on both the CPU and GPU. The CPU is responsible for making space for
them on the GPU using the function cudaMalloc().

2. The arrays a and b are set on the CPU, and copied to the GPU arrays using cudaMemcpy().

3. The add vectors kernel is run on the GPU, invoked, with a specific number of blocks and threads.

4. Once all the threads have completed the computation on the GPU, the function cudaMemcpy() copies the
GPU results back to the CPU array c.

7 Exercise: Run vecadd.cu in batch

Now we want to compile and run the vecadd.cu program through the batch system. This requires a batch file
which includes all the commands we might give interactively, preceded by some commands to the scheduler.

A new feature in these scheduler commands is that we ask for 1 node, 1 core, and 1 gpu:

#! /bin/bash

#PBS -l walltime=00:05:00

#PBS -l nodes=1:ppn=1:gpus=1

#PBS -W group_list=newriver

#PBS -q p100_dev_q

#PBS -A MATH5414

cd $PBS_O_WORKDIR

module purge

module load cuda

nvcc -o vecadd vecadd.cu

./vecadd

You can submit this job in the usual way:

qsub vecadd_gpu.sh

8 Background: Collatz Sequences

The mathematician Lothar Collatz became interested in something called the hailstone game. Start with any
positive number, divide it by 2 if even, or triple and add 1 if odd, and stop when you reach the value 1. It’s not
clear why, but the process always does seem to reach 1. For example, suppose we start with the number 17:

0 17 is odd, so 17 --> 3*17+1 = 52;

1 52 is even, so 52 --> 52/2 = 26;

2 26 is even, so 26 --> 26/2 = 13;

3 13 is odd, so 13 --> 3*13+1 = 40;

4 40 is even, so 40 --> 40/2 = 20;

5 20 is even, so 20 --> 20/2 = 10;

6 10 is even, so 10 --> 10/2 = 5;

7 5 is odd, so 5 --> 3*5+1 = 16;

8 16 is even, so 16 --> 16/2 = 8;

9 8 is even, so 8 --> 8/2 = 4;

0 4 is even, so 4 --> 4/2 = 2;

11 2 is even, so 2 --> 2/2 = 1;

12 1 is 1, so we stop after 12 steps.
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Figure 2: The Collatz sequence for 27 takes 112 steps.

We say that 17 has a Collatz sequence of length 12. An interesting question is, for any starting value n, how many
iterations does it take before the sequence reaches 1 (or the hailstone hits the ground?) For 17, this value is 12;
for 1, this value is 0. What about 27?

We can set up a CUDA program to compute the length of the Collatz sequence for every integer from 1 to N.
Notice that, in this case, there is no need for the CPU to initialize a data array to be sent to the GPU; the GPU
simply has to run through each possible starting value, compute the sequence, record its length, and return the
array of sequence lengths to the CPU.

The interesting part of the program is:

steps_num = 100;

steps_size = steps_num * sizeof ( int );

cudaMalloc ( ( void** ) &steps_gpu, steps_size );

blocks = 25;

threads = 4;

collatz_steps <<< blocks, threads >>> ( steps_gpu );

steps_cpu = ( int * ) malloc ( steps_size );

cudaMemcpy ( steps_cpu, steps_gpu, steps_size, cudaMemcpyDeviceToHost );

after which we report on the starting value that resulted in the longest Collatz sequence that we observed. The
kernel is set up to work for any combination of (scalar) blocks and threads. The interesting part is:

k = threadIdx.x + blockDim.x * blockIdx.x;

n = k + 1;

s = 0;

while ( 1 < n ){

if ( ( n % 2 ) == 0 ){

n = n / 2;

}else{

n = 3 * n + 1;

}

s = s + 1;

}

steps_gpu[k] = s;
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9 Exercise: Batch processing of collatz.cu

Look over the text of collatz.cu and convince yourself that you understand how:

• the CPU uses cudaMalloc() to set up memory on the GPU for the array of sequence lengths,
• the kernel function is called with 25 blocks and 4 threads per block, to do n = 100 calculations;
• the CPU calls cudaMemcpy() to copy the step length array from the GPU back to the CPU;
• the kernel function carries out task K, to check integer N=K+1, where k=threadIdx.x+blockDim.x*blockIdx.x.

Once you’ve thought about these ideas, go ahead and submit the batch file collatz gpu.sh; check out its report on
the starting value that resulted in the longest sequence.

10 Background: Julia Sets

Suppose we have a function f(z) defined for any complex number z. Suppose that we repeatedly carry out the
iteration z ← f(z). It’s natural to assume that the sequence of z values will blow up in magnitude; however it’s
possible that for some starting values z, the sequence will stay small. We call such points the Julia set for f().

Computer scientists are interested in Julia sets because they can produce some surprisingly beautiful plots and
mathematicians love them for reasons only mathematicians can understand.

A simple class of test functions has the form f(z) = z2 + c, and some interesting values of the complex number
c include 0.4+0.6i, 0.285+0.01i, and 0.7269+0.1889i. For our experiment, we will use c = −0.8 + 0.156i. We will
only look at points in the rectangle [−1.5,+1.5]x[−1.5,+1.5]. We will pick a 1000x1000 grid in this rectangle, and
for each zi,j we will iterate 200 times. If the norm of the iterates stays below 1,000, we will consider that it is a
member of the Julia set. So our result will be a 1000x1000 array of 0’s (not in the set) and 1’s (in the set).

11 Exercise: julia gpu.cu

The program julia gpu.cu carries out a computation of the Julia set over the region R=[-1.5,+1.5]x[-1.5,+1.5]. It
uses a 1,000x1,000 array of points within this region, checking each one to see if it is in the Julia set.

The results, an array of 0’s and 1’s, will then be reformatted on the CPU for display as a graphics image.

How does the GPU participate in this calculation? Unlike the vector addition example, there is no large data
array that the CPU has to send to the GPU; the only information is some scalars that define the shape of the
region and the shape of the grid to be filled in.

The CPU calls the kernel function julia set, but this time, the angle bracket parameters are <<<blocks,threads>>>,
where threads is simply 1, but blocks is a vector of type dim3, with value (w, h, 1) which tells the GPU that the
data is physically arranged in a w×h× 1 array, so that each invocation of the kernel will get indices (i, j, k) (with
k always 0), telling it which pixel to work on. The individual results are packed into an array and sent back to
the CPU.

Note that when either blocks or threads is to specified as a 2D or 3D array, the special CUDA datatype dim3

must be used, and the value is set like this:

dim3 blocks ( 5, 2 );

dim3 blocks ( 5, 2, 1 );

dim3 threads ( 2, 4 );

dim3 threads ( 8, 4, 2 );

The second thing to notice is that there are actually two functions that run on the GPU. The kernel is declared
as global julia set (...) so that the CPU can “see” it. But a second function is declared as device

julia value(...) because it runs on the GPU and the CPU doesn’t call it directly.
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Figure 3: An example of a Julia set plot.

The file julia cpu.c is a version of the program that does not use the GPU at all. Compare the julia set functions
in the CPU and GPU versions of the program to get a better understanding of how a kernel function works.

Submit the batch file julia gpu.sh to the batch queue. When the results are returned, you should have a file called
julia gpu.tga. If your ssh command included the -X switch, then you can view the graphics file almost immediately,
after setting up ImageMagick and invoking its display function:

module load ImageMagick

display julia_gpu.tga

12 Background: When Blocks * Threads and N Differ

So far, in our examples, the product of blocks and threads was exactly equal to the number of tasks. Can we
only work in this way? The GPU can do all the tasks, but each thread will do several tasks, and monitor when
they should stop. We simply have to have each kernel execute an appropriate while loop til all the tasks are
assigned. Assuming that both blocks and threads are scalars, a kernel that simply prints the id T of each task
between 0 and N-1 would be:

i = threadIdx.x;

j = blockIdx.x

k = threadIdx.x + blockDim.x * blockIdx.x;

printf ( "K=%d: thread %d, block %d did task", k, i, j );

t = k;

while ( t < n )

{

printf ( " %d", t );

t = t + blockDim.x * gridDim.x; <-- here, gridDim.x is the number of blocks

}

printf ( "\n" );

where we have made sure to pass into the kernel the value of N. Let’s suppose we want to do 37 tasks, but for
whatever reason, we want to use blocks=2 and threads=5. The output from the kernel would be:

K=0: thread 0, block 0 did task 0 10 20 30

K=1: thread 1, block 0 did task 1 11 21 31

K=2: thread 2, block 0 did task 2 12 22 32

K=3: thread 3, block 0 did task 3 13 23 33

8



K=4: thread 4, block 0 did task 4 14 24 34

K=5: thread 0, block 1 did task 5 15 25 35

K=6: thread 1, block 1 did task 6 16 26 36

K=7: thread 2, block 1 did task 7 17 27

K=8: thread 3, block 1 did task 8 18 28

K=9: thread 4, block 1 did task 9 19 29

which shows that every task gets done, in a roughly even and regular way.

Notice that the exact same code will work correctly for any value of N, including 3 (small), 10 (just right), and
37 (too big). Moreover, it will work even if we change blocks and threads.

This means that we are free to choose the configuration of blocks and threads to take advantage of the capabilities
of our GPU, and, perhaps, of the peculiarities of our task size N.

13 Exercise: cuda tasks.c

The C program in the file cuda tasks.c shows how CUDA will deal with N tasks, for a given configuration of blocks
and threads. Now we must realize that CUDA allows both blocks and threads to be 3D arrays.

You can compile this C program interactively, and run it to simulate the properties of a job using 2 blocks, 5
threads, and 37 tasks:

gcc -o cuda_tasks cuda_tasks.c

./cuda_tasks 2 1 1 5 1 1 37

In general, for a block configuation bx,by,bz and thread configuration tx,ty,tz and tasks N, we would write

./cuda_tasks bx by bz tx ty tz n

to see how CUDA would organize the operation.

What happens for these sets of blocks, threads and tasks? (Just input numbers, not commas or parentheses!)

• (1, 1, 1), (1, 1, 1), 23;
• (2, 3, 1), (2, 1, 4), 40;
• (1, 1, 1), (2, 2, 2), 23;

14 Background: Choosing Blocks or Threads based on Problem Size N

Most of our examples have been written knowing in advance the value of N. If we wish to generate exactly N

threads, then it was easy to choose values of blocks and threads whose product was N. But to take advantage of
thread or SIMD parallelism on the GPU’s, it’s good to use a small but reasonable value for threads such as 16
or 32. We want blocks to be large enough to guarantee that we generate at least N threads in total. The value
N/threads will actually be slightly too small, unless N happens to be exactly divisible by threads. The way to
set blocks is to use a formula like this:

blocks =
N − 1 + threads

threads
= 1 +

N − 1

threads

See that, if we have fixed threads=5, the formula chooses blocks to match any given value of N:

N 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

blocks 1 1 1 1 1 2 2 2 2 2 3 3 3 ...

total threads 5 5 5 5 5 10 10 10 10 10 15 15 15 ...
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15 Background: Multidimensional Blocks and Threads

Sometimes it can be convenient to have multidimensional block and thread arrays.

• the array (which can be 1D, 2D, or 3D) must be declared using the CUDA datatype dim3, as in

dim3 blocks ( 3, 5 ); <-- Notice these are PARENTHESES, not CURLY BRACKETS!

dim3 blocks ( 3, 5, 7 );

dim3 threads ( 2, 4 );

dim3 threads ( 2, 4, 8 );

• the block indices are stored in blockIdx.x, blockIdx.y, blockIdx.z and the values of blocks are in
gridDim.x, gridDim.y, gridDim.z;
• the thread indices are stored in threadIdx.x, threadIdx.y, threadIdx.z and the values of threads are

in blockDim.x, blockDim.y, blockDim.z;
• the kernel index K has the formula:

k =threadIdx.x

+blockDim.x ∗ threadIdx.y

+blockDim.x ∗ blockDim.y ∗ threadIdx.z]

+blockDim.x ∗ blockDim.y ∗ blockDim.z ∗ blockIdx.x

+blockDim.x ∗ blockDim.y ∗ blockDim.z ∗ gridDim.x ∗ blockIdx.y

+blockDim.x ∗ blockDim.y ∗ blockDim.z ∗ gridDim.x ∗ gridDim.y ∗ blockIdx.z

If a dimension has extent 1, then the only id value is zero, and so that term drops out of the formula. This is why,
when blocks = 2 and threads=5, only the first and fourth terms survive, and the formula simplifies to:

k = threadIdx.x + blockDim.x ∗ blockIdx.x = threadIdx.x + 5 ∗ blockIdx.x
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