
FEniCS, part I

M. M. Sussman
sussmanm@math.pitt.edu

Office Hours: 11:10AM-12:10PM, Thack 622

May 12 – June 19, 2014

1 / 79

Topics

Introduction

Tutorial examples

Solvers and preconditioners
Direct solvers
Conjugate Gradients
Parallel computing
Preconditioning
Nonlinear solvers

2 / 79

FEniCS is a collection of “components.”

1. You write a script in high-level Python
I Uses UFL form language
I Can use numpy, scipy, matplotlib.pyplot, etc.
I Can use Viper for plotting

2. DOLFIN interprets the script
3. UFL is passed to FFC for compilation
4. Instant turns it into C++ callable from Python (“swig”)
5. Linear algebra is passed to PETSc or UMFPACK

3 / 79

Other capabilities

I You can write your script in C++
I Other components are also available.
I Other linear algebra backends

4 / 79

DOLFIN classes

I x = Vector()
I A = Matrix()
I solve(A, x, b)
I Eigenvalues via SLEPc
I Newton solver for nonlinear equations

I You write a class defining the problem and Jacobian
I newton_solver = NewtonSolver()
I newton_solver.solve(...)

I Several mesh-generation commands
I Automated mesh-generation is available
I Meshes can come from files
I Easy to write files for ParaView plotting

5 / 79

Linear Algebra and parallel computing

I Linear algebra is where the “rubber meets the road”
I Real problems need good solvers
I Good solvers must be used intelligently
I Parallel operation is mostly transparent
I PETSc (plus add-ons SUPERLU, etc.)
I Trilinos

6 / 79

Topics

Introduction

Tutorial examples

Solvers and preconditioners
Direct solvers
Conjugate Gradients
Parallel computing
Preconditioning
Nonlinear solvers

7 / 79

Resources

I FEniCS book, Chapter 1
I dolfin-get-demos

I Creates directory $HOME/dolfin-demos, but I changed it to
$HOME/fenics-demos for you

I Demo files in it
I Move it to where you like, if you like

I Examples for this course on my web pages.

8 / 79

Example 1: Poisson equation

I First tutorial example (d1_p2d.py)
I Poisson equation in 2D

−∆u = −∂
2u
∂x2

0
− 2

∂2u
∂x2

1
= −6

I Dirichlet boundary conditions

uD = 1 + x2
0 + 2x2

1

I The solution is u = 1 + x2
0 + x2

1

9 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

Always start with this

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

I Mesh on [0,1]× [0,1]

I Uniform 6 cells in x0, 4 in x1

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

Linear Lagrange shape functions

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

I “Expression” causes a
compilation

I “Calling FFC just-in-time (JIT)
compiler, this may take some
time.”

I x is a “global variable”

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

I on_boundary is a “global”
variable

I Value is True or False
I This is how b.c. are usually

done

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

I Set Dirichlet b.c.
I Can be more than one

boundary
I u0_boundary is used

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

I This is UFL
I Specify weak form
I “Calling FFC just-in-time (JIT)

compiler, this may take some
time.”

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

Define trial and test function
spaces

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

Define L(v) =
∫

f (x)v(x) dx with
f = −6

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

Define a(u, v) =
∫
∇u · ∇v dx

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

nabla_grad(u) is ∂ui/∂xj while
grad is its transpose. For scalars
in Python, they agree, not
otherwise.

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

u is redefined as a Function
instead of TrialFunction

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

Solve the system
L(v) = a(u, v) ∀v subject to
boundary conditions.

10 / 79

example1.py

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u,interactive=True)
plot(mesh,interactive=True)

I Plot u and mesh in two
frames.

I interactive=True causes
the plot to remain displayed
until destroyed by mouse.

I Can also put
interactive() at the end.

10 / 79

ParaView plotting

Add code:

if True:
Dump solution to file in VTK format
file = File(’poisson.pvd’)
file « u

DEMONSTRATION

11 / 79

example2.py: like FEM1D

I Change mesh definition to mesh=UnitIntervalMesh(5),
nothing else!

I Get Poisson equation in 1D!
I Eliminate Dirichlet b.c.
I Modify weak form

12 / 79

Code comparison

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(6, 4)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), \

nabla_grad(v))*dx

L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

from dolfin import *

Create mesh and define function space
N=10
mesh = UnitIntervalMesh(N)
V = FunctionSpace(mesh, ’Lagrange’, 2)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression(’x[0]+2’)
a = (-inner(nabla_grad(u), nabla_grad(v)) \

+ 2*grad(u)[0]*v \
+ u*v)*dx

L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u)

13 / 79

Compare with exact solution

exact for comparison
exact=Expression("(1+x[0])*exp(1-x[0])+x[0]*(1-exp(-x[0]))")

Expression uses C++ syntax! Use pow(a,b)
instead of a**b!

let’s get coordinates, x, at the DOF locations
exF = Expression("x[0]")
exvector = interpolate(exF,V).vector().get_local()

remember that u and exact are functions
sumsq0=0.
sumsq1=0.
for i in range(exvector.size):

print "x=", exvector[i], " u=", u(exvector[i]), \
" uexact=", exact(exvector[i])

sumsq0+=(u(exvector[i])-exact(exvector[i]))**2
sumsq1+=u(exvector[i])**2

sumsq0 = sqrt(sumsq0)
sumsq1 = sqrt(sumsq1)
relerr0 = sumsq0/sumsq1

print "N=",N," relative 2-norm error=",relerr0

14 / 79

Compare with exact solution

exact for comparison
exact=Expression("(1+x[0])*exp(1-x[0])+x[0]*(1-exp(-x[0]))")

let’s get coordinates, x, at the DOF locations
exF = Expression("x[0]")
exvector = interpolate(exF,V).vector().get_local()

remember that u and exact are functions
sumsq0=0.
sumsq1=0.
for i in range(exvector.size):

print "x=", exvector[i], " u=", u(exvector[i]), \
" uexact=", exact(exvector[i])

sumsq0+=(u(exvector[i])-exact(exvector[i]))**2
sumsq1+=u(exvector[i])**2

sumsq0 = sqrt(sumsq0)
sumsq1 = sqrt(sumsq1)
relerr0 = sumsq0/sumsq1

print "N=",N," relative 2-norm error=",relerr0

14 / 79

Compare with exact solution

exact for comparison
exact=Expression("(1+x[0])*exp(1-x[0])+x[0]*(1-exp(-x[0]))")

let’s get coordinates, x, at the DOF locations
exF = Expression("x[0]")
exvector = interpolate(exF,V).vector().get_local()

remember that u and exact are functions
sumsq0=0.
sumsq1=0.
for i in range(exvector.size):

print "x=", exvector[i], " u=", u(exvector[i]), \
" uexact=", exact(exvector[i])

sumsq0+=(u(exvector[i])-exact(exvector[i]))**2
sumsq1+=u(exvector[i])**2

sumsq0 = sqrt(sumsq0)
sumsq1 = sqrt(sumsq1)
relerr0 = sumsq0/sumsq1

print "N=",N," relative 2-norm error=",relerr0
14 / 79

Convergence in Example2

N= 10 relative 2-norm error= 3.21246743999e-07
N= 20 relative 2-norm error= 2.01845561365e-08
N= 40 relative 2-norm error= 1.23303254663e-09
N= 80 relative 2-norm error= 9.04294475874e-11

Looks like O(h4), faster than theory. Probably because mesh is
uniform.

15 / 79

Printing the solution

I Code for printing solution and computing error is complicated
I If not printing, don’t need coordinates
I could just do:

import scipy.linalg as la
u_array = u.vector().array()
u_e = interpolate(exact, V)
u_e_array = u_e.vector().array()
relerr1 = la.norm(u_e_array - u_array) / \

la.norm(u_e_array)
print "N=",N," relative 2-norm error=",relerr1

16 / 79

3D is just as easy, example3.py

I Change the Mesh to UnitCubeMesh
I Change the solver

17 / 79

Exercise 14 (5 points)

example3 is a 3D Poisson equation for which the solution is known.
Add code similar to the 1D code in example2 to compute the error
as the norm ‖u − uexact‖/‖uexact‖ and print it at the end of the
program. Be sure you are using quadratic Lagrange elements, and
your error should be of roundoff size because the exact solution is in
the approximation space.

18 / 79

The curse of dimensionality

I Solving 50 1D
I 101× 101 system with 401 nonzeros
I Essentially no time to solve using default LU solver

I Solving 50× 50 2D
I 2601× 2601 system, 17801 nonzeros
I Less than 0.1 sec using default LU solver.

I Solving 50× 50× 50 system 3D
I 132, 651× 132, 651 system
I 1,927,951 nonzeros
I Out of memory with default LU solver (UMFPACK)
I Conjugate gradient with block jacobi (ilu) preconditioner
I Less than a second to solve on my laptop

19 / 79

Higher accuracy costs you

I Solving 50× 50× 50 system 3D, linear Lagrange
I 132, 651× 132, 651 system
I 1,927,951 nonzeros
I Conjugate gradient with block jacobi (ilu, “preonly”) preconditioner
I Less than a second to solve on my laptop

I Solving 50× 50× 50 system 3D, quadratic Lagrange
I 1, 030, 301× 1, 030, 301 system
I 29,096,201 nonzeros
I Conjugate gradient with block jacobi (ilu, “preonly”) preconditioner
I 16.5 seconds to solve on my laptop (109 iterations)
I 10 seconds to solve using 2 processors (120 iterations)

20 / 79

Topics

Introduction

Tutorial examples

Solvers and preconditioners
Direct solvers
Conjugate Gradients
Parallel computing
Preconditioning
Nonlinear solvers

21 / 79

Topics

Introduction

Tutorial examples

Solvers and preconditioners
Direct solvers
Conjugate Gradients
Parallel computing
Preconditioning
Nonlinear solvers

22 / 79

Why did LU run out of memory?

x x x
x x x

x

x
x x x

x x

x
x x x

x x x

x
x x x

x x x

x
x

x x x

x x x

x x x

x

x x x

x x x

x x

x

x x x

x x x

x

x

x x x

x x x
x

x x x

x x

23 / 79

Why did LU run out of memory?

x x x
x x x x x

x x x x x x
x x x x x x x

x x x x x x x
x x x x x x x x x x

x x x x x x x x x
x x x x x x x x

x x x x x x x
x x x x x x

23 / 79

Some memory numbers

I N × N square mesh
I Matrix is N2 × N2, half-bandwidth N
I N3 nonzeros each factor

I N × N × N cube mesh
I Matrix is N3 × N3, half-bandwidth N2

I N5 nonzeros each factor

24 / 79

Direct or iterative?

I 1D or 2D problem: direct solver
I Maybe run into trouble with large 2D problems
I 3D: debug with direct, go with iterative

25 / 79

Topics

Introduction

Tutorial examples

Solvers and preconditioners
Direct solvers
Conjugate Gradients
Parallel computing
Preconditioning
Nonlinear solvers

26 / 79

Conjugate Gradient algorithm

Given SPD matrix A, initial guess x0

r0 = b − Ax0

d0 = r0

for n in range(itmax):
αn−1 = (dn−1, rn−1)/(dn−1,Adn−1) = (rn, rn)/(dn,Adn)

xn = xn−1 + αn−1dn−1

rn = b − Axn = rn−1 − αn−1Adn−1

if converged:
return x

βn = (rn, rn)/(rn−1, rn−1)

dn = rn + βndn−1

27 / 79

Solution as minimization

I Solving Ax = b is the same as
I Minimizing ‖Ax − b‖2 is the same as
I Minimizing 2(Ax , x)− (b, y) (SPD A)
I Finding (Ax , y) = (b, y), ∀y

28 / 79

Iteration as successive minimization
I If A is N × N SPD and a sequence of subspaces

K n ⊂ ‘RN

is available.
I An iteration can be defined as

xn = min
x∈K n

(2(Ax , x)− (b, x)).

I Clearly, this will converge in N or fewer steps.
I Given an initial vector x0, you can define a sequence of “Krylov”

spaces with r0=Ax0 − b with

rn ∈ r0 + span{Ar0,A2r0, . . . ,Anr0}, and

en ∈ e0 + span{Ar0,A2r0, . . . ,Anr0}

where en = xn − x∞.

29 / 79

CG as minimization

I Amazing! CG defined earlier satisfies
I ‖rn‖A−1 = minr∈K n ‖r‖A−1

I ‖en‖A = mine∈K n ‖e‖A

I J(x) = (Ax , x)− (b, x), then J(xn) = minx∈K n J(x)

I Furthermore,

(r k , r j) = 0, k 6= j

(dk ,d j)A = 0, k 6= j

I Proofs are by induction.

30 / 79

Consequences of CG

I Orthogonality relations =⇒ Anr0 independent
I Sensitive to roundoff error
I Still rapidly convergent

31 / 79

Important observations

I Never need anything from the matrix except the product Ax
I Sharp contrast with factorization methods.
I “Matrix-free” methods: elementwise multiplication

32 / 79

What if not SPD?

I Replace “automatic orthogonality” with Gram-Schmidt
I GMRES
I Cannot store all the iterates
I “Restart” every 30 or so iterations.

There are many other possibilities, too

33 / 79

How do I know when to stop iterating?

I Watch ‖rn‖ and/or ‖xn − xn−1‖
I Rates are important

I Ideally, ‖xn+1 − xn‖/‖xn − xn−1‖ → ρ < 1
I Then ‖xn+1 − x∞‖ ≈ ‖xn+1 − xn‖/(1− ρ)

I Domain-specific knowledge to estimate condition number
I “Model” problems give guidance

34 / 79

Solution methods in FEniCS

list_linear_solver_methods()

Solver description
default default linear solver (UMFPACK)
umfpack UMFPACK
mumps MUMPS
petsc PETSc builtin LU solver
cg Conjugate gradient
gmres Generalized minimal residual
minres Minimal residual
tfqmr Transpose-free quasi-minimal residual
richardson Richardson
bicgstab Biconjugate gradient stabilized

I UMFPACK: Unsymmetric MultiFrontal sparse LU factorization
I MUMPS: MUltifrontal Massively Parallel Sparse direct Solver

35 / 79

Topics

Introduction

Tutorial examples

Solvers and preconditioners
Direct solvers
Conjugate Gradients
Parallel computing
Preconditioning
Nonlinear solvers

36 / 79

References on parallel computing

Three texts are recommended. All are excellent sources.
I William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI,

Portable Parallel Programming with the Message-Passing
Interface, Second Edition, MIT Press, Cambridge, MA, 1999,
ISBN 0-262-57134-X.

I Ian Foster, Designing and Building Parallel Programs,
Addison-Wesley, 1994.
http://www-unix.mcs.anl.gov/dbpp/text/book.html

I Craig C. Douglas, Gundolf Haase, Ulrich Langer, A Tutorial on
Elliptic PDE Solvers and Their Parallelization, SIAM,
Philadelphia, PA, 2003, ISBN 0-89871-541-5

37 / 79

http://www-unix.mcs.anl.gov/dbpp/text/book.html

Computers are never big enough or fast enough!
I Moore’s Law: Chip density doubles every 18 months.
I Speed increases with chip density in part because signals have

less distance to travel.
I Even with PCs, the faster the CPU chip, the more stuff you cram

into the operating system.
I When you run a problem, you always pick it so that it includes

everything you can think of but runs in acceptable time. In order
to do so, you always leave something out. Some problems end
up being perhaps ten times too small, others end up being 107

times too small.
I Daily weather forcasts must run in less than a day. If you get a

new computer and it is twice as fast, you increase your local
coverage just far enough so it runs in just less than a day. You
get more accuracy, but you still miss things.

I Some problems (turbulent fluid flow) require mesh sizes small
enough to resolve the turbulence details (fraction of a millimeter)
but enough mesh elements to cover, say, a whole airplane (tens
of meters).

38 / 79

Hook a bunch of computers together

I Gropp, Lusk, Skjellum: “To pull a bigger wagon, it is easier to add
more oxen than to grow a gigantic ox.” This is true even when
oxen double in capacity every eighteen months.

I The fastest and most advanced single-CPU computers are the
most expensive, too. (ibid., “Large oxen are expensive.”)

I Why not hook a bunch of smaller, cheaper computers together
and have them all work together?

I Good idea! Except how can you make them all work together?
I Parallel computing.

39 / 79

There are two major classes of parallel computer

1. Shared memory
2. Distributed memory

40 / 79

Classification by memory access: shared memory

A “shared memory” parallel
computer (SMP) is a set of
CPUs, all sharing the same
memory space.

'
&

$
%

memory CPUCPU

CPUCPU

CPUCPU

CPU

CPU

Current “multi-core” chips have adopted this architecture with several
cpus on a single chip, all accessing the same memory.

41 / 79

Advantages and disadvantages of shared memory
(following Douglas, Haase, Langer)

+ Each process has access to all the data.
+ Sequential code can easily be ported.
+ Speedup factors of a few 10s
- Memory bandwidth per CPU can suffer.
- Cache-coherence is a stumbling block.
- Poor scalability
- Memory subsystem is very expensive.

42 / 79

Shared memory for you

I Today, numerical libraries are optimized to use several
processors (cores) if available.

I You don’t have to do much yourself to take advantage of them.

43 / 79

Classification by memory access: distributed memory

Ideally speaking, a “distributed memory” parallel computer is a set of
serial computers connected together with a communication facility
such as a network:

qb������

�
��

qb������

�
��

qb������

�
��

p p p qb������

�
��

0 1 2 N

Fast computational network

r r r r

qb������

���r
r Front end node

Public network

44 / 79

Advantages and disadvantages of distributed memory
(from Douglas, Haase, Langer)

+ There are no access conflicts since all data is locally stored.
+ Inexpensive hardware. (Network)
+ Code for such computers scales very well.
+ Need more memory? Buy another node!
- Sequential code does not run because one processor cannot

see another’s data.
- Special parallel code is difficult.
I The ratio between arithmetic and communication must be

balanced.
I Packages such as PETSc can do much of the work for you.

45 / 79

“Message passing” computing model

I Very like distributed memory computer
I Easily implemented on shared memory computers
I Each process has local memory and a way to send data to

others.
I Data transfer requires cooperation between sender and receiver.

46 / 79

“Single Program Multiple Data”

I Same program runs on all processors
I Relatively few special cases

47 / 79

Message Passing Interface (MPI) (Foster, Chapter 8)

I Set of Fortran (C, C++) subroutines to implement message
passing.

I Not ISO/ANSI standard because of the cost, but is standardized.
I http://www.mpi-forum.org for standards
I http://www-unix.mcs.anl.gov/mpi/www for descriptions

of all MPI functions and subroutines.
I MPI: The Complete Reference by Marc Snir, Steve Otto, Steven

Huss-Lederman, David Walker, and Jack Dongarra is at
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

I William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI,
Portable Parallel Programming with the Message-Passing
Interface, Second Edition, MIT Press, Cambridge, MA, 1999,
ISBN 0-262-57134-X.

48 / 79

http://www.mpi-forum.org
http://www-unix.mcs.anl.gov/mpi/www
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

MPI Basics

MPI.COMM_WORLD Communications group
comm.Get_size() Get the number of processors
comm.Get_rank() Get the rank (number) of this process
comm.Barrier() Synchronize processes

49 / 79

MPI sending and receiving

comm.Send(ndarray,dest,tag)
Send a message

comm.Recv(ndarray,source,tag)
Receive a message (wait)

comm.Bcast(ndarray,root)
Broadcast data from root to all processes

comm.Reduce(ndarray to send,ndarray to recv,op,root)
Arithmetic reduction over all processes

50 / 79

My first parallel program

Here is a program to print “Hello world” from each process running in
parallel.

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

print "hello from process ",rank," of total of ",size

Get MPI module

51 / 79

My first parallel program

Here is a program to print “Hello world” from each process running in
parallel.

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

print "hello from process ",rank," of total of ",size

Use all available processes

51 / 79

My first parallel program

Here is a program to print “Hello world” from each process running in
parallel.

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

print "hello from process ",rank," of total of ",size

What is the number of this process?

51 / 79

My first parallel program

Here is a program to print “Hello world” from each process running in
parallel.

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

print "hello from process ",rank," of total of ",size

What is the total number of processes?

51 / 79

My first parallel program

Here is a program to print “Hello world” from each process running in
parallel.

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

print "hello from process ",rank," of total of ",size

Each process prints something!

51 / 79

Run it

$ python mpihello.py
hello from process 0 of total of 1

$ mpirun -np 2 python mpihello.py
hello from process 0 of total of 2
hello from process 1 of total of 2

$ mpirun -np 4 python mpihello.py
hello from process 2 of total of 4
hello from process 3 of total of 4
hello from process 0 of total of 4
hello from process 1 of total of 4

$ mpirun -np 4 python mpihello.py
hello from process 0 of total of 4
hello from process 3 of total of 4
hello from process 1 of total of 4
hello from process 2 of total of 4

52 / 79

Run it

$ python mpihello.py
hello from process 0 of total of 1

$ mpirun -np 2 python mpihello.py
hello from process 0 of total of 2
hello from process 1 of total of 2

$ mpirun -np 4 python mpihello.py
hello from process 2 of total of 4
hello from process 3 of total of 4
hello from process 0 of total of 4
hello from process 1 of total of 4

$ mpirun -np 4 python mpihello.py
hello from process 0 of total of 4
hello from process 3 of total of 4
hello from process 1 of total of 4
hello from process 2 of total of 4

52 / 79

Run it

$ python mpihello.py
hello from process 0 of total of 1

$ mpirun -np 2 python mpihello.py
hello from process 0 of total of 2
hello from process 1 of total of 2

$ mpirun -np 4 python mpihello.py
hello from process 2 of total of 4
hello from process 3 of total of 4
hello from process 0 of total of 4
hello from process 1 of total of 4

$ mpirun -np 4 python mpihello.py
hello from process 0 of total of 4
hello from process 3 of total of 4
hello from process 1 of total of 4
hello from process 2 of total of 4

52 / 79

Run it

$ python mpihello.py
hello from process 0 of total of 1

$ mpirun -np 2 python mpihello.py
hello from process 0 of total of 2
hello from process 1 of total of 2

$ mpirun -np 4 python mpihello.py
hello from process 2 of total of 4
hello from process 3 of total of 4
hello from process 0 of total of 4
hello from process 1 of total of 4

$ mpirun -np 4 python mpihello.py
hello from process 0 of total of 4
hello from process 3 of total of 4
hello from process 1 of total of 4
hello from process 2 of total of 4

52 / 79

Remarks on mpi_hello.py

mpirun -np 4 python mpi_hello.py
I 4 separate copies of python
I Variable rank is distinct on each copy
I No order of execution

53 / 79

Approximating π with numerical integration

The value of π can be found many different ways. One way is to
compute the integral

I =

∫ 1

0

4
1 + x2 dx = 4 tan−1(1)

by some numerical method, such as the rectangle rule with n intervals

I ≈
n∑

i=1

4h
1 + x2

i

where h = 1/n and xi = h(2i − 1)/2.

54 / 79

A parallel program for approximating π

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

NumIntervals = 100000

h = 1.0/NumIntervals
myPieceOfPi = np.array([0.0])
for i in range(rank,NumIntervals,size):

x= h * (i - 0.5) #center of interval
myPieceOfPi += 4.0*h / (1.0 + x**2)

wholePi = np.empty(1)
comm.Reduce(myPieceOfPi, wholePi, op=MPI.SUM, root=0)

if rank == 0:
print "Pi=", wholePi, " error=", np.abs(wholePi - np.pi)

Splits up the work among size processes

55 / 79

A parallel program for approximating π

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

NumIntervals = 100000

h = 1.0/NumIntervals
myPieceOfPi = np.array([0.0])
for i in range(rank,NumIntervals,size):

x= h * (i - 0.5) #center of interval
myPieceOfPi += 4.0*h / (1.0 + x**2)

wholePi = np.empty(1)
comm.Reduce(myPieceOfPi, wholePi, op=MPI.SUM, root=0)

if rank == 0:
print "Pi=", wholePi, " error=", np.abs(wholePi - np.pi)

Sum individual myPieceOfPi into wholePi

55 / 79

A parallel program for approximating π

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

NumIntervals = 100000

h = 1.0/NumIntervals
myPieceOfPi = np.array([0.0])
for i in range(rank,NumIntervals,size):

x= h * (i - 0.5) #center of interval
myPieceOfPi += 4.0*h / (1.0 + x**2)

wholePi = np.empty(1)
comm.Reduce(myPieceOfPi, wholePi, op=MPI.SUM, root=0)

if rank == 0:
print "Pi=", wholePi, " error=", np.abs(wholePi - np.pi)

I Only want one print
I Only valid on processor 0 anyhow

55 / 79

A parallel program for approximating π

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

NumIntervals = 100000

h = 1.0/NumIntervals
myPieceOfPi = np.array([0.0])
for i in range(rank,NumIntervals,size):

x= h * (i - 0.5) #center of interval
myPieceOfPi += 4.0*h / (1.0 + x**2)

wholePi = np.empty(1)
comm.Reduce(myPieceOfPi, wholePi, op=MPI.SUM, root=0)

if rank == 0:
print "Pi=", wholePi, " error=", np.abs(wholePi - np.pi)

Variables in messages need to be contiguous arrays

55 / 79

mpi_pi_sr.py with sends and receives
It is far more common to send and receive messages than to
broadcast them. The following example replaces the reduce with
sends and receives.

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

NumIntervals = 100000

h=1.0/NumIntervals
myPieceOfPi=np.array([0.0])
for i in range(rank,NumIntervals,size):

x=h*(i-0.5) #center of interval
myPieceOfPi+=4.0*h/(1.0+x**2)

leader=0
if rank == leader:

assuming leader is 0,
wholePi = myPieceOfPi.copy()
for n in range(1,size):

comm.Recv(myPieceOfPi,source=n)
wholePi += myPieceOfPi

print "Pi=",wholePi," error=",np.abs(wholePi-np.pi)
else:

comm.Send(myPieceOfPi,dest=leader)

Each worker sends result to
leader.

56 / 79

mpi_pi_sr.py with sends and receives
It is far more common to send and receive messages than to
broadcast them. The following example replaces the reduce with
sends and receives.

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

NumIntervals = 100000

h=1.0/NumIntervals
myPieceOfPi=np.array([0.0])
for i in range(rank,NumIntervals,size):

x=h*(i-0.5) #center of interval
myPieceOfPi+=4.0*h/(1.0+x**2)

leader=0
if rank == leader:

assuming leader is 0,
wholePi = myPieceOfPi.copy()
for n in range(1,size):

comm.Recv(myPieceOfPi,source=n)
wholePi += myPieceOfPi

print "Pi=",wholePi," error=",np.abs(wholePi-np.pi)
else:

comm.Send(myPieceOfPi,dest=leader)

Leader receives messages from
other processes in order, then
prints combined result.

56 / 79

mpi_pi_sr.py with sends and receives
It is far more common to send and receive messages than to
broadcast them. The following example replaces the reduce with
sends and receives.

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

NumIntervals = 100000

h=1.0/NumIntervals
myPieceOfPi=np.array([0.0])
for i in range(rank,NumIntervals,size):

x=h*(i-0.5) #center of interval
myPieceOfPi+=4.0*h/(1.0+x**2)

leader=0
if rank == leader:

assuming leader is 0,
wholePi = myPieceOfPi.copy()
for n in range(1,size):

comm.Recv(myPieceOfPi,source=n)
wholePi += myPieceOfPi

print "Pi=",wholePi," error=",np.abs(wholePi-np.pi)
else:

comm.Send(myPieceOfPi,dest=leader)

Without copy(), there is a bug.

56 / 79

Comments on mpi_pi_sr.py

I Note that we have size-1 sends in an explicit loop, but the
same number of receives are not in a loop. The sends and
receives must come in pairs.

I If you try to receive a message you have not sent, the receiving
process will “block” until the message is sent (possibly forever).

I You will not notice if an extra message is sent.
I If one of the MPI functions fails and its process stops, the other

processes won’t automatically know about it. Ultimately, the
processes will end up waiting for messages the stopped process
never sends.

57 / 79

Exercise 15 (10 points)

Write mpi4py program that runs with two processes. Have process 0
first print the word “ping” and then send a message to process 1.
When process 1 gets its message, have it print the word “pong” and
send a message back to process 0. Repeat the cycle 5 times. The
output should be the words “ping” and “pong” in sequence, 5 times.

58 / 79

Topics

Introduction

Tutorial examples

Solvers and preconditioners
Direct solvers
Conjugate Gradients
Parallel computing
Preconditioning
Nonlinear solvers

59 / 79

Preconditioning

I Instead of solving Ax = b, solve M−1Ax = M−1b
I Really solving (M−1AM)(M−1x) = M−1b
I Pick M−1 “close to” A−1

I Can substantially reduce the number of iterations
I M−1 must be “easy” to gain anything

60 / 79

ICCG

I Suppose A is SPD
I A Cholesky factorization A = LLT exists where L is

lower-triangular
I Lower-triangular matrices are easy to invert
I Fill-in eats you up
I Only keep entries in L corresponding to nonzeros in A (HOW?)
I “Incomplete” Cholesky
I Use it if you can!

61 / 79

Preconditioned CG

Given a SPD matrix A, preconditioner M, initial guess vector x0, right
side vector b, and maximum number of iterations itmax

r0 = b − Ax0

Solve Md0 = r0

z0 = d0

for n in range(itmax):
αn = (rn, zn)/(dn,Adn)

xn+1 = xn + αndn

rn+1 = b − Axn+1

if converged:
return x

Solve Mzn+1 = rn+1

βn+1 = (rn+1, zn+1)/(rn, zn)

dn+1 = zn+1 + βn+1dn

I Solve Mz = r iteratively
I Iterations inside iterations

62 / 79

Preconditioners in parallel context

I Problem partitioned generally reside on single processor
I Common preconditioner strategy: respect the parallel partitioning
I “Block Jacobi” preconditioning
I “Additive Schwarz” preconditioning

63 / 79

How does Block Jacobi preconditioning work?

Suppose there are 3 processes. Write M as

M =

 M11 M12 M13
M21 M22 M23
M31 M32 M33

Block Jacobi iteration is M11 0 0

0 M22 0
0 0 M33

 X n+1
1

X n+1
2

X n+1
3

 =

 0 M12 M13
M21 0 M23
M31 M32 0

 X n
1

X n
2

X n
3

+

 B1
B2
B3

64 / 79

On each process, solve a system

I Off-process variables are computed once each iteration
I Diagonal block Mkk equations are solved
I All solver arithmetic is on-block
I Might not solve with Mkk but with an incomplete factorization
I bjacobi using ilu (default in FEniCS)
I Additive Schwarz is similar
I Native PETSc precondioners respect the partitioning

65 / 79

Alternating Schwarz method

I Want to solve N × N system Au = f
I Decompose whole domain into J overlapping sub-domains.
I Diagonal block on domain j is n × n matrix Aj

I Split iteration into steps

u(n+j/J) = u(n+(j−1)/J) + RT
j A−1

j Rj (f − Au(n+(j−1)/J))

where Rj represents the restriction to domain j .
I Whole step can be written

u(j+1) = u(j) + M−1(f − Au(j))

I “Multiplicative Schwarz” method amounts to

M−1
MS = [I −

∏
j

(I − RT
j A−1

j RjA)]A−1

66 / 79

Visualizing overlapping blocks

Imagine a long problem broken horizontally into overlapping blocks
with each block assigned to a processor.

r r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r rr r r r r r r r r r r r r r r r r r r r

r r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r r

r r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r r

r r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r r�
���

�
��� 66 66

@
@@I

@
@@I

67 / 79

Additive Schwarz theory

I Additive Schwarz
M−1

AS =
∑

j

RT
j A−1

j Rj

I Won’t usually converge because common (overlapping) values
updated repeatedly

I Restricted Additive Schwarz

M−1
RAS =

∑
j

R
T
j A−1

j Rj

I Makes sense either with subdomains defined physically or
according to parallel data distribution

I Amount of overlap can be a parameter.
I Overlapped points often called “ghost” points in the redundant

block.

68 / 79

Other preconditioners

I Multigrid
I Presented later

I Incomplete LU across all processes

69 / 79

Preconditioners in FEniCS

list_krylov_solver_preconditioners()

preconditioner name
default default preconditioner (bjacobi + ilu)
none No preconditioner
ilu Incomplete LU factorization
icc Incomplete Cholesky factorization
sor Successive over-relaxation
petsc_amg PETSc algebraic multigrid
jacobi Jacobi iteration
bjacobi Block Jacobi iteration
additive_schwarz Additive Schwarz
amg Algebraic multigrid
hypre_amg Hypre algebraic multigrid (BoomerAMG)
hypre_euclid Hypre parallel incomplete LU factorization
hypre_parasails Hypre parallel sparse approximate inverse

70 / 79

Topics

Introduction

Tutorial examples

Solvers and preconditioners
Direct solvers
Conjugate Gradients
Parallel computing
Preconditioning
Nonlinear solvers

71 / 79

Newton’s method

u(k+1) = u(k) − J−1f (u(k))

72 / 79

Quick and dirty derivation

f (u(k) + ∆u)− f (u(k))

∆u
≈ f ′(u(k))

If f were linear, this would be true equality, and the next iterate would
satisfy f (u(k+1)) = f (u(k) + ∆u) = 0. Rearrainging terms gives

∆u = u(k+1) − u(k) = −f (uk)/f ′(u(k))

73 / 79

Facts about Newton iterations

I Convergence is (usually) quadratic: ‖∆u(k+1)‖ ≈ ‖∆u(k)‖2

I “Radius of convergence” can be small
I Must have the Jacobian!

74 / 79

newton.py for Newton iterations

import numpy as np
import scipy.linalg as la
import copy

def ex1(x):
"""
intersection of circle
and parabola
"""
assert(len(x) == 2)
f=np.empty(2)
fprime=np.empty([2,2])
f[0]=x[0]**2+x[1]**2-1.0
f[1]=x[1]-x[0]**2
fprime[0,0]=2.0*x[0]
fprime[0,1]=2.0*x[1]
fprime[1,0]=-2.0*x[0]
fprime[1,1]=1.0
return f,fprime

def newton(f,xin):
"""
Newton’s method
the function f returns the pair (f,fprime)
"""
EPSILON = 1.0e-10
x = copy.deepcopy(xin)
usually converges in <= 100 iterations
for n in range(100):

value,derivative = f(x)
increment = la.solve(derivative,value)
x -= increment
errorEstimate = la.norm(increment)/la.norm(x)
print "errorEstimate = ",errorEstimate
if errorEstimate < EPSILON:

return x,n
assert(False)

y,i = newton(ex1,np.array([10.,10.]))
print "y = ",y," i= ",i

75 / 79

newton.py for Newton iterations

import numpy as np
import scipy.linalg as la
import copy

def ex1(x):
"""
intersection of circle
and parabola
"""
assert(len(x) == 2)
f=np.empty(2)
fprime=np.empty([2,2])
f[0]=x[0]**2+x[1]**2-1.0
f[1]=x[1]-x[0]**2
fprime[0,0]=2.0*x[0]
fprime[0,1]=2.0*x[1]
fprime[1,0]=-2.0*x[0]
fprime[1,1]=1.0
return f,fprime

def newton(f,xin):
"""
Newton’s method
the function f returns the pair (f,fprime)
"""
EPSILON = 1.0e-10
x = copy.deepcopy(xin)
usually converges in <= 100 iterations
for n in range(100):

value,derivative = f(x)
increment = la.solve(derivative,value)
x -= increment
errorEstimate = la.norm(increment)/la.norm(x)
print "errorEstimate = ",errorEstimate
if errorEstimate < EPSILON:

return x,n
assert(False)

y,i = newton(ex1,np.array([10.,10.]))
print "y = ",y," i= ",i

75 / 79

newton.py for Newton iterations

import numpy as np
import scipy.linalg as la
import copy

def ex1(x):
"""
intersection of circle
and parabola
"""
assert(len(x) == 2)
f=np.empty(2)
fprime=np.empty([2,2])
f[0]=x[0]**2+x[1]**2-1.0
f[1]=x[1]-x[0]**2
fprime[0,0]=2.0*x[0]
fprime[0,1]=2.0*x[1]
fprime[1,0]=-2.0*x[0]
fprime[1,1]=1.0
return f,fprime

def newton(f,xin):
"""
Newton’s method
the function f returns the pair (f,fprime)
"""
EPSILON = 1.0e-10
x = copy.deepcopy(xin)
usually converges in <= 100 iterations
for n in range(100):

value,derivative = f(x)
increment = la.solve(derivative,value)
x -= increment
errorEstimate = la.norm(increment)/la.norm(x)
print "errorEstimate = ",errorEstimate
if errorEstimate < EPSILON:

return x,n
assert(False)

y,i = newton(ex1,np.array([10.,10.]))
print "y = ",y," i= ",i

75 / 79

newton.py for Newton iterations

import numpy as np
import scipy.linalg as la
import copy

def ex1(x):
"""
intersection of circle
and parabola
"""
assert(len(x) == 2)
f=np.empty(2)
fprime=np.empty([2,2])
f[0]=x[0]**2+x[1]**2-1.0
f[1]=x[1]-x[0]**2
fprime[0,0]=2.0*x[0]
fprime[0,1]=2.0*x[1]
fprime[1,0]=-2.0*x[0]
fprime[1,1]=1.0
return f,fprime

def newton(f,xin):
"""
Newton’s method
the function f returns the pair (f,fprime)
"""
EPSILON = 1.0e-10
x = copy.deepcopy(xin)
usually converges in <= 100 iterations
for n in range(100):

value,derivative = f(x)
increment = la.solve(derivative,value)
x -= increment
errorEstimate = la.norm(increment)/la.norm(x)
print "errorEstimate = ",errorEstimate
if errorEstimate < EPSILON:

return x,n
assert(False)

y,i = newton(ex1,np.array([10.,10.]))
print "y = ",y," i= ",i

75 / 79

newton.py for Newton iterations

import numpy as np
import scipy.linalg as la
import copy

def ex1(x):
"""
intersection of circle
and parabola
"""
assert(len(x) == 2)
f=np.empty(2)
fprime=np.empty([2,2])
f[0]=x[0]**2+x[1]**2-1.0
f[1]=x[1]-x[0]**2
fprime[0,0]=2.0*x[0]
fprime[0,1]=2.0*x[1]
fprime[1,0]=-2.0*x[0]
fprime[1,1]=1.0
return f,fprime

def newton(f,xin):
"""
Newton’s method
the function f returns the pair (f,fprime)
"""
EPSILON = 1.0e-10
x = copy.deepcopy(xin)
usually converges in <= 100 iterations
for n in range(100):

value,derivative = f(x)
increment = la.solve(derivative,value)
x -= increment
errorEstimate = la.norm(increment)/la.norm(x)
print "errorEstimate = ",errorEstimate
if errorEstimate < EPSILON:

return x,n
assert(False)

y,i = newton(ex1,np.array([10.,10.]))
print "y = ",y," i= ",i

75 / 79

Output from newton.py

errorEstimate = 0.990068105443
errorEstimate = 0.961414155537
errorEstimate = 0.860078869547
errorEstimate = 0.586994090496
errorEstimate = 0.214892321847
errorEstimate = 0.0279885646798
errorEstimate = 0.000496297688535
errorEstimate = 1.56654175525e-07
errorEstimate = 1.55344805293e-14

y = [0.78615138 0.61803399] i= 8

76 / 79

Mistake in Jacobian

A mistake in the
Jacobian
destroys quadratic
convergence

J =

(
2x1 2x2
−2x1 x2

)

errorEstimate = 0.990714987357
errorEstimate = 0.968455531242
errorEstimate = 0.934784964882
errorEstimate = 0.776980402552
errorEstimate = 0.491063275932
errorEstimate = 0.212353923457
errorEstimate = 0.0250723487329
errorEstimate = 0.00186382569352
errorEstimate = 0.000328673565462
errorEstimate = 6.79363223176e-05
errorEstimate = 1.39892028329e-05
errorEstimate = 2.88221015768e-06
errorEstimate = 5.9375625e-07
errorEstimate = 1.2232101107e-07
errorEstimate = 2.51994931177e-08
errorEstimate = 5.19138209013e-09
errorEstimate = 1.06948346144e-09
errorEstimate = 2.20325693152e-10
errorEstimate = 4.53895086651e-11
y = [-0.78615138 0.61803399] i= 1877 / 79

Debugging hint

If quadratic convergence is not observed, check that function and
Jacobian are consistent.

78 / 79

Newton is not the only possibility

I Broyden’s method
I Multidimensional generalization of secant
I Superlinear convergence
I Need storage for approximate Jacobian

I Picard iteration (successive substitution)
I Often slow convergence
I Usually linear convergence

79 / 79

	Introduction
	Tutorial examples
	Solvers and preconditioners
	Direct solvers
	Conjugate Gradients
	Parallel computing
	Preconditioning
	Nonlinear solvers

