1 Finite element method exercises

10. (10 points) For the case of piecewise linear trial functions on a uniform mesh of intervals with length h, show by direct calculation that the first stiffness matrix, κ_1 , given in the lecture is

$$\int \phi'_i \phi'_j = \frac{1}{h} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & & -1 & 1 \end{bmatrix}$$

and the second stiffness matrix, κ_2 , is

$$\int \phi_j \phi_j = \frac{h}{6} \begin{bmatrix} 4 & 1 & & \\ 1 & 4 & 1 & \\ & \ddots & \ddots & \ddots \\ & & 1 & 4 & 1 \\ & & & 1 & 2 \end{bmatrix}$$

- 11. (5 points) Complete the code for class Mesh. Be sure to test your code.
- 12. (5 points) Complete the code for FunctionSpace.int_phi. Be sure to test your code.
- 13. (10 points) Construct and run a program to solve the ODE

$$u'' + 2u' + u = f = (x+2)$$

with Neumann boundary conditions. Its exact solution is

$$u = (1+x)e^{1-x} + x(1-e^{-x})$$