
Topics in simulation of vortex shedding
The vortex-shedding examples 16 and 17 (example16.py and example17.py)

include a study of several aspects of vortex-shedding. Topics include:

• Use of P 2 − P 1 Lagrange elements

• Relatively coarse mesh

• Linearized skew-symmetric convection

• Solution methods

Included below are several approaches to studying these issues by investin-
gating alternative or expanded problems. Choose any two of these for your
project.

1 Other elements

Both of the examples use the P 2 − P 1 element pair. This pair is known to be
stable in the Ladyzhenskaya-Babuška-Brezzi sense. Other stable elements are
presented in Chapter 20, where a careful study of the accuracy and efficiency of
several types of elements for solving the Stokes problem is presented.

Consider at least the two elements: Crouzeix-Raviart and lowest-order MINI
elements. Feel free to consider other possibilities as well. Apply them to the
vortex-shedding problem in Example 16, with the mesh used there. You may
have to modify the values of ∆t or ν in order to get a good solution. Consider
the following questions:

1. How many velocity and pressure degrees of freedom does each of the three
methods require?

2. Do they all work with the same values of ∆t and ν?

3. Rank the methods in terms of speed. You can use the Python time module
to measure the total time for a problem. Do not include “JIT” compilation
times when you measure running times.

4. Visually examine the solutions. Do they “look the same”?

5. Generate plots of vertical velocity behind the cylinder versus time, as was
done in the example.

• Do the three elements result in similar plots?

• Do the elements result in the same amplitude of oscillation after
reaching a steady value? If not, rank them.

• Do the elements reach a steady oscillation amplitude in about the
same amount of problem time? If not, rank them.

Do at least one uniform mesh refinement (mesh=refine(mesh)), choosing
the finest mesh you feel you can “afford.” Answer the above questions again
with the finer mesh.
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2 Other solvers

Starting with Example 16 as embodied in example16.py, make the problem
take more time by choosing a final time so that you perform precisely 100 time
steps. Perform enough uniform mesh refinements (mesh=refine(mesh) so that
the overall problem takes several minutes on your computer.

2.1 Krylov solver

The direct (lu) solver used in example16.py arrives at machine accuracy (de-
pending on condition number). Regard this solution as correct, and use the
difference between this solution (at the end of 100 time steps) as a measure of
accuracy. (Error= ‖u− ulu‖/‖ulu‖.)

Solve the same problem using GMRES. What values of convergence criteria
(relative and absolute accuracy) are needed to achieve an error smaller than
10−9? How long does it take? You can use the Python time module to measure
total time, but do not include “JIT” compilation times in your total.

Can you speed up your running time by choosing the previous time step’s
solution as initial guess for this time step’s iteration instead of using a zero
intitial guess?

You have a selection of precondiioners available. Try at least three precondi-
tioners in addition to the default “ilu” preconditioner. Rank them on the basis
of total time.

3 Stability

There are two different methods presented for convection: traditional and skew-
symmetric. You will study the effect of choosing one or the other on stability
of the numerical problem.

The solution in example15.py reaches a “steady” oscillatory solution by
about t = 3 in the problem. Call this the “time to settle down.” You will be
considering the following questions for each of the two methods for convection.

1. How do the “time to settle down” and oscillation amplitude vary as you
increase dt to 0.125?

2. How do the “time to settle down” and oscillation amplitude vary as you
decrease nu to 5.e-5?

3. How do the “time to settle down” and oscillation amplitude vary as you
increase the maximum boundary velocity (Um to 5.0?

4. How do the “time to settle down” and oscillation amplitude vary if you
perform one uniform mesh refinement (mesh=refine(mesh)? If you per-
form two mesh refinements?
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It turns out that the variation of “time to settle down” and amplitude when
two parameters are varied together (e.g., refining the mesh and reducing nu)
can be very interesting. If, for example, reducing nu causes the solution to fail
in some way, refining the mesh might improve matters. Feel free to investigate
further.

4 Higher order time differencing

The “lagged” time differencing method used in the examples is

uk+1 − uk

∆t
− ν∇2uk+1 + (uk · ∇)uk+1 +∇pk+1 = fk+1

∇ · uk+1 = 0

This method is only first order in time (O(∆t)). The analogous second order
method is based on Crank-Nicolson time differencing and is

uk+1 − uk

∆t
− ν∇2u

k+1 + uk

2
+ ((

3

2
uk − 1

2
uk−1) · ∇)

uk+1 + uk

2
+∇pk+1 =

fk+1 + fk

2

∇ · uk+1 = 0

This method is second order in time (O(∆t2)) for velocity and also for pressure,

if pk+1 is interpreted as an approximation of p( tk+1+tk

2 ). This method shares
with the first order case the fact that each time step presents a linear problem
to solve.

Implement this higher-order method and compare the plotted results of ver-
tical velocity behind the cylinder for the same values of dt.
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