Introduction to the finite element method

M. M. Sussman
sussmanm@math.pitt.edu
Office Hours: 11:10AM-12:10PM, Thack 622

May 12 - June 19, 2014

Resources

- Strang, G., Fix, G., An Analysis of the Finite Element Method 2nd Edition, Wellesley-Cambridge Press, 2008
- FEniCS Book: Volume 84 of Springer Lecture Notes in Computational Science and Engineering series: Anders Logg, Kent-Andre Merdal, Garth Wells, "Automated Solution of Differential Equations by the Finite Element Method" ISBN: 978-3-642-23098-1 (Print) 978-3-642-23099-8 (Online) http://launchpad.net/fenics-book/trunk/final/
+download/fenics-book-2011-10-27-final.pdf
- FreeFem++ Book: http://www.freefem.org/ff++/ftp/freefem++doc.pdf
- Reference: Hecht, F. New development in freefem++. J. Numer. Math. 20 (2012), no. 3-4, 251-265. 65Y15
- Zienkiewicz, O. C., The Finite Element Method in Engineering Science, McGraw-Hill, 1971.

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

History

- Roots of method found in math literature: Rayleigh-Ritz
- Popularized in the 1950s and 1960s by engineers based on engineering insight with an eye toward computer implementation
- Winning idea: based on low-order piecewise polynomials with increased accuracy coming from smaller pieces, not increasing order.
- First use of the term "Finite element" in Clough, R. W., "The finite element in plane stress analysis," Proc. 2dn A.S.C.E. Conf. on Elecronic Computation, Pittsburgh, PA, Sept. 1960.
- Strang and Fix, first 50 pages: introduction

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

Generalized derivatives

Definition

The space of $C^{\infty}(\Omega)$ functions whose support is a compact subset of
Ω is denoted $C_{0}^{\infty}(\Omega)$

- If a function f is differentiable, then $\int_{\Omega} \frac{d f}{d x} \phi d x=-\int_{\Omega} f \frac{d \phi}{d x}$ for all $\phi \in C_{0}^{\infty}$.

Definition

If f is a measurable function and if there is a measurable function g satisfying $\int_{\Omega} g \phi d x=-\int_{\Omega} f \frac{d \phi}{d x}$ for all $\phi \in C_{0}^{\infty}$, then g is said to be the "generalized derivative" of f.

Suppose Ω is a "domain" in \mathbb{R}^{n}

- $u \in L^{2}(\Omega) \Leftrightarrow\|u\|_{L^{2}}^{2}=\int_{\Omega}|u|^{2}<\infty$
- $L^{2}(\Omega)$ is a Hilbert space with the inner product $(u, v)=\int_{\Omega} u v$
- $L^{2}(\Omega)$ is the completion of $C(\Omega)$ under the inner product $\|\cdot\|$.
- L^{2} contains functions that are measurable but continuous nowhere.
- A seminorm is given by $|u|_{k}^{2}=\sum \int\left|D^{k} u\right|^{2}$, where D^{k} is any derivative of total order k
- H^{k} is the completion of C^{k} under the norm $\|u\|_{k}^{2}=\sum_{i=0}^{k}|u|_{k}^{2}$
- $H^{0}=L^{2}$
- In 1D, functions in H^{1} are continuous, but derivatives are only measurable.
- In dimensions higher than 1, functions in H^{1} may not be continuous
- Functions in $H^{1}(\Omega)$ have well-defined "trace" on $\partial \Omega$.

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

A 2-point BVP

$$
\begin{align*}
-\frac{d}{d x}\left(p(x) \frac{d u}{d x}\right)+q(x) u & =f(x) \\
u(0) & =0 \tag{BVP}\\
\frac{d u}{d x}(\pi) & =0
\end{align*}
$$

- Shape of a rotating string
- Temperature distribution along a rod

Theory

- Suppose $f \in L^{2}$ (finite energy)
- Define linear operator $L: H_{B}^{2} \rightarrow L^{2}$
- $L: u \mapsto f$ from (BVP)

Theory

- Suppose $f \in L^{2}$ (finite energy)
- Define linear operator $L: H_{B}^{2} \rightarrow L^{2}$
- $L: u \mapsto f$ from (BVP)
- L is SPD
- L is $1-1$
- For each $f \in L^{2}$, (BVP) has a unique solution $u \in H_{B}^{2}$
- $\|u\|_{2} \leq C\|f\|_{0}$

A solution

Assume $p>0$ and $q \geq 0$ are constants

- Orthonormal set of eigenvalues, eigenfunctions

$$
\lambda_{n}=p\left(n-\frac{1}{2}\right)^{2}+q \quad u_{n}(x)=\sqrt{\frac{\pi}{2}} \sin \left(n-\frac{1}{2}\right) x
$$

- Expand

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sqrt{\frac{\pi}{2}} \sin \left(n-\frac{1}{2}\right) x
$$

- Converges in L^{2} since $\|f\|_{0}^{2}=\sum_{0}^{\infty} a_{n}<\infty$
- f need not satisfy b.c. pointwise!
- Solution

$$
u=\sum \frac{a_{n}}{\lambda_{n}} u_{n}=\sqrt{\frac{p i}{2}} \sum_{0}^{\infty} \frac{a_{n} \sin \left(n-\frac{1}{2}\right) x}{p\left(n-\frac{1}{2}\right)^{2}+q}
$$

Variational form: minimization

- Solving $L u=f$ is equivalent to minimizing $I(v)=(L v, v)-2(f, v)$
- $(f, v)=\int_{0}^{\pi} f(x) v(x) d x$
- $(L v, v)=\int_{0}^{\pi}\left[-\left(p v^{\prime}\right)^{\prime}+q v\right] v d x$

Variational form: minimization

- Solving $L u=f$ is equivalent to minimizing $I(v)=(L v, v)-2(f, v)$
- $(f, v)=\int_{0}^{\pi} f(x) v(x) d x$
- $(L v, v)=\int_{0}^{\pi}\left[-\left(p v^{\prime}\right)^{\prime}+q v\right] v d x$
- Integrating by parts: $(L v, v)=\int_{0}^{\pi}\left[p\left(v^{\prime}\right)^{2}+q v^{2}\right] d x-\left[p v^{\prime} v\right]_{0}^{\pi}$
- v satisfies b.c.

Variational form: minimization

- Solving $L u=f$ is equivalent to minimizing $I(v)=(L v, v)-2(f, v)$
- $(f, v)=\int_{0}^{\pi} f(x) v(x) d x$
- $(L v, v)=\int_{0}^{\pi}\left[-\left(p v^{\prime}\right)^{\prime}+q v\right] v d x$
- Integrating by parts: $(L v, v)=\int_{0}^{\pi}\left[p\left(v^{\prime}\right)^{2}+q v^{2}\right] d x-\left[p v^{\prime} v\right]_{0}^{\pi}$
- v satisfies b.c.
- $I(v)=\int_{0}^{\pi}\left[p(x)\left(v^{\prime}(x)\right)^{2}+q(x) v(x)^{2}-2 f(x) v(x)\right] d x$

Variational form: stationary point

- Solving $L u=f$ is equivalent to finding u so that $(L u, v)=(f, v)$ for all v.
- Integrating by parts: $(L u, v)=\int_{0}^{\pi}\left[p u^{\prime} v^{\prime}+q u v\right] d x-\left[p u v^{\prime}\right]_{0}^{\pi}$
- Assume u and v satisfy b.c.
- $a(u, v)=\int_{0}^{\pi}\left[p u^{\prime} v^{\prime}+q u v\right] d x=(f, v)$
- Euler equation from minimization of $I(u)$

Enlarge the search space

- Enlarge space to any function that is limit of functions in H_{B}^{2} in the sense that $I\left(v-v_{k}\right) \rightarrow 0$
- Only need H^{1}
- Only the essential b.c. $(v(0)=0)$ survives!
- Admissible space is H_{E}^{1}
- Solution function will satisfy both b.c.

Why only essential b.c.?

Fig. 1.2 Convergence in \mathscr{C}^{1}, with $v_{N}^{\prime}(\pi)=0$ but $v^{\prime}(\pi) \neq 0$.
From Strang and Fix.

Relaxing space of f

- f can now come from H^{-1}
- Functions whose derivatives are L^{2} (also written H^{0})
- L: $H_{E}^{1} \rightarrow H^{-1}$
- Dirac delta function!

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

Rayleigh-Ritz method

- Start from the (minimization) variational form
- Replace H_{E}^{1} with sequence of finite-dimensional subspaces $S^{h} \subset H_{E}^{1}$
- Elements of S^{h} are called "trial" functions
- Ritz approximation is minimizer u^{h}

$$
I\left(u^{h}\right) \leq I\left(v^{k}\right) \quad \forall v^{k} \in S^{h}
$$

Example: Eigenvectors as trial functions

Assume $p, q>0$ are constants

- $I(v)=\int_{0}^{\pi}\left[p\left(v^{\prime}\right)^{2}+q v^{2}-2 f v\right] d x$
- Choose eigenfunctions $j=1,2, \ldots, N=1 / h$ $\phi_{j}(x)=\sqrt{\frac{\pi}{2}} \sin \left(j-\frac{1}{2}\right) x$ with eigenvalues $\lambda_{j}=p\left(j-\frac{1}{2}\right)^{2}+q$
- Express $v^{k}=\sum_{1}^{N} v_{j}^{h} \phi_{j}(x)$

Example: Eigenvectors as trial functions

Assume $p, q>0$ are constants

- $I(v)=\int_{0}^{\pi}\left[p\left(v^{\prime}\right)^{2}+q v^{2}-2 f v\right] d x$
- Choose eigenfunctions $j=1,2, \ldots, N=1 / h$ $\phi_{j}(x)=\sqrt{\frac{\pi}{2}} \sin \left(j-\frac{1}{2}\right) x$ with eigenvalues $\lambda_{j}=p\left(j-\frac{1}{2}\right)^{2}+q$
- Express $v^{k}=\sum_{1}^{N} v_{j}^{h} \phi_{j}(x)$
- Plug in $I\left(v^{k}\right)=\sum_{1}^{N}\left[\left(v_{j}^{k}\right)^{2} \lambda_{j}-2 \int_{0}^{\pi} f v_{j}^{k} \phi_{j} d x\right]$

Example: Eigenvectors as trial functions

Assume $p, q>0$ are constants

- $I(v)=\int_{0}^{\pi}\left[p\left(v^{\prime}\right)^{2}+q v^{2}-2 f v\right] d x$
- Choose eigenfunctions $j=1,2, \ldots, N=1 / h$ $\phi_{j}(x)=\sqrt{\frac{\pi}{2}} \sin \left(j-\frac{1}{2}\right) x$ with eigenvalues $\lambda_{j}=p\left(j-\frac{1}{2}\right)^{2}+q$
- Express $v^{k}=\sum_{1}^{N} v_{j}^{h} \phi_{j}(x)$
- Plug in $I\left(v^{k}\right)=\sum_{1}^{N}\left[\left(v_{j}^{k}\right)^{2} \lambda_{j}-2 \int_{0}^{\pi} f v_{j}^{k} \phi_{j} d x\right]$
- Minimize: $v_{j}^{k}=\int_{0}^{\pi} f \phi_{j} d x / \lambda_{j}$ for $j=1,2, \ldots, N$

Example: Eigenvectors as trial functions

Assume $p, q>0$ are constants

- $I(v)=\int_{0}^{\pi}\left[p\left(v^{\prime}\right)^{2}+q v^{2}-2 f v\right] d x$
- Choose eigenfunctions $j=1,2, \ldots, N=1 / h$ $\phi_{j}(x)=\sqrt{\frac{\pi}{2}} \sin \left(j-\frac{1}{2}\right) x$ with eigenvalues $\lambda_{j}=p\left(j-\frac{1}{2}\right)^{2}+q$
- Express $v^{k}=\sum_{1}^{N} v_{j}^{h} \phi_{j}(x)$
- Plug in $I\left(v^{k}\right)=\sum_{1}^{N}\left[\left(v_{j}^{k}\right)^{2} \lambda_{j}-2 \int_{0}^{\pi} f v_{j}^{k} \phi_{j} d x\right]$
- Minimize: $v_{j}^{k}=\int_{0}^{\pi} f \phi_{j} d x / \lambda_{j}$ for $j=1,2, \ldots, N$
- Thus, $u^{h}=\sum_{1}^{N}\left(f, \phi_{j}\right) \phi_{j} / \lambda_{j}$

Example: Eigenvectors as trial functions

Assume $p, q>0$ are constants

- $I(v)=\int_{0}^{\pi}\left[p\left(v^{\prime}\right)^{2}+q v^{2}-2 f v\right] d x$
- Choose eigenfunctions $j=1,2, \ldots, N=1 / h$ $\phi_{j}(x)=\sqrt{\frac{\pi}{2}} \sin \left(j-\frac{1}{2}\right) x$ with eigenvalues $\lambda_{j}=p\left(j-\frac{1}{2}\right)^{2}+q$
- Express $v^{k}=\sum_{1}^{N} v_{j}^{h} \phi_{j}(x)$
- Plug in $I\left(v^{k}\right)=\sum_{1}^{N}\left[\left(v_{j}^{k}\right)^{2} \lambda_{j}-2 \int_{0}^{\pi} f v_{j}^{k} \phi_{j} d x\right]$
- Minimize: $v_{j}^{k}=\int_{0}^{\pi} f \phi_{j} d x / \lambda_{j}$ for $j=1,2, \ldots, N$
- Thus, $u^{h}=\sum_{1}^{N}\left(f, \phi_{j}\right) \phi_{j} / \lambda_{j}$
- These are projections of true solution $u=\sum_{1}^{\infty}\left(f, \phi_{j}\right) \phi_{j} / \lambda_{j}$

Example: Eigenvectors as trial functions

Assume $p, q>0$ are constants

- $I(v)=\int_{0}^{\pi}\left[p\left(v^{\prime}\right)^{2}+q v^{2}-2 f v\right] d x$
- Choose eigenfunctions $j=1,2, \ldots, N=1 / h$ $\phi_{j}(x)=\sqrt{\frac{\pi}{2}} \sin \left(j-\frac{1}{2}\right) x$ with eigenvalues $\lambda_{j}=p\left(j-\frac{1}{2}\right)^{2}+q$
- Express $v^{k}=\sum_{1}^{N} v_{j}^{h} \phi_{j}(x)$
- Plug in $I\left(v^{k}\right)=\sum_{1}^{N}\left[\left(v_{j}^{k}\right)^{2} \lambda_{j}-2 \int_{0}^{\pi} f v_{j}^{k} \phi_{j} d x\right]$
- Minimize: $v_{j}^{k}=\int_{0}^{\pi} f \phi_{j} d x / \lambda_{j}$ for $j=1,2, \ldots, N$
- Thus, $u^{h}=\sum_{1}^{N}\left(f, \phi_{j}\right) \phi_{j} / \lambda_{j}$
- These are projections of true solution $u=\sum_{1}^{\infty}\left(f, \phi_{j}\right) \phi_{j} / \lambda_{j}$
- Converges as $f_{j} / \lambda_{j} \approx f_{j} / j^{2}$.

Example: Polynomials as trial functions

Assume $p, q>0$ are constants

- Choose $v^{k}(x)=\sum_{j=1}^{N} v_{j}^{k} x^{j}$
- $v^{k}(0)=0$
- $I\left(v^{k}\right)=\int_{0}^{\pi}\left[p\left(\sum v_{j}^{k} j x^{j-1}\right)^{2}+q\left(\sum v_{j}^{k} x^{j}\right)^{2}-2 f \sum v_{j}^{k} x^{j}\right] d x$
- Differentiating I w.r.t. v_{j}^{k} gives $N \times N$ system

$$
K V=F
$$

where $K_{i j}=\frac{p i j \pi^{i+j-1}}{i+j-1}+\frac{q \pi^{i+j+1}}{i+j+1}$ and $F_{j}=\int_{0}^{\pi} f x^{j} d x$

- K is like the Hilbert matrix, very bad for $n>12$
- Can be partially fixed using orthogonal polynomials

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

FEM

- Strang and Fix discuss FEM in terms of minimization form
- Customary today to use stationary form
- $a(u, v)=\int_{0}^{\pi}\left[p u^{\prime} v^{\prime}+q u v\right] d x$
- $(f, v)=\int_{0}^{\pi} f v d x$
- Find $u \in H_{E}^{1}(0, \pi)$ so that $a(u, v)=(f, v)$ for all $v \in H^{1}(0, \pi)$.
- Choose a finite-dimensional subspace $S^{h} \subset H_{E}^{1}(0, \pi)$
- Find $u^{h} \in S^{h}$ so that $a\left(u^{h}, v^{h}\right)=\left(f, v^{h}\right)$ for all $v^{h} \in S^{h}$.
- Functions v^{h} are called "test" functions.

Stiffness matrix

- Let $\left\{\phi_{j}\right\}_{j=1}^{N}$ be a basis of S^{h}
- $u^{h}(x)=\sum_{j=1}^{n} u_{j}^{h} \phi_{j}(x)$
- For each ϕ_{i},

$$
\begin{aligned}
a\left(u^{h}, \phi_{i}\right) & =\int_{0}^{\pi} \sum_{j}\left[p u_{j}^{h} \phi_{j}^{\prime} \phi_{i}^{\prime}+q u_{j}^{h} \phi_{j} \phi_{i}\right] d x \\
& =\sum_{j}\left(\int_{0}^{\pi} p \phi_{i}^{\prime} \phi_{j}^{\prime}+q \phi_{i} \phi_{j}\right) u_{j}^{h} d x \\
& =K_{i j} u_{j}^{h}=K U^{h}
\end{aligned}
$$

- K is the "stiffness matrix"

FEM: Piecewise linear functions

- Divide the interval $[0, \pi]$ into N subintervals, each of length $h=\pi / N$ using $N+1$ points $x_{j}=(j-1) h$ for $j=1, \ldots, N+1$
- Construct N "hat" functions ϕ_{j}
- $\phi_{j}\left(x_{i}\right)=\delta_{i j}$
- Piecewise linear
- $\phi_{j}(0)=0$
- At most $2 \phi_{j}$ are nonzero on any element.

Assembling the system

Take $p=q=1$

- Elementwise computation, for $e_{\ell}=\left[x_{\ell-1}, x_{\ell}\right]$

$$
\begin{aligned}
K_{i j}^{h} & =\int_{0}^{\pi} \phi_{i}^{\prime} \phi_{j}^{\prime}+\phi_{i} \phi_{j} d x \\
& =\sum_{\ell} \int_{e_{\ell}} \phi_{i}^{\prime} \phi_{j}^{\prime}+\phi_{i} \phi_{j} d x \\
\left(f, \phi_{i}\right)=b_{i} & =\sum_{\ell} \int_{e_{\ell}} \phi_{i} f(x) d x
\end{aligned}
$$

- System becomes $K^{h} U^{h}=b^{h}$

First part: $\kappa_{1}=\int_{e_{\ell}} \phi_{i}^{\prime} \phi_{j}^{\prime}$

- For each element, there is a Left endpoint and a Right endpoint

$$
\int_{e} \phi_{L}^{\prime} \phi_{L}^{\prime}=\frac{1}{h} \quad \int_{e} \phi_{L}^{\prime} \phi_{R}^{\prime}=-\frac{1}{h} \quad \int_{e} \phi_{R}^{\prime} \phi_{L}^{\prime}=-\frac{1}{h} \quad \int_{e} \phi_{R}^{\prime} \phi_{R}^{\prime}=\frac{1}{h}
$$

- For the first element, there is only a right endpoint

$$
\begin{aligned}
& (h)\left(\kappa_{1}\right)=\left[\begin{array}{l}
1 \\
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
-1 & 1 \\
&
\end{array}\right. \\
&]+\cdots+[\\
& \left(\kappa_{1}\right)=\frac{1}{h}\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 1
\end{array}\right] \\
& \left.\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

More terms

- The second stiffness term is similar

$$
\left(\kappa_{2}\right)=\frac{h}{6}\left[\begin{array}{ccccc}
4 & 1 & & & \\
1 & 4 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & 4 & 1 \\
& & & 1 & 2
\end{array}\right]
$$

- If f is given by its nodal values $f_{i}=f\left(x_{i}\right)$ then $b=\kappa_{2} f_{i}$.

Integration

In more complicated situations, it is better to compute the integrals using Gauß integration. This involves a weighted sum over a few points inside the element.

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

Error and convergence

Theorem
Suppose that u minimizes $I(v)$ over the full admissible space H_{E}^{1}, and S^{h} is any closed subspace of H_{E}^{1}. Then:

1. The minimun of $I\left(v^{h}\right)$ and the minimum of $a\left(u-v^{h}, u-v^{h}\right)$, as v^{h} ranges over the subspace S^{h}, are achieved by the same function u^{h}. Therefore

$$
a\left(u-u^{h}, u-u^{h}\right)=\min _{v^{h} \in S^{h}} a\left(u-v^{h}, u-v^{h}\right)
$$

2. With respect to the energy inner product, u^{h} is the projection of u onto S^{h}. Equivalently, the error $u-u^{h}$ is orthogonal to S^{h} :

$$
a\left(u-u^{h}, v^{h}\right)=0 \quad \forall v^{h} \in S^{h}
$$

3. The minimizing function satisfies

$$
a\left(u^{h}, v^{h}\right)=\left(f, v^{h}\right) \quad \forall v^{h} \in S^{h}
$$

4. In particular, if S^{h} is the whole space H_{E}^{1}, then

$$
a(u, v)=(f, v) \quad \forall v \in H_{E}^{1}
$$

First error estimate (Cea)

- $a\left(u-u^{h}, v\right)=(f, v)-(f, v)=0$
- $a\left(u-u^{h}, u-u^{h}\right)=a\left(u-u^{h}, u-v\right)+a\left(u-u^{h}, v-u^{h}\right)$
- Since $u-u^{h}$ is not in S^{h},

$$
a\left(u-u^{h}, u-u^{h}\right)=a\left(u-u^{h}, u-v\right)
$$

- Since $p(x) \geq p_{0}>0$,

$$
p_{0}\left\|u-u^{h}\right\|_{1}^{2} \leq\left(\|p\|_{\infty}+\|q\|_{\infty}\right)\left\|u-u^{h}\right\|_{1}\|u-v\|_{1}
$$

- So that

$$
\begin{equation*}
\left\|u-u^{h}\right\|_{1} \leq \frac{\|p\|_{\infty}+\|q\|_{\infty}}{p_{0}}\|u-v\|_{1} \tag{Cea}
\end{equation*}
$$

- Choose v to be the linear interpolant of u, so, from Taylor's theorem (integral form)

$$
\left\|u-u^{h}\right\|_{1} \leq C h\|u\|_{2}
$$

Second error estimate (Nitsche)

- Let w and w^{h} be the true and approximate solutions of $a(w, v)=\left(u-u^{h}, v\right)$
- Clearly, $\left\|u-u^{h}\right\|^{2}=a\left(w, u-u^{h}\right)$
- And $a\left(u-u^{h}, w^{h}\right)=0$
- So $\left\|u-u^{h}\right\|^{2}=a\left(u-u^{h}, w-w^{h}\right)$
- By Cauchy-Schwarz,
$\left\|u-u^{h}\right\|^{2} \leq \sqrt{a\left(u-u^{h}, u-u^{h}\right)} \sqrt{a\left(w-w^{h}, w-w^{h}\right)}$
- Applying first estimate, $\left\|u-u^{h}\right\|^{2} \leq C^{2} h^{2}\|u\|_{2}\|w\|_{2}$
- From definition of $w,\|w\|_{2} \leq C\left\|u-u^{h}\right\|$
- Finally, $\left\|u-u^{h}\right\| \leq C h^{2}\|u\|_{2}$

Error estimate steps

1. Cea tells us the error $\left\|u-u^{h}\right\|_{1}$ is smaller than the best approximation error
2. Choice of element tells us approximation error is $O(h)$ in $\|\cdot\|_{1}$
3. Nitsche tells us to error is $O\left(h^{2}\right)$ in $\|\cdot\|$

These results are generally true!

