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1 Introduction

The methods for solving matrix equations that we have seen already are called “direct” methods because they
involve an algorithm that is guaranteed to terminate in a predictable number of steps. There are alternative
methods, called “iterative” because they involve a repetitive algorithm that terminates when some specified
tolerance is met, as with the eigenpair and singular value methods in earlier labs. In this lab, we will focus
on the conjugate gradient method applied to matrices arising from elliptic partial differential equations. The
conjugate gradient method can be regarded as a direct method because in exact arithmetic it terminates
after N steps for an N ×N matrrix. In computer arithmetic, however, the termination property is lost and
is irrelevant in many cases because the iterates often converge in far fewer than N steps.

Iterative methods are most often applied to matrices that are “sparse” in the sense that their entries are
mostly zeros. If most of the entries are zero, the matrices can be stored more efficiently than the usual form
by omitting the zeros, and it is possible to take advantage of this efficient storage using iterative methods
but not so easily with direct methods. Further, since partial differential equations often give rise to large
sparse matrices, iterative methods are often used to solve systems arising from PDEs.

You will see the conjugate gradient method (regarded as an iterative method), and will deploy it using
matrices stored in their usual form and also in a compact form. You will see examples of the rapid convergence
of the method and you will solve a matrix system (stored in compact form) that is so large that you could
not even construct and store the matrix in its usual form in central memory, let alone invert it.

You may find it convenient to print the pdf version of this lab rather than the web page itself. This lab
will take three sessions.

2 Poisson equation matrices

In two dimensions, the Poisson equation can be written as

∂2u

∂x2
+

∂2u

∂y2
= ρ (1)

where u is the unknown function and ρ is a given function. Boundary conditions are necessary, and we will
be considering Dirichlet boundary conditions, i.e., u = 0 at all boundary points.

Suppose that the unit square [0, 1]× [0, 1] is broken into (N + 1)2 smaller, nonoverlapping squares, each
of side h = 1/(N + 1). Each of these small squares will be called “elements” and their corner points will
be called “nodes.” The combination of all elements making up the unit square will be called a “mesh.” An
example of a mesh is shown in Figure 1.
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Figure 1: A sample mesh, with interior nodes indicated by larger dots and boundary nodes by smaller ones.

The nodes in Figure 1 have coordinates (x, y) given by

x = jh for j = 0, 1, . . . , 11

y = kh for k = 0, 1, . . . , 11 (2)

You will be generating the matrix associated with the Poisson equation during this lab, using one of the
simplest discretizations of this equation, based on the finite difference expression for a second derivative

d2ϕ

dξ2
=

ϕ(ξ +∆ξ)− 2ϕ(ξ) + ϕ(ξ −∆ξ)

∆ξ2
+O(∆ξ). (3)

Using (3) twice, once for ξ = x and once for ξ = y, in (1) at a mesh node (x, y) yields the expression

u(x+ h, y) + u(x, y + h) + u(x− h, y) + u(x, y − h)− 4u(x, y)

h2
= ρ(x, y).

Denoting the point (x, y) as the “center” point, the point (x + h, y) as the “right” point, (x − h, y) as the
“left” point, (x, y + h) as the “above” point, and (x, y − h) as the “below” point yields the expression

1

h2
uright +

1

h2
uleft +

1

h2
uabove +

1

h2
ubelow − 4

1

h2
ucenter = ρcenter. (4)
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Some authors denote these five points as “center”, “north”, “east”, “south”, and “west”, referring to the
compass directions.

The matrix equation (system of equations) can be generated from (4) by numbering the nodes in some
way and forming a vector from all the nodal values of u. Then, (4) represents one row of a matrix equation
Πu = ρ. It is immediate that there are at most five non-zero terms in each row of the matrix Π, no matter
what the size of N . The diagonal term is − 4

h2 , the other four, if present, are each equal to 1
h2 , and all

remaining terms are zero. We will be constructing such a matrix in Matlab during this lab.
The equation in the form (4) yields the “stencil” of the differential matrix, and is sometimes illustrated

graphically as in Figure 2 below. Other stencils are possible and are associated with other difference schemes.
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Figure 2: A sample mesh showing interior points and indicating a five-point Poisson equation stencil.

In order to construct matrices arising from the Poisson differential equation, it is necessary to give each
node at which a solution is desired a number. We will be considering only the case of Dirichlet boundary
conditions (u = 0 at all boundary points), so we are only interested in interior nodes illustrated in Figure
1. These nodes will be counted consecutively, starting with 1 on the lower left and increasing up and to
the right to 100 at the upper right, as illustrated in Figure 3. This is just one possible way of numbering
nodes, and many other ways are often used. Changing the numbering changes the rows and columns of the
resulting matrix.
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Figure 3: Node numbering

Exercise 1:

(a) Write a script m-file, named meshplot.m that, for N=10, generates two vectors, x(1:N^2) and
y(1:N^2) so that the points with coordinates (x(n),y(n)) for n=1,...,N^2 are the interior
node points illustrated in Figures 1, 2 and 3 and defined in (2). The following outline employs
two loops on j and k rather than a single loop on n. The double loop approach leads to somewhat
simpler code.

N=10;

h=1/(N+1);

n=0;

% initialize x and y as column vectors

x=zeros(N^2,1);

y=zeros(N^2,1);

for j=1:N

for k=1:N

% xNode and yNode should be between 0 and 1

xNode=???

yNode=???
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n=n+1;

x(n)=xNode;

y(n)=yNode;

end

end

plot(x,y,’o’);

(b) Send me your plot. It should look similar to Figure 2, but without the stencil.

(c) The following function m-file will print, for n given and N=10, the index (subscript) value associated
with the point immediately above the given point, or the word “none” if there is no such point.

function tests(n)

% function tests(n) prints index numbers of points near the

% one numbered n

% your name and the date.

N=10;

if mod(n,N)~=0

nAbove=n+1

else

nAbove=’none’

end

Copy this code to a file named tests.m and test it by applying it with n=75 to find the number
of the point above the one numbered 75. Test it also for n=80 to see that there is no point above
the one numbered 80.

(d) Add similar code to tests.m to print the index nBelow of the point immediately below the given
point. Use it to find the number of the point below the one numbered 75, and also apply it to a
point that has no interior point below it.

(e) Add similar code to tests.m to print the index nLeft of the point immediately to the left of the
given point. Use it to find the number of the point to the left of the one numbered 75, and also
apply it to a point that has no interior point to its left.

(f) Add similar code to tests.m to print the index nRight of the point immediately to the right of
the given point. Use it to find the number of the point to the right of the one numbered 75, and
also apply it to a point that has no interior point to its right.

You are now ready to construct a matrix A derived from the Poisson equation with Dirichlet boundary
conditions on a uniform mesh. In this lab we are considering only one of the infinitely many possibilities for
such a matrix. The matrix Π defined above turns out to be negative definite, so the matrix A we will use in
this lab is its negative, A = −Π

Exercise 2:

(a) Recall that there are no more than five non-zero entries per row in the matrix A and that they
are the values 4/h2, and −1/h2 repeated no more than four times. (Recall that A is the negative
of the matrix Π above.) Use the following skeleton, and your work from the previous exercise, to
write a function m-file to generate the matrix A.

function A=poissonmatrix(N)

% A=poissonmatrix(N)

% more comments
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% your name and the date

h=1/(N+1);

A=zeros(N^2,N^2);

for n=1:N^2

% center point value

A(n,n) =4/h^2;

% "above" point value

if mod(n,N)~=0

nAbove=n+1;

A(n,nAbove)=-1/h^2;

end

% "below" point value

if ???

nBelow= ???;

A(n,nBelow)=-1/h^2;

end

% "left" point value

if ???

nLeft= ???;

A(n,nLeft)=-1/h^2;

end

% "right" point value

if ???

nRight= ???;

A(n,nRight)=-1/h^2;

end

end

In the following parts of the exercise, take N=10 and A=poissonmatrix(N).

(b) It may not be obvious from our construction, but the matrix A is symmetric. Consider A(ell,m)
for ell=n and m=nBelow, and also for ell=nBelow and m=n (n is “above” nBelow). Think about
it. Check that norm(A-A’,’fro’) is essentially zero.
Debugging hint: If it is not zero, follow these instructions to fix your poissonmatrix function.

i. Set nonSymm=A-A’, and choose one set of indices ell,m for which nonSymm is not zero. You
can use the variable browser (double-click on nonSymm in the “variables” pane) or the max

function in the following way:

[rowvals]=max(nonSymm);

[colval,m]=max(rowvals);

[maxval,ell]=max(nonSymm(:,m));

ii. Look at A(ell,m) and A(m,ell). The most likely case is that one of these is zero and the
other is not. Use your tests.m code to check which of them should be non-zero, and then
look to see why the other is not.

iii. It is not likely that A(ell,m) and A(m,ell) are both non-zero but disagree because all non-
zero, non-diagonal entries are equal to -1/h^2. Check these values.
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(c) The Gershgorin circle theorem (see, for example, your class notes, Quarteroni, Sacco and Saleri, or
the interestingWikipedia article http://en.wikipedia.org/wiki/Gershgorin circle theorem)
says that the eigenvalues of a matrix A are contained in the union of the disks in the complex
plane centered at the points zn = An,n, and having radii rn =

∑
k ̸=n |An,k|. By this theorem,

our matrix A is non-negative definite. A proof based on irreducible diagonal dominance exists,
showing that A is positive definite. For a test vector v=rand(100,1), compute v’*A*v. This
quantity should be positive. If it is not, fix your poissonmatrix function.

(d) Positive definite matrices must have positive determinants. Check that det(A) is positive. If it
is not, fix your poissonmatrix function.

(e) As in Lab 5, Exercise 8, a simple calculation shows that the functions

ek,ℓ(x, y) = sin(kπx) sin(ℓπy)

are eigenfunctions of the Dirichlet problem for Poisson’s equation on the unit square for each choice
of k and ℓ, with eigenvalues λk,ℓ = −(k2 + ℓ2)π2. It turns out that, for each value of k and ell,
the vector E=sin(k*pi*x).*sin(ell*pi*y) is also an eigenvector of the matrix A, where x and y

are the vectors from Exercise 1. The eigenvalue is L=2*(2-cos(k*pi*h)-cos(ell*pi*h))/h^2,
where h=y(2)-y(1). Choose k=1 and ell=2. What is L and, for aid in grading your work, E(10)?
(E(10) should be negative and less than 1 in absolute value). Show by computation that L*E=A*E,
up to roundoff. If this is not true for your matrix A, go back and fix poissonmatrix.

(f) It can be shown that A is an “M-matrix” (see, Quarteroni, Sacco, and Saleri, or Varga, Matrix It-
erative Analysis), or the Wikipedia article http://en.wikipedia.org/wiki/M-matrix) because
the off-diagonal entries are all non-positive and the diagonal entry meets or exceeds the negative
of the sum of the off-diagonal entries. It turns out that M-matrices have inverses all of whose
entries are strictly positive. Use Matlab’s inv function to find the inverse of A and show that its
smallest entry (and hence each entry) is positive. (It might be small, but it must be positive.)

(g) Finally, you can check your construction against Matlab itself. The Matlab function gallery(’poisson’,N)
returns a matrix that is h^2*A. Compute norm(gallery(’poisson’,N)/h^2-A,’fro’) to see if
it is essentially zero. (Note: The gallery function returns the Poisson matrix in a special com-
pressed form that is different from the usual form and also not the same as the one discussed later
in this lab.) If this test fails, fix poissonmatrix.

You now have a first good matrix to use for the study of the conjugate gradient iteration in the following
section. In the following exercise you will generate another.

Exercise 3:

(a) Copy your poissonmatrix.m to another one called anothermatrix.m (or use “Save As” on the
“File” menu.)

(b) Modify the comments and some statements in the following way:

A(n,n) = 8*n+2*N+2;

A(n,nAbove)=-2*n-1;

A(n,nBelow)=-2*n+1;

A(n,nLeft) =-2*n+N;

A(n,nRight)=-2*n-N;

This matrix has the same structure as that from poissonmatrix but the values are different.

(c) This matrix is also symmetric. Check that, for N=12, norm(A-A’,’fro’) is essentially zero.
Debug hint: If this norm is not essentially zero for N=12, but is essentially zero for N=10, then
you have the number 10 coded in your function somewhere. Try searching for “10”. (If you have
that error in anothermatrix.m you probably have the same error in poissonmatrix.m.)
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(d) This matrix is positive definite, just as the Poisson matrix is. For N=12 and one test vector
v=rand(N^2,1); check that v’*A*v is positive.

(e) Plot the structure of the matrices and see they are the same. First, examine the structure of
poissonmatrix with the commands

spy(poissonmatrix(12),’b*’); % blue spots

hold on

Next, see that anothermatrix has non-zeros everywhere poissonmatrix does by overlaying its
plot on top of the previous.

spy(anothermatrix(12),’y*’); % yellow spots cover all blue

Finally, confirm that anothermatrix has no new non-zeros by overlaying the plot of poissonmatrix.

spy(poissonmatrix(12),’r*’); % red spots cover all yellow

Please include this plot with your summary.

(f) To help me confirm that your code is correct, what is the result of the following calculation?

N=15;

A=anothermatrix(N);

x=((1:N^2).^2)’;

sum(A*x)

3 The conjugate gradient algorithm

The conjugate gradient method is an important iterative method and one of the earliest examples of methods
based on Krylov spaces. Given a matrix A and a vector x, the space spanned by the set {x,Ax,A2x, . . . } is
called a Krylov space.

One very important point to remember about the conjugate gradient method (and other Krylov methods)
is that only the matrix-vector product is required. One can write and debug the method using ordinary matrix
arithmetic and then apply it using other storage methods, such as the compact matrix storage used below.

A second very important point to remember is that the conjugate gradient algorithm requires the matrix
to be positive definite. You will note that the algorithm below contains a step with p(k) · Ap(k) in the
denominator. This quantity is guaranteed to be nonzero only if A is positive (or negative) definite. If A is
negative definite, multiply the equation through by (-1) as we have done with the Poisson equation.

The conjugate gradient algorithm can be described in the following way. Starting with an initial guess
vector x(0),

r(0) = b−Ax(0)

For k = 1, 2, . . . ,m

ρk−1 = r(k−1) · r(k−1)

if ρk−1 is zero, stop: the solution has been found.

if k is 1

p(1) = r(0)

else

βk−1 = ρk−1/ρk−2

p(k) = r(k−1) + βk−1p
(k−1)

end

q(k) = Ap(k)

γk = p(k) · q(k)

if γk ≤ 0, stop: A is not positive definite

8



αk = ρk−1/γk
x(k) = x(k−1) + αkp

(k)

r(k) = r(k−1) − αkq
(k)

end

In this description, the vectors r(k) are the ”residuals.” There are many alternative ways of expressing the
conjugate gradient algorithm. This expression is equivalent to most of the others. (Two of the “if” tests
guard against dividing by zero.)

In the following exercise you will first write a function to perform the conjugate gradient algorithm, You
will test it without using hand calculations.

Exercise 4:

(a) Write a function m-file named cgm.m with signature

function x=cgm(A,b,x,m)

% x=cgm(A,b,x,m)

% more comments

% your name and the date

that performs m iterations of the conjugate gradient algorithm for the problem A*y=b, with starting
vector x. Do not create vectors for the variables αk, βk, and ρk, instead use simple Matlab scalars
alpha for αk, beta for βk, rhoKm1 for ρk−1, and rhoKm2 for ρk−2. Similarly, denote the vectors
r(k), p(k), q(k), and x(k) by the Matlab variables r, p, q, and x, respectively. For example, part
of your loop might look like

rhoKm1=0;

for k=1:m

rhoKm2=rhoKm1;

rhoKm1=dot(r,r);

???

r=r-alpha*q;

end

(b) Use N=5, b=(1:N^2)’, A=poissonmatrix(N), xExact=A\b. Use a perturbed value near the exact
solution x=xExact+sqrt(eps)*rand(N^2,1) as initial guess, and take ten steps. Call the result
y. You should get that norm(y-xExact) is much smaller than norm(x-xExact). (If you cannot
converge when you start near the exact solution, you will never converge!)

Note 1: If your result is not small, look at your code. ρk−1 should be very small, and γk should
be larger than ρk−1, and αk should also be very small. The resulting ∥r(k)∥ should be very
small.

Note 2: The choice sqrt(eps) is a good choice for a small but nontrivial number.

(c) If M ≥ N2 the set of vectors {x,Ax,A2x, . . . , AM−1x,AMx} must be linearly dependent because
there are more vectors than the dimension of the space. Consequently, the conjugate gradient
algorithm terminates after M=N^2 steps on an N × N matrix. As a second test, choose N=5,
xExact=rand(N^2,1) and A= poissonmatrix(N). Set b=A*xExact and then use cgm, starting
from the zero vector, to solve the system in N^2 steps. If you call your solution x, show that
norm(x-xExact)/norm(xExact) is essentially zero.

(d) You know that your routine solves a system of size M=N^2 in M steps. Choose N=31;xExact=(1:N^2)’;,
the matrix A=poissonmatrix(N), and b=A*xExact. How close would the solution x calculated
using cgm on A be if you started from the zero vector and took only one hundred steps? (Use the
relative 2-norm.)
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The point of the last part of the previous exercise is that there is no need to iterate to the theoretical
limit. Conjugate gradients serves quite well as an iterative method, especially for large systems. Regarding
it as an interative method, however, requires some way of deciding when to stop before doing M iterations
on an M ×M matrix. Assuming that ∥b∥ ̸= 0 a reasonable stopping criterion is when the relative residual
error ∥b−Ax(k)∥/∥b∥ is small. (If ∥b∥ = 0, then b is trivial, and so is the solution.) Without an estimate of
the condition number of A, this criterion does not bound the solution error, but it will do for our purpose. A
simple induction argument will show that r(k) = b−Ax(k), so it is not necessary to perform a matrix-vector
multiplication to determine whether or not to stop the iteration. Conveniently, the quantity ρk−1 that is
computed at the beginning of the loop is the square of the norm of r(k−1), so the iteration can be terminated
without any extra calculation.

In the following exercise, you will modify your cgm.m file by eliminating the parameter m in favor of a
specified tolerance on the relative residual.

Exercise 5:

(a) Make a copy of your cgm.m function and call it cg.m. Change its name on the signature line,
but leave the parameter m for the moment. Modify it by computing ∥b∥2 and calling the value
normBsquare, before the loop starts. Then, temporarily add a statement following the com-
putation of rhoKm1 to compute the quantity relativeResidual=sqrt(rhoKm1/normBsquare).
Follow it with the commands semilogy(k,relativeResidual,’*’);hold on; so that you can
watch the progression of the relative residual.

(b) As in the last part of the previous exercise, choose N=31;xExact=(1:N^2)’, the matrix A=poissonmatrix(N),
and b=A*xExact. Run it for 200 iterations starting from zeros(N^2,1). You will have to use
the command hold off after the function is done. Please include the plot with your summary.
You should observe uneven but rapid convergence to a small value long before 200 (many, many
fewer than N2) iterations. Estimate from the plot how many iterations it would take to meet a
convergence criterion of 10−12.

(c) Change the signature of your cg function to

[x,k]=cg(A,b,x,tolerance)

so that m is no longer input. Replace the value m in the for statement with size(A,1) because you
know convergence should be reached at that point. Compute targetValue=tolerance^2*normBsquare.
Replace the semilogy plot with the exit commands

if rhoKm1 < targetValue

return

end

There is no longer any need for relativeResidual or the plot.

(d) As in the last part of the previous exercise, choose N=31;xExact=(1:N^2)’, the matrix A=poissonmatrix(N),
and b=A*xExact. Start from zeros(N^2,1). Run your changed cg function with a tolerance of
1.0e-10. How many iterations does it take? What is the true error (norm(x-xExact)/norm(xExact))?
Run it with a tolerance of 1.0e-12. How many iterations does it take this time? What is the true
error?

(e) To see how another matrix might behave, choose N=31, xExact=(1:N^2)’, the matrix A=anothermatrix(N),
and b=A*xExact. How many iterations does it take to reach a tolerance of 1.e-10? What is the
true error?

As you can see, the stopping criterion you have programmed is OK for some matrices, but not all that
reliable. Better stopping criteria are available, but there is no generally accepted “best” one. We now leave
the discussion of stopping criteria to consider alternative storage strategies. In the following section, you
will turn to an example of an efficient storage schemes for some sparse matrices.
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4 Compact storage

A matrix A generated by either poissonmatrix or anothermatrix has only five non-zero entries in each
row. When numbered as above, it has exactly five non-zero diagonals: the main diagonal, the super- and
sub-diagonals, and the two diagonals that are N columns away from the main diagonal. All other entries are
zero. It is prudent to store A in a much more compact form by storing only the diagonals and none of the
other zeros. Further, A is symmetric, so it is only necessary to store three of the five diagonals. While not all
matrices have such a nice and regular structure as these, it is very common to encounter matrices that are
sparse (mostly zero entries). In the exercises below, you will be using a very simple compact storage, based
on diagonals, but you will get a flavor of how more general compact storage methods can be used.
Remark: Since anM×3 matrix is rectangular, there will still be some extraneous zeros in this “by diagonals”
storage strategy.
Remark: Since poissonmatrix contains only two different numbers, it can be stored in an even more
efficient manner, but we will not be taking advantage of this strategy in this lab.

Since there are only three non-zero diagonals, you will see how to use aM×3 rectangular matrix to store a
matrix that would be M×M if ordinary storage were used. Further, since the matrices from poissonmatrix

and anothermatrix are always N2×N2, we will only consider the case that M = N2. The “main diagonal”
is the one consisting of entries Ak,k, the “superdiagonal” is the one consisting of entries Ak,k+1 and non-zero
diagonal farthest from the main diagonal consists of entries Ak,k+N , where N2 = M . For the purpose of this
lab, we will call the latter diagonal the “far diagonal.”

Conveniently, Matlab provides a function to extract these diagonals from an ordinary square matrix and
to construct an ordinary square matrix from diagonals. It is called diag and it works in the following way.
Assume that A is a square matrix with entries Ak,ℓ. Then

v = diag(A) vk = Ak,k

w = diag(A,n) wk = Ak,k+n

where n can be negative, so diag returns a column vector whose elements are diagonal entries of a matrix. The
same diag function also performs the reverse operation. Given a vector v with entries vk, then A=diag(v,n)

returns a matrix A consisting of all zeros except that Ak,k+n = vk, for k = 1, 2, . . . , length(v). You must
be careful to have the lengths of the diagonals and vectors correct.

In the following exercise, you will rewrite poissonmatrix and anothermatrix to use storage by diagonals.

Exercise 6:

(a) Copy your anothermatrix.m file to one called anotherdiags.m (or use “Save as”). Change the
name on the signature line and change the comments to indicate the resulting matrix will be
stored by diagonals.

(b) The superdiagonal corresponds to nAbove and the far diagonal corresponds to nRight. Modify
the code so that the matrix A has three columns, the first column is the main diagonal, the second
column is the superdiagonal, and the third column is the far diagonal. The superdiagonal will
have one fewer entry than the main diagonal, so leave a zero as its last entry. The far diagonal
will have N fewer entries than the main diagonals, so leave zeros in the last N positions.

(c) Your function should pass the following test

N=10;

A=anothermatrix(N);

Adiags=anotherdiags(N);

size(Adiags,2)-3 % should be zero

norm(Adiags(:,1)-diag(A)) % should be zero

norm(Adiags((1:N^2-1),2)-diag(A,1)) % should be zero

norm(Adiags((1:N^2-N),3)-diag(A,N)) % should be zero
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If not all four numbers are zero, fix your code. If you are debugging, it is easier to use N=3.

(d) Repeat the steps to write poissondiags.m by starting from poissonmatrix.m. Be sure to test
your work.

If you look at the conjugate gradient algorithm, you will see that the algorithm only made use of the
matrix is to multiply the matrix by a vector. If we plan to store a matrix by diagonals, we need to write a
special “multiplication by diagonals” function.

Exercise 7:

(a) Start off a function m-file named multdiags.m in the following way

function y=multdiags(A,x)

% y=multdiags(A,x)

% more comments

% your name and the date

M=size(A,1);

N=round(sqrt(M));

if M~=N^2

error(’multdiags: matrix size is not a squared integer.’)

end

if size(A,2) ~=3

error(’multdiags: matrix does not have 3 columns.’)

end

% the diagonal product

y=A(:,1).*x;

% the superdiagonal product

for k=1:M-1

y(k)=y(k)+A(k,2)*x(k+1);

end

% the subdiagonal product

???

% the far diagonal product

???

% the far subdiagonal product

???

(b) Fill in the three groups of lines indicated by ???.
Hint: To see the logic, think of the product B*x, where B is all zeros except for one of the
diagonals.

(c) Choose N=3, x=ones(9,1), and compare the results using multdiags to multiply anotherdiags

by x with the results of an ordinary multiplication by the matrix from anothermatrix. The
results should be the same.
Debugging hints:

• All the components of x are =1 in this case, so the only places your code might be wrong in
this test are in the subscripts of A.

• Look at the rows one at a time. Row k of the full matrix product for B=anothermatrix(3)
can be written as
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x=ones(9,1);

B(k,:)*x

• For k=1 the product is

B(1,1)*x(1)+B(1,2)*x(2)+B(1,4)*x(4)

Check that you have this correct.

• For k=2 the product is

B(2,1)*x(1)+B(2,2)*x(2)+B(2,3)*x(3)+B(2,5)*x(5)

(This product has only the subdiagonal term in it.) Check that you have this correct and
continue.

(d) Choose N=3, x=(10:18)’, and compare the results using multdiags to multiply anotherdiags by
x with the results of an ordinary multiplication by the matrix from anothermatrix. The results
should be the same.

(e) Choose N=12, x=rand(N^2,1), and compare the results using multdiags to multiply anotherdiags
by x with the results of an ordinary multiplication by the matrix from anothermatrix. The results
should be the same.

Remark: It is generally true that componentwise operations are faster than loops. The multdiags func-
tion can be made to execute faster by replacing the loops with componentwise operations. This sounds
complicated, but there is an easy trick. Consider the superdiagonal code:

% the superdiagonal product

for k=1:M-1

y(k)=y(k)+A(k,2)*x(k+1);

end

Look carefully at the following code. It is equivalent, very similar in appearance and will execute more
quickly.

k=1:M-1; % k is a vector!

y(k)=y(k)+A(k,2).*x(k+1);

Then manually replacing the vector k and eliminating it generates the fastest code:

y(1:M-1)=y(1:M-1)+A(1:M-1,2).*x(2:M);

You are not required to make these changes for this lab, but you might be interested in trying.

5 Conjugate gradient by diagonals

Now is the time to put conjugate gradients together with storage by diagonals. This will allow you to handle
much larger matrices than using ordinary square storage.

Exercise 8:

(a) Copy your cg.m file to cgdiags.m. Modify each product of A times a vector to use multdiags.
There are only two products: one before the for loop and one inside it. You do not need to
change any other lines.

(b) Solve the same problem twice, once using anothermatrix and cg and again using anotherdiags

and cgdiags. In each case, use N=3, b=ones(N^2,1), tolerance=1e-10, and start from zeros(N^2,1).
You should get exactly the same number of iterations and exactly the same answer in the two
cases.
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(c) Solve a larger problem twice, with N=10 and b=rand(N^2,1). Again, you should get the same
answer in the same number of iterations.

(d) Construct a much larger problem to which you know the solution using the following sample code

N=500;

xExact=rand(N^2,1);

Adiags=poissondiags(N);

b=multdiags(Adiags,xExact);

tic;[y,n]=cgdiags(Adiags,b,zeros(N^2,1),1.e-6);toc

How many iterations did it take? How much time did it take?
Debugging hint: If you get a memory error message, “Out of memory. Type HELP MEMORY
for your options,” you most likely are attempting to construct the full Poisson matrix using normal
storage, an impossible task (see the next exercise). Examine your poissondiags.m code carefully
with this in mind.

(e) You can compute the relative norm of the error because you have both the computed and exact
solutions. What is it? How does it compare with the tolerance? Recall that the tolerance is
the relative residual norm and may result in the error being either larger or smaller than the
tolerance.

In the previous exercise, you saw that the conjugate gradient works as well using storage by diagonals as
using normal storage. You also saw that you could solve a matrix of size 2.5 · 105, stored by diagonals. This
matrix is actually quite large, and you would not be able to even construct it, let alone solve it by a direct
method, using ordinary storage.

Exercise 9:

(a) Roughly, how many entries are in the Adiags from the previous exercise? If one number takes
eight bytes, how many bytes of central memory does Adiags take up?

(b) Roughly, what would the total size of poissonmatrix(N) (for N=500) be? If one number takes
eight bytes of central memory, how many bytes of central memory would it take to store that
matrix? While the cost of RAM memory for PCs varies greatly, use a price of about US$4 for
1GB of RAM memory (230 or roughly 109 bytes). How much would it cost to purchase enough
memory to store that matrix? I recently purchased a computer for $1400. Does your estimated
cost for memory alone exceed the cost of my computer?

(c) In Lab 6, Exercise 2, you found that the time it takes to solve a matrix equation using ordinary
Gaußian elimination is proportional to M3, where M is the size of the matrix. I found it takes
about T = 1 minute to solve a system of size M = 104. Find C so that T = CM3 holds.

(d) How long would it take to use Gaußian elimation to solve a matrix equation using poissonmatrix(N)
(N=500)? Please convert your result from seconds to days. How does this compare with the time
it actually took to solve such a matrix equation in the previous exercise?

Exercise 10: Matlab has a built-in compact storage method for general sparse matrices. It is called
“sparse storage,” and it is a version of “compressed column storage.” It is not difficult to see how it
works by looking at the following example. As you saw above, the gallery(’poisson’,N) constructs
a matrix that is h^2 times the matrix from poissonmatrix.

(a) Use the following command to print out a sparse matrix

A=gallery(’toeppen’,8,1,2,3,4,5)

and you should be able to see how it is stored. From what you just printed what do you think
A(2,1), A(3,2) and A(5,1) are?
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(b) What are all the nonzero entries in column 4? What are all the nonzero entries in row 4? Please
report both indices and values in your answer.

(c) Consider the full matrix

B=[ 1 0 0 2

0 0 3 0

0 4 0 0

5 0 6 0];

If B were stored using Matlab’s sparse storage method, what would be the result of printing B (as
you printed A).

6 Extra Credit: ICCG (8 points)

The conjugate gradient method has many advantages, but it can be slow to converge, a disadvantage it shares
with other Krylov-based iterative methods. Since Krylov methods are perhaps the most widely-used iterative
methods, it is not surprising that there is a large effort to devise ways to make them converge faster. The
largest class of such convergence-enhancing methods is called “preconditioning” and is sometimes explained
as solving the system M−1Ax = M−1b instead of Ax = b, where M is a suitably chosen, easily inverted
matrix. More precisely, it solves (M−1AM)(M−1x) = M−1b.

The preconditioned conjugate gradient algorithm can be described in the following way. Starting with
an initial guess vector x(0),

r(0) = b−Ax(0)

For k = 1, 2, . . . ,m

Solve the system Mzk−1 = rk−1.

ρk−1 = r(k−1) · z(k−1)

if ρk−1 is zero, stop: the solution has been found.

if k is 1

p(1) = z(0)

else

βk−1 = ρk−1/ρk−2

p(k) = z(k−1) + βk−1p
(k−1)

end

q(k) = Ap(k)

γk = p(k) · q(k)

if γk ≤ 0, stop: A is not positive definite

αk = ρk−1/γk
x(k) = x(k−1) + αkp

(k)

r(k) = r(k−1) − αkq
(k)

end

In this form, the residuals rk can be shown to be M−1-orthogonal, in contrast with the residuals being
orthogonal in the usual sense in the earlier, un-preconditioned, conjugate gradient algorithm.

One of the earliest effective preconditioners disovered was the so-called “incomplete Cholesky” precondi-
tioner. Recall that a positive definite symmetric matrix A can always be factored as A = UTU , where U is an
upper-triangular matrix with positive diagonal entries. Although there are several different preconditioners
with the same name, the one that is easiest to describe and use here is simply to take

Ũmn =

{
Umn if Amn ̸= 0
0 otherwise
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For sparse matrices A, this results in a upper triangular factor Ũ with the same sparsity pattern as A. If you
were using matrix storage by diagonals as in the exercises above, you could store Ũ using the same sort of
three column matrix that is used for the matrix A itself. Of course, A ̸= ŨT Ũ . Choosing M = ŨT Ũ in the
preconditioned conjugate gradient results in the “incomplete Cholesky conjugate gradient” method (ICCG).

For large, sparse matrices A it is generally impossible to construct the true Cholesky factor U , and,
if you can construct it, it is usually better to simply solve the system using it rather than some iterative

method. On the other hand, there are ways of producing matrices
˜̃
U that have the same sparsity pattern

as A and perform as well as Ũ . For our purposes in this lab, we will be using Ũ and seeing how it improves
convergence of the conjugate gradient method.

Exercise 11:

(a) Modify your cg.m m-file to precg.m with signature

function [x,k]=precg(U,A,b,x,tolerance)

% [x,k]=precg(U,A,b,x,tolerance)

% more comments

% your name and the date

and where U is assumed to be an upper-triangular matrix, not necessarily the Cholesky factor of
A, and M=U’*U. (Use Matlab’s backslash operator twice, once for U’ and once for U. Be sure to
use parentheses so that Matlab does not misinterpret your formulæ.) Change the convergence
criterion so that dot(r,r)<targetValue to be consistent with cg. Test it with U being the identity
matrix, with A=poissonmatrix(10), the exact solution xExact=ones(100,1), b=A*xExact, and
starting from x=zeros(100,1) with tolerance=1.e-10. You should get exactly the same values
for x and k as produced by cg.

(b) Look carefully at the algorithm above for the preconditioned conjugate gradient. If x0 = 0 and
if M = A, in symbols (not numbers), what are the values of r0, ρ0, γ1, and α1? Your calculation
should prove that k = 2 at convergence.

(c) The Matlab chol(A) function returns the upper triangular Cholesky factor. Using the following
values

N=10;

xExact=ones(N^2,1); % exact solution

A=poissonmatrix(N);

b=A*xExact; % right side vector

tolerance=1.e-10;

U=chol(A); % Cholesky factor of A

x=zeros(N^2,1);

Use precg to solve this problem. Check that the value of k is 2 at convergence, and that the
solution is correct.

(d) The incomplete Cholesky factor, Ũ , can be easily constructed in Matlab with the following code.

U=chol(A);

U(find(A==0))=0;

(Or, equivalently, U(A==0)=0.) Consider the system Ax = b starting from x0 = 0 for A given by
anothermatrix(50) and b given as all ones and with a tolerance of 1.e-10. Find the exact solution
as xExact=A\b. Compare the numbers of iterations and true errors between the conjugate gradient
and ICCGmethods. You should observe a significant reduction in the number of iterations without
loss of accuracy.
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Note: If you measured the times for precg and cg in the exercise, you might observe that there is
little or no improvement in running time for precg, despite the reduction in number of iterations. If
you try it with larger values of N (for example, N=75), you will see more of an advantage, and it will
increase with increasing N. Alternatively, if you implemented it using storage by diagonals as above,
you would find the advantage shows up for smaller values of N.
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