
MATH2071: LAB 8: The Eigenvalue Problem
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Extra Credit

1 Introduction

This lab is concerned with several ways to compute eigenvalues and eigenvectors for a real matrix. All
methods for computing eigenvalues and eigenvectors are iterative in nature, except for very small matrices.
We begin with a short discussion of eigenvalues and eigenvectors, and then go on to the power method and
inverse power methods. These are methods for computing a single eigenpair, but they can be modified to
find several. We then look at shifting, which is an approach for computing one eigenpair whose eigenvalue is
close to a specified value. We then look at the QR method, the most efficient method for computing all the
eigenvalues at once. In the extra credit exercise, we see that the roots of a polynomial are easily computed
by constructing the companion matrix and computing its eigenvalues.

If you choose to print this lab, you may find it convenient to print the pdf version rather than the web
page itself. This lab will take three sessions.

2 Eigenvalues and eigenvectors

For any square N ×N matrix A, consider the equation det(A − λI) = 0. This is a polynomial equation of
degree N in the variable λ so there are exactly N complex roots (counting multiplicities) that satisfy the
equation. If the matrix A is real, then the complex roots occur in conjugate pairs. The roots are known as
“eigenvalues” of A. Interesting questions include:

• How can we find one or more of these roots?

• When are the roots distinct?

• When are the roots real?

In textbook examples, the determinant is computed explicitly, the (often cubic) equation is factored exactly,
and the roots “fall out.” This is not how a real problem will be solved.

If λ is an eigenvalue of A, then A − λI is a singular matrix, and therefore there is at least one nonzero
vector x with the property that (A− λI)x = 0. This equation is usually written

Ax = λx. (1)

Such a vector is called an “eigenvector” for the given eigenvalue. There may be as many as N linearly
independent eigenvectors. In some cases, the eigenvectors are, or can be made into, a set of pairwise orthog-
onal vectors. If a set of eigenvectors is arranged to form the columns of a matrix E and the corresponding
eigenvalues are arranged as a diagonal matrix Λ, then (1) is written for the whole set of eigenpairs as

AE = EΛ (2)
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(Notice that Λ appears on the right.)
Interesting questions about eigenvectors include:

• How do we compute an eigenvector?

• When will there be a full set of N independent eigenvectors?

• When will the eigenvectors be orthogonal?

In textbook examples, the singular system (A− λI)x = 0 is examined, and by inspection, an eigenvector is
determined. This is not how a real problem is solved either.

Some useful facts about the eigenvalues λ of a matrix A:

• A−1 has the same eigenvectors as A, and eigenvalues 1/λ;

• For integer n, An has the same eigenvectors as A with eigenvalues λn;

• A+ µI has the same eigenvectors as A with eigenvalues λ+ µ;

• If A is real and symmetric, all its eigenvalues and eigenvectors are real and the eigenvectors can be
written as an orthonormal set; and,

• If B is invertible, then B−1AB has the same eigenvalues as A, with eigenvectors given as B−1x, for
each eigenvector x of A.

3 The Rayleigh Quotient

If a vector x is an exact eigenvector of a matrix A, then it is easy to determine the value of the associated
eigenvalue: simply take the ratio of a component of (Ax)k and xk, for any index k that you like. But suppose
x is only an approximate eigenvector, or worse yet, just a wild guess. We could still compute the ratio of
corresponding components for some index, but the value we get will vary from component to component.
We might even try computing all the ratios, and averaging them, or taking the ratios of the norms. However,
the preferred method for estimating the value of an eigenvalue uses the so-called “Rayleigh quotient.”

The Rayleigh quotient of a matrix A and vector x is

R(A,x) =
x ·Ax
x · x

=
xHAx

xHx
,

where xH denotes the Hermitian (complex conjugate transpose) of x. The Matlab prime (as in x’) actually
means the complex conjugate transpose, not just the transpose, so you can use the prime here. (In order to
take a transpose, without the complex conjugate, you must use the Matlab function transpose or the prime
with a dot as in x.’.) Note that the denominator of the Rayleigh quotient is just the square of the 2-norm
of the vector. In this lab we will be mostly computing Rayleigh quotients of unit vectors, in which case the
Rayleigh quotient reduces to

R(A,x) = xHAx for ||x|| = 1.

If x happens to be an eigenvector of the matrix A, the the Rayleigh quotient must equal its eigenvalue.
(Plug x into the formula and you will see why.) When the real vector x is an approximate eigenvector of A,
the Rayleigh quotient is a very accurate estimate of the corresponding eigenvalue. Complex eigenvalues and
eigenvectors require a little care because the dot product involves multiplication by the conjugate transpose.
The Rayleigh quotient remains a valuable tool in the complex case, and most of the facts remain true.

If the matrix A is symmetric, then all eigenvalues are real, and the Rayleigh quotient satisfies the
following inequality.

λmin ≤ R(A,x) ≤ λmax
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Exercise 1: :

(a) Write an m-file called rayleigh.m that computes the Rayleigh quotient. Do not assume that x
is a unit vector. It should have the signature:

function r = rayleigh ( A, x )

% r = rayleigh ( A, x )

% comments

% your name and the date

Be sure to include comments describing the input and output parameters and the purpose of the
function.

(b) Copy the m-file eigen test.m. This file contains several test problems. Verify that the matrix
you get by calling A=eigen test(1) has eigenvalues 1, -1.5, and 2, and eigenvectors [1;0;1], [0;1;1],
and [1;-2;0], respectively. That is, verify that Ax = λx for each eigenvalue λ and eigenvector x.

(c) Compute the value of the Rayleigh quotient for the matrix A=eigen test(1) and vectors in the
following table.

x R(A,x)

[ 3; 2; 1] 4.5

[ 1; 0; 1] __________ (is an eigenvector)

[ 0; 1; 1] __________ (is an eigenvector)

[ 1;-2; 0] __________ (is an eigenvector)

[ 1; 1; 1] __________

[ 0; 0; 1] __________

(d) Starting from the vector x=[3;2;1], we are interested in what happens to the Rayleigh quotient
when you look at the sequence of vectors x(1) = x, x(2) = Ax, x(3) = A2x, . . .. Plot the Rayleigh
quotients of x(k) = Ak−1x vs. k = 1, . . . , 25. You should observe what appears to be convergence
to one of the eigenvalues of A. Which eigenvalue? Please include your plot along with your
summary.

Note: The superscript (k) in the above expressions does not refer to a power of x, or to a com-

ponent. The use of superscript distinguishes it from the kth component, xk, and the parentheses

distinguish it from an exponent. It is simply the kth vector in a sequence.

The Rayleigh quotient R(A,x) provides a way to approximate eigenvalues from an approximate eigen-
vector. Now we have to figure out a way to come up with an approximate eigenvector.

4 The Power Method

In many physical and engineering applications, the largest or the smallest eigenvalue associated with a system
represents the dominant and most interesting mode of behavior. For a bridge or support column, the smallest
eigenvalue might reveal the maximum load, and the eigenvector represents the shape of the object at the
instant of failure under this load. For a concert hall, the smallest eigenvalue of the acoustic equation reveals
the lowest resonating frequency. For nuclear reactors, the largest eigenvalue determines whether the reactor
is subcritical (λ < 1 and reaction dies out), critical (λ = 1 and reaction is sustained), or supercritical (λ > 1
and reaction grows). Hence, a simple means of approximating just one extreme eigenvalue might be enough
for some cases.

The “power method” tries to determine the largest magnitude eigenvalue, and the corresponding eigen-
vector, of a matrix, by computing (scaled) vectors in the sequence:

x(k) = Ax(k−1)
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Note: As above, the superscript (k) refers to the kth vector in a sequence. When you write Matlab code,
you will typically denote both x(k) and x(k−1) with the same Matlab name x, and overwrite it each iteration.
In the signature lines specified below, xold is used to denote x(k−1) and x is used to denote x(k) and all
subsequent iterates.

If we include the scaling, and an estimate of the eigenvalue, the power method can be described in the
following way.

1. Starting with any nonzero vector x, divide by its length to make a unit vector called x(0),

2. x(k) = (Ax(k−1))/||Ax(k−1)||

3. Compute the Rayleigh quotient of the iterate (unit vector) r(k) = (x(k) ·Ax(k))

4. If not done, increment k and go back to Step 2.

Exercise 2: : Write an m-file that takes a specified number of steps of the power method. Your file
should have the signature:

function [r, x, rHistory, xHistory] = power_method ( A, x ,maxNumSteps )

% [r, x, rHistory, xHistory] = power_method ( A, x ,maxNumSteps )

% comments

% your name and the date

.

.

.

for k=1:maxNumSteps

.

.

.

r= ??? %Rayleigh quotient

rHistory(k)=r; % save Rayleigh quotient on each step

xHistory(:,k)=x; % save one eigenvector on each step

end

On exit, the xHistory variable will be a matrix whose columns are a (hopefully convergent) sequence
of approximate dominant eigenvectors. The history variables rHistory and xHistory will be used to
illustrate the progress that the power method is making and have no mathematical importance.

Note: It is usually the case that when writing code such as this that requires the Rayleigh quotient,
I would ask that you use rayleigh.m, but in this case the Rayleigh quotient is so simple that it is
probably better to just copy the code for it into power method.m.

Using your power method code, try to determine the largest eigenvalue of the matrix eigen test(1),
starting from the vector [0;0;1]. (I have included the result for the first few steps to help you check
your code out.)

Step Rayleigh q. x(1)

0 -4 0.0

1 0.20455 0.12309

2 2.19403 _____________________________

3 __________ _____________________________

4 __________ _____________________________
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10 __________ _____________________________

15 __________ _____________________________

20 __________ _____________________________

25 __________ _____________________________

In addition, plot the progress of the method with the following commands

plot(rHistory); title ’Rayleigh quotient vs. k’

plot(xHistory(1,:)); title ’Eigenvector first component vs. k’

Please send me these two plots with your summary.

Exercise 3:

(a) Revise your power method.m to a new function named power method1.m with the signature

function [r, x, rHistory, xHistory] = power_method1 ( A, x , tol )

% [r, x, rHistory, xHistory] = power_method1 ( A, x , tol )

% comments

% your name and the date

maxNumSteps=10000; % maximum allowable number of steps

You should have an if test with the Matlab return statement in it before the end of the loop.
To determine when to stop iterating, add code to effect all three of the following criteria:

k > 1

|r(k) − r(k−1)| ≤ ϵ|r(k)| and

∥(x(k) − x(k−1))∥ ≤ ϵ

where the Matlab variable tol represents ϵ. (Recall that ∥x(k)∥ = 1.) The second two expressions
say that r and the eigenvector are accurate to a relative error of ϵ (the eigenvector is a unit
vector). The denominator of the relative error expression multiplies both sides of the inequality
so that numerical errors do not cause trouble when r is small.
Note: In real applications, it would not be possible to return the history variables because they
would require too much storage. Without the history variables a good way to implement this
stopping criterion would be to keep track only of r(k−1) and x(k−1) in separate variables. Just
before you update the values of r and x, use Matlab code such as

rold=r; % save for convergence tests

xold=x; % save for convergence tests

to save values for r(k−1) and x(k−1).

(b) Since the method should take fewer than maxNumSteps iterations, the method has failed to find
an eigenpair if it takes maxNumSteps iterations. Place the statement

disp(’power_method1: Failed’);

after the loop. Note: normally you would use an error function call here, rather than disp, but
for this lab you will need to see the intermediate values in rHistory and xHistory even when
the method does not converge at all.
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(c) Using your new power method code, try to determine the largest-in-magnitude eigenvalue, and
corresponding eigenvector, of the eigen test matrices by repeatedly taking power method steps.
Use a starting vector of all 0’s, except for a 1 in the last position, and a tolerance of 1.e-8. Hint:
The number of iterations is given by the length of rHistory. If the method does not converge,
write “failed” in the “no. iterations” column.

Matrix Rayleigh q. x(1) no. iterations

1 __________ __________ ____________

2 __________ __________ ____________

3 __________ __________ ____________

4 __________ __________ ____________

5 __________ __________ ____________

6 __________ __________ ____________

7 __________ __________ ____________

These matrices were chosen to illustrate different iterative behavior. Some converge quickly and
some slowly, some oscillate and some don’t. One does not converge. Generally speaking, the
eigenvalue converges more rapidly than the eigenvector. You can check the eigenvalues of these
matrices using the eig function. Plot the histories of Rayleigh quotient and first eigenvector
component for all the cases. Send me the plots for cases 3, 5, and 7.

Matlab hint: The eig command will show you the eigenvectors as well as the eigenvalues of a
matrix A, if you use the command in the form:

[ V, D ] = eig ( A )

The quantities V and D are matrices, storing the n eigenvectors as columns in V and the eigenvalues
along the diagonal of D.

5 The Inverse Power Method

The inverse power method reverses the iteration step of the power method. We write:

Ax(k) = x(k−1)

or, equivalently,
x(k) = A−1x(k−1)

In other words, this looks like we are just doing a power method iteration, but now for the matrix A−1. You
can immediately conclude that this process will often converge to the eigenvector associated with the largest-
in-magnitude eigenvalue of A−1. The eigenvectors of A and A−1 are the same, and if v is an eigenvector of
A for the eigenvalue λ, then it is also an eigenvector of A−1 for 1/λ and vice versa. Naturally, you should
not compute A−1 in numerical work, but solve the system instead.

This means that we can freely choose to study the eigenvalue problem of either A or A−1, and easily
convert information from one problem to the other. The difference is that the inverse power iteration will find
us the largest-in-magnitude eigenvalue of A−1, and that’s the eigenvalue of A that’s smallest in magnitude,
while the plain power method finds the eigenvalue of A that is largest in magnitude.

The inverse power method iteration is given in the following algorithm.

1. Starting with any nonzero vector x, divide by its length to make a unit vector called x(0),

2. Solve Ax̂ = x(k−1), and

3. Normalize the iterate by setting x(k) = x̂/||x̂||;

4. Compute the Rayleigh quotient of the iterate (unit vector) r(k) = (x(k) ·Ax(k)); and,
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5. If converged, stop; otherwise, go back to step 2.

Exercise 4: :

(a) Write an m-file that computes the inverse power method, stopping when

k >1

|r(k) − r(k−1)| ≤ϵ|r(k)|, and

||x(k) − x(k−1)|| ≤ϵ,

where ϵ denotes a specified relative tolerance. (Recall that ∥x(k)∥ = 1.) This is the same stopping
criterion you used in power method1.m.

Your file should have the signature:

function [r, x, rHistory, xHistory] = inverse_power ( A, x, tol)

% [r, x, rHistory, xHistory] = inverse_power ( A, x, tol)

% comments

% your name and the date

Be sure to include a check on the maximum number of iterations (10000 is a good choice) so that
a non-convergent problem will not go on forever.

(b) Using your inverse power method code, determine the smallest eigenvalue of the matrix A=eigen test(2),

[r x rHistory xHistory]=inverse_power(A,[0;0;1],1.e-8);

Please include r and x in your summary. How many steps did it take?

(c) As a debugging check, run

[rp xp rHp xHp]=power_method1(inv(A),[0;0;1],1.e-8);

You should find that r is close to 1/rp, that x and xp are close, and that xHistory and xHp are
close. (You should not expect rHistory and 1./rHp to agree in the early iterations.) If these
relations are not true, you have an error somewhere. Fix it before continuing. Warning: the two
methods may take slightly different numbers of iterations. Compare xHistory and xHp only for
the common iterations.

Exercise 5:

(a) Apply the inverse power method to the matrix A=eigen test(3) starting from the vector [0;0;1]
and with a tolerance of 1.e-8. You will find that it does not converge. Even if you did not print
some sort of non-convergence message, you can tell it did not converge because the length of the
vectors rHistory and xHistory is precisely the maximum number of iterations you chose. In the
following steps, you will discover why it did not converge and fix it.

(b) Plot the Rayleigh quotient history rHistory and the first component of the eigenvector history
xHistory(1,:). You should find that rHistory seems to show convergence, but xHistory oscil-
lates in a plus/minus fashion, and the oscillation is the cause of non-convergence. Include your
plots with your summary. Hint: you may find the plot hard to interpret. Either zoom in or plot
only the final 50 or so values.

(c) If a vector x is an eigenvector of a matrix, then so is −x, and with the same eigenvalue. The
following code will choose the sign of x(k) so x(k) and x(k−1) point in nearly the same direction.
This is done by making the dot product of the two vectors positive. If you include it in your
inverse power.m, it will still return an eigenvector, and it will no longer flip signs from iteration
to iteration.
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% choose the sign of x so that the dot product xold’*x >0

factor=sign(xold’*x);

if factor==0

factor=1;

end

x=factor*x;

(d) Try inverse power again. It should converge very rapidly.

(e) Fill in the following table with the eigenvalue of smallest magnitude. Start from the vector of
zeros with a 1 in the last place, and with a tolerance of 1.0e-8.

Matrix Rayleigh q. x(1) no. iterations

1 __________ __________ ____________

2 __________ __________ ____________

3 __________ __________ ____________

4 __________ __________ ____________

5 __________ __________ ____________

6 __________ __________ ____________

7 __________ __________ ____________

Be careful! One of these still does not converge. We could use a procedure similar to this
exercise to discover and fix that one, but it is more complicated and conceptually similar, so we
will not investigate it.

6 Finding Several Eigenvectors at Once

It is common to need more than one eigenpair, but not all eigenpairs. For example, finite element models of
structures often have upwards of a million degrees of freedom (unknowns) and just as many eigenvalues. Only
the lowest few are of practical interest. Fortunately, matrices arising from finite element structural models
are typically symmetric and negative definite, so the eigenvalues are real and negative and the eigenvectors
are orthogonal to one another.

For the remainder of this section, and this section only, we will be assuming that the matrix whose
eigenpairs are being sought is symmetric so that the eigenvectors are orthogonal.

If you try to find two eigenvectors by using the power method (or the inverse power method) twice, on
two different vectors, you will discover that you get two copies of the same dominant eigenvector. (The
eigenvector with eigenvalue of largest magnitude is called “dominant.”) Working smarter helps, though.
Because the matrix is assumed symmetric, you know that the dominant eigenvector is orthogonal to the
others, so you could use the power method (or the inverse power method) twice, forcing the two vectors to
be orthogonal at each step of the way. This will guarantee they do not converge to the same vector. If this
approach converges to anything, it probably converges to the dominant and “next-dominant” eigenvectors
and their associated eigenvalues.

We considered orthogonalization in Lab 7 and we wrote a function called modified gs.m. You can use
your copy or mine for this lab. You will recall that this function regards the vectors as columns of a matrix:
the first vector is the first column of a matrix X, the second is the second column, etc. Be warned that this
function will sometimes return a matrix with fewer columns than the one it is given. This is because the
original columns were not a linearly independent set. Code for real problems would need to recognize and
repair this case, but it is not necessary for this lab.

The power method applied to several vectors can be described in the following algorithm:

1. Start with any linearly independent set of vectors stored as columns of a matrix V , use the Gram-
Schmidt process to orthonormalize this set and generate a matrix V (0);

2. Generate the next iterates by computing V̂ = AV (k−1);
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3. Orthonormalize the iterates V̂ using the Gram-Schmidt process and name them V (k);

4. Adjust signs of eigenvectors as necessary.

5. Compute the Rayleigh quotient of the iterates as the diagonal matrix with diagonal equal to the
diagonal entries of the matrix (V (k))TAV (k);

6. If converged, exit; otherwise return to step 2.

Note: There is no guarantee that the eigenvectors that you find are the ones with largest magnitude
eigenvalues! It is possible that your starting vectors were themselves orthogonal to one or more eigen-
vectors, and you will never recover eigenvectors that are not spanned by the initial ones. In applica-
tions, estimates of the inertia of the matrix can be used to mitigate this problem. See, for example,
https://en.wikipedia.org/wiki/Sylvester%27s law of inertia for a discussion of inertia of a matrix and how it
can be used.

In the following exercise, you will write a Matlab function to carry out this procedure to find several
eigenpairs for a symmetric matrix. The initial set of eigenvectors will be represented as columns of a Matlab
matrix V.

Exercise 6:

(a) Begin writing a function mfile named power several.m with the signature

function [R, V, numSteps] = power_several ( A, V , tol )

% [R, V, numSteps] = power_several ( A, V , tol )

% comments

% your name and the date

to implement the algorithm described above.

(b) Add comments explaining that V is a matrix whose columns represent the eigenvectors and that
R is a diagonal matrix with the eigenvalues on the diagonal. Since we are assuming the matrix
A to be symmetric, add code to check for symmetry and call Matlab’s error function if it is not
symmetric.

(c) You can use the following code to make sure the columns of D do not flip sign from iteration to
iteration.

d=sign(diag(Vold’*V)); % find signs of dot product of columns

D=diag(d); % diagonal matrix with +-1

V=V*D; % Transform V

(d) Stop the iterations when all three of the following conditions are satisfied.

k > 1

||R(k) −R(k−1)||fro ≤ ϵ||R(k)||fro, and

||V (k) − V (k−1)||fro ≤ ϵ||V (k)||fro.

(e) Add an error message about too many iterations after end of your loop, similar to the ones in
power method1.m and inverse power.m. You can use Matlab’s error function this time.

(f) Test power several for A=eigen test(4) starting from the vector of zeros with a 1 in the last
place, and with a tolerance of 1.0e-8. It should agree with the results in Exercise 3, up to roundoff.

(g) Run power several function for the matrix A=eigen test(4) with a tolerance of 1.0e-8 starting
from the vectors
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V = [ 0 0

0 0

0 0

0 0

0 1

1 0];

What are the eigenvalues and eigenvectors? How many iterations are needed?

(h) Further test your results by checking that the two eigenvectors you found are actually eigenvec-
tors and are orthogonal. (Test that AV=VR is approximately satisfied, where V is your matrix of
eigenvectors and R is the diagonal matrix of eigenvalues.)

(i) Since this A is a small (6× 6) matrix, you can find all eigenpairs by using power several starting
from the (obviously linearly independent) vectors

V=[0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0 ];

What are the six eigenvalues? How many iterations were needed?

7 Using Shifts

A major limitation of the power method is that it can only find the eigenvalue of largest magnitude. Similarly,
the inverse power iteration seems only able to find the eigenvalue of smallest magnitude. Suppose, however,
that you want one (or a few) eigenpairs with eigenvalues that are away from the extremes? Instead of
working with the matrix A, let’s work with the matrix A+ σI, where we have shifted the matrix by adding
σ to every diagonal entry. This shift makes a world of difference.

We already said the inverse power method finds the eigenvalue of smallest magnitude. Denote the smallest
eigenvalue of A+ σI by µ. If µ is an eigenvalue of A+ σI then A+ σI − µI = A− (µ− σ)I is singular. In
other words, λ = µ− σ is an eigenvalue of A, and is the eigenvalue of A that is closest to σ.

In general, the idea of shifting allows us to focus the attention of the inverse power method on seeking
the eigenvalue closest to any particular value we care to name. This also means that if we have an estimated
eigenvalue, we can speed up convergence by using this estimate in the shift. Although various strategies for
adjusting the shift during the iteration are known, and can result in very rapid convergence, we will be using
a constant shift.

We are not going to worry here about the details or the expense of shifting and refactoring the matrix.
(A real algorithm for a large problem would be very concerned about this!) Our simple-minded method
algorithm for the shifted inverse power method looks like this:

1. Starting with any nonzero vector x(0), and given a fixed shift value σ:

2. Solve (A− σI)x̂ = x(k−1), and

3. Normalize the iterate by setting x(k) = x̂/||x̂||; and,

4. Adjust the eigenvector as necessary.

5. Estimate the eigenvalue as

r(k) = σ + (x(k) · (A− σI)x(k))

= (x(k) ·Ax(k))
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6. If converged, exit; otherwise return to step 2.

Exercise 7:

Starting from your inverse power.m, write an m-file for the shifted inverse power method. Your
file should have the signature:

function [r, x, numSteps] = shifted_inverse ( A, x, shift, tol)

% [r, x, numSteps] = shifted_inverse ( A, x, shift, tol)

% comments

% your name and the date

(a) Compare your results from inverse power.m applied to the matrix A=eigen test(2) starting
from [0;0;1] and using a relative tolerance of 1.0e-8 with results from shifted inverse.m with
a shift of 0. The results should be identical and take the same number of steps.

(b) Apply shifted inverse to the same A=eigen test(2) with a shift of 1.0. You should get the
same eigenvalue and eigenvector as with a shift of 0. How many iterations did it take this time?

(c) Apply shifted inverse.m to the matrix eigen test(2) with a shift of 4.73, very close to the
largest eigenvalue. Start from the vector [0;0;1] and use a relative tolerance of 1.0e-8. You
should get a result that agrees with the one you calculated using power method but it should take
very few steps. (In fact, it gets the right eigenvalue on the first step, but convergence detection is
not that fast.)

(d) Using your shifted inverse power method code, we are going to search for the “middle” eigenvalue
of matrix eigen test(2). The power method gives the largest eigenvalue as about 4.73 and the
the inverse power method gives the smallest as 1.27. Assume that the middle eigenvalue is near
2.5, start with the vector [0;0;1] and use a relative tolerance of 1.0e-8. What is the eigenvalue
and how many steps did it take?

(e) Recapping, what are the three eigenvalues and eigenvectors of A? Do they agree with the results
of eig?

In the previous exercise, we used the backslash division operator. This is another example where the
matrix could be factored first and then solved many times, with a possible time savings.

The value of the shift is at the user’s disposal, and there is no good reason to stick with the initial
(guessed) shift. If it is not too expensive to re-factor the matrix A − σI, then the shift can be reset after
each iteration of after a set of n iterations, for n fixed.

One possible choice for σ would be to set it equal to the current eigenvalue estimate on each iteration.
The result of this choice is an algorithm that converges at an extremely fast rate, and is the predominant
method in practice.

8 The QR Method

So far, the methods we have discussed seem suitable for finding one or a few eigenvalues and eigenvectors at
a time. In order to find more eigenvalues, we’d have to do a great deal of special programming. Moreover,
these methods are surely going to have trouble if the matrix has repeated eigenvalues, distinct eigenvalues
of the same magnitude, or complex eigenvalues. The “QR method” is a method that handles these sorts of
problems in a uniform way, and computes all the eigenvalues, but not the eigenvectors, at one time.

It turns out that the QR method is equivalent to the power method starting with a basis of vectors and
with Gram-Schmidt orthogonalization applied at each step, as you did in Exercise 6. A nice explanation can
be found in Prof. Greg Fasshauer’s class notes. http://www.math.iit.edu/~fass/477577 Chapter 11.pdf

The QR method can be described in the following way.
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1. Given a matrix A(k−1), construct its QR factorization; and,

2. Set A(k) = RQ.

3. If Ak has converged, stop, otherwise go back to step 1.

The construction of the QR factorization means that A(k−1) = QR, and the matrix factors are reversed to
construct A(k).

The sequence of matrices A(k) is orthogonally similar to the original matrix A, and hence has the same
eigenvalues. This is because A(k−1) = QR, and A(k) = RQ = QTQRQ = QTA(k−1)Q.

• If the matrix A is symmetric, the sequence of matrices A(k) converges to a diagonal matrix.

• If the eigenvalue are all real, the lower triangular portions of A converge to zero and diagonals converge
to eigenvalues.

In addition, the method can be modified in a way we will not consider here so that it converges to an
“almost” upper triangular matrix, where the main subdiagonal will have nonzero entries only when there is
a complex conjugate pair of eigenvalues.

In Lab 7, you wrote the function gs factor.m, that uses the modified Gram-Schmidt method to into the
product of an orthogonal matrix, Q, and an upper-triangular matrix, R. You will be using this function in
this lab. Everything in this lab could be done using the Matlab qr function or your h factor.m function
from Lab 7, but you should use gs factor for this lab.

Exercise 8:

(a) Recover your gs factor.m file from Lab 7, or download my copy gs factor.m.

(b) Write an m-file for the QR method for a matrix A. Your file should have the signature:

function [e,numSteps] = qr_method ( A, tol)

% [e,numSteps] = qr_method ( A, tol)

% comments

% your name and the date

e is a vector of eigenvalues of A. Since the lower triangle of the matrix A(k) is supposed to converge,
terminate the iteration when

||A(k)
lower triangle −A

(k−1)
lower triangle||fro ≤ ϵ||A(k)

lower triangle||fro

where ϵ is the relative tolerance. You can use tril(A) to recover just the lower triangle of a
matrix. Include a check so the number of iterations never exceeds some maximum (10000 is a
good choice), and use the Matlab “error” function to stop iterating if it is exceeded.

(c) The eigen test(2) matrix is 3 × 3 and we have found its eigenvalues in exercises 3,4, and 7.
Check that you get the same values using qr method. Use a relative tolerance of 1.0e-8.

(d) Try out the QR iteration for the eigen test matrices except number 5. Use a relative tolerance
of 1.0e-8. Report the results in the following table.

Matrix largest & smallest Eigenvalues Number of steps

1 _________ _________ _________

2 _________ _________ _________

3 _________ _________ _________

4 _________ _________ _________

skip no. 5

6 _________ _________ _________

7 _________ _________ _________
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(e) In case 7, what is the difference between your computed largest eigenvalue and the one from the
Matlab eig function? For the smallest eigenvalue? How does the size of these errors compare
with the tolerance of 1.0e-8?

(f) Matrix 5 has 4 distinct eigenvalues of equal norm, and the QR method does not converge. Tem-
porarily reduce the maximum number of iterations to 50 and change qr method.m to print e at
each iteration to see why it fails. What happens to the iterates? As with the case of changing
signs, it is possible to “handle” this case in the code so that it converges, but we will not pursue
it here. Return the maximum number of iterations to its large value and make sure nothing is
printed each iteration before continuing.

Serious implementations of the QR method do not work the way our version works. The code resembles
the code for the singular value decomposition you will see in the next lab and the matrices Q and R are never
explicitly constructed. The algorithm also uses shifts to try to speed convergence and ceases iteration for
already-converged eigenvalues.

In the following section we consider the question of convergence of the basic QR algorithm.

9 Convergence of the QR Algorithm

Throughout this lab we have used a very simple convergence criterion, and you saw in the previous exercise
that this convergence criterion can result in errors that are too large. In general, convergence is a difficult
subject and fraught with special cases and exceptions to rules. To give you a flavor of how convergence
might be reliably addressed, we consider the case of the QR algorithm applied to a real, symmetric matrix,
A, with distinct eigenvalues, no two of which are the same in magnitude. For such matrices, the following
theorem can be shown.

Theorem Let A be a real symmetric matrix of order n and let its eigenvalues satisfy

0 < |λ1| < |λ2| < · · · < |λn|.

Then the iterates {A(k)} of the QR method will converge to a diagonal matrix D whose entries are the
eigenvalues of A. Furthermore,

∥D −A(k)∥ ≤ Cmax
j

∣∣∣∣ λj

λj+1

∣∣∣∣ ∥D −A(k−1)∥

The theorem points out a method for detecting convergence. Supposing you start out with a matrix A

satisfying the above conditions, and you call the matrix at the kth iteration A(k). If D(k) denotes the matrix
consisting only of the diagonal entries of A(k), then the Frobenius norm of A(k) −D(k) must go to zero as
a power of ρ = max |λj |/|λj+1|, and if D is the diagonal matrix with the true eigenvalues on its diagonal,
then D(k) must converge to D as a geometric series with ratio ρ. In the following algorithm, the diagonal
entries of A(k) (these converge to the eigenvalues) will be the only entries considered. The off-diagonal entries
converge to zero, but there is no need to make them small so long as the eigenvalues are converged.

The following algorithm includes a convergence estimate as part of the QR algorithm.

1. Define A(0) = A and e(0) = diag(A).

2. Compute Q and R uniquely so that A(k−1) = QR, set A(k) = RQ and e(k) = diag(A(k)). (This is one
step of the QR algorithm.)

3. Define a vector of absolute values of eigenvalues λ(k) = |e(k)|, sorted in ascending order. (Matlab has

a function, sort, that sorts a vector in ascending order.) Compute ρ(k) = maxj(λ
(k)
j /λ

(k)
j+1). Since the

λ(k) are sorted, ρ(k) < 1.
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4. Compute the eigenvalue convergence estimate

||e(k) − e(k−1)||
(1− ρ(k))||e(k)||

.

Return to step 2 if it exceeds the required tolerance.
Programming hint: Your code should not do a division for this step! If the tolerance value is ϵ, your
code should check that

||e(k) − e(k−1)|| < ϵ(1− ρ(k))||e(k)||.

The reason is that if ρ(k) happens to equal 1, there is no division by zero and there is no need to check
for that special case.

You may wonder where the denominator (1− ρ) came from. Consider the geometric series

S = 1 + ρ+ ρ2 + ρ3 + · · ·+ ρk + ρk+1 + · · · = 1

(1− ρ)
.

Truncating this series at the (k + 1)th term and calling the truncated sum Sj , we have

S − Sj = ρj+1(1 + ρ+ ρ2 + . . . ) =
ρj+1

1− ρ
.

But, ρj+1 = Sj+1 − Sj , so

S − Sj =
Sj+1 − Sj

1− ρ
.

Thus, the error made in truncating a geometric series is the difference of two partial sums divided by (1−ρ).

Exercise 9:

(a) Copy your qr method.m file to qr convergence.m and change the signature line to

function [e, numSteps]=qr_convergence(A,tol)

% [e, numSteps]=qr_convergence(A,tol)

% comments

% your name and the date

Modify the code to implement the above algorithm.

(b) Test your code on eigen test(1) with a tolerance of 1.e-8. Do the three eigenvalues approxi-
mately agree with results from Exercise 8? The number of iterations required might be slightly
larger than in Exercise 8.

(c) Apply your algorithm to eigen test(8), with a tolerance of 1.0e-8. Include the eigenvalues and
the number of iterations in your summary.

(d) Compare your computed eigenvalues with ones computed by eig. How close are your eigenvalues?
Is the relative error near the tolerance?

(e) If you decrease the tolerance by a factor of ten to 1.0e-9, Does the relative error decrease by a
factor of ten as well? This test indicates the quality of the error estimate.

(f) Apply qr convergence to A=eigen test(7) with a tolerance of 1.0e-8. How many iterations does
it take?

(g) Use eMatlab=eig(A) to compute “exact” eigenvalues for eigen test(7). The entries of eMatlab
might not be in the same order, so both should be sorted in order to be compared. What is the
relative error

14



norm(sort(e)-sort(eMatlab))/norm(e)

where e is the vector of eigenvalues from qr convergence?

(h) How many iterations does qr method take to reach the relative tolerance of 1.0e-8 for the matrix
A=eigen test(7)? Which convergence method yields more accurate results? If your paycheck
depended on achieving a particular accuracy, which method would you use?

(i) Convergence based on provable results is very reliable if the assumptions are satisfied. Try to use
your qr convergence function on the nonsymmetric matrix

A = [ .01 1

-1 .01];

It should fail. Explain how you know it failed and what went wrong.

10 Extra Credit: Roots of polynomials (4 points)

Have you ever wondered how all the roots of a polynomial can be found? It is fairly easy to find the largest
and smallest real roots using, for example, Newton’s method, but then what? If you know a root r exactly,
of course, you can eliminate it by dividing by (x − r) (called “deflation”), but in the numerical world you
never know the root exactly, and deflation with an inexact root can introduce large errors. Eigenvalues come
to the rescue.

Suppose you are given a monic (a1 = 1) polynomial of degree N

p(x) = xN + a2x
N−1 + a3x

N−2 + . . .+ aNx+ . . . aN+1. (3)

Consider the N ×N matrix with ones on the lower subdiagonal and the negatives of the coefficients of the
polynomial in the last column:

A =



0 0 0 . . . 0 −aN+1

1 0 0 . . . 0 −aN
0 1 0 . . . 0 −aN−1

0 0 1 . . . 0 −aN−2

. . .
...

...
0 0 0 . . . 1 −a2


.

It is easy to see that det(A− λI) = (−1)Np(λ) so that the eigenvalues of A are the roots of p.

Exercise 10:

(a) Write a Matlab function m-file with signature

function r=myroots(a)

% r=myroots(a)

% comments

% your name and the date

that will take a vector of coefficients and find all the roots of the polynomial p(x) defined in (3) by
constructing the companion matrix and using Matlab’s eig function to compute its eigenvalues.

(b) To test myroots, choose at least three different vectors r(j) of length at least 5. Have at least
one of the vectors with complex values. Use the Matlab poly function to find the coefficients of
the three polynomials whose roots are the values r(j) and then use myroots to find the roots of
those polynomials. You should find that your computed roots are close to the chosen values in
each r(j). Please include the three sets of roots and the errors in your computed values in your
summary.
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