
MATH2071: LAB 7: Factorizations

Introduction Exercise 1
Orthogonal Matrices Exercise 2
The Gram Schmidt Method Exercise 3
Gram-Schmidt Factorization Exercise 4
Householder Matrices Exercise 5
Householder Factorization Exercise 6
The QR Method for Linear Systems Exercise 7
Extra Credit: Cholesky factorization Extra credit

1 Introduction

We have seen that the PLU factorization can be used to solve a linear system provided that the system is
square, and that it is nonsingular, and that it is not too badly conditioned. However, if we want to handle
problems with a bad condition number, or that are singular, or even rectangular, we are going to need to
come up with a different approach. In this lab, we will look at two versions of the QR factorization:

A = QR

where Q is an “orthogonal” matrix, and R is upper triangular. In a later lab, we will look at the “singular
value decomposition” (SVD) that factors a matrix into the form A = USV T .

The QR factorization will form the basis of a method for finding eigenvalues of matrices in a later lab. It
can also be used to solve linear systems, especially poorly-conditioned ones that the PLU factorization can
have trouble with. In addition, topics such as the Gram Schmidt method and Householder matrices have
application in many other contexts.

You may find it convenient to print the pdf version of this lab rather than the web page itself. This lab
will take two sessions.

2 Orthogonal Matrices

Definition: An “orthogonal matrix” is a real matrix whose inverse is equal to its transpose.
By convention, an orthogonal matrix is usually denoted by the symbol Q. The definition of an orthogonal

matrix immediately implies that
QQT = QTQ = I.

One way to interpret this equation is that the columns of the matrix Q, when regarded as vectors, form an
orthonormal set of vectors, and similarly for the rows. From the definition of an orthogonal matrix, and
from the fact that the L2 vector norm of x can be defined by:

||x||2 =
√

(xTx)

and the fact that
(Ax)T = xTAT

you should be able to deduce that, for orthogonal matrices,

||Qx||2 = ||x||2

If I multiply a two-dimensional vector x by Q then its L2 norm doesn’t change, and so Qx must lie on
the circle whose radius is ∥x∥. In other words, Qx is x rotated around the origin by some angle, or reflected
through the origin or about a diameter. That means that a two-dimensional orthogonal matrix represents a
rotation or reflection. Even in N dimensions, orthogonal matrices are often called rotations.

1

When matrices are complex, the term “unitary” is an analog to “orthogonal.” A matrix is unitary if
UUH = UHU = I, where the H superscript refers to the “Hermitian” or “conjugate-transpose” of the
matrix. In Matlab, the prime operator implements the Hermitian and the dot-prime operator implements
the transpose. A real matrix that is unitary is orthogonal.

3 The Gram Schmidt Method

The “Gram Schmidt method” can be thought of as a process that analyzes a set of vectors X , producing
a (possibly smaller) set of vectors Q that: (a) span the same space; (b) have unit L2 norm; and, (c) are
pairwise orthogonal. Note that if we can produce such a set of vectors, then we can easily answer several
important questions. For example, the size of the set Q tells us whether the set X was linearly independent,
and the dimension of the space spanned and the rank of a matrix constructed from the vectors. And of
course, the vectors in Q are the orthonormal basis we were seeking. So you should believe that being able
to compute the vectors Q is a valuable ability.

We will be using the Gram-Schmidt process to factor a matrix, but the process itself pops up repeatedly
whenever sets of vectors must be made orthogonal. You may see it, for example, in Krylov space methods
for iteratively solving systems of equations and for eigenvalue problems.

In words, the Gram-Schmidt process goes like this:

1. Start with no vectors in Q;

2. Consider x, the next (possibly the first) vector in X ;

3. For each vector qi already in Q, compute the projection of qi on x (i.e., qi · x). Subtract all of these
projections from x to get a vector orthogonal to qi;

4. Compute the norm of (what’s left of) x. If the norm is zero (or too small), discard x from Q; otherwise,
divide x by its norm and move it from X to Q.

5. If there are more vectors in X , return to step 2.

6. When X is finally empty, you have an orthonormal set of vectors Q spanning the same space as the
original set X .

Here is a sketch of the Gram Schmidt process as an algorithm. Assume that nx is the number of x vectors:
Classical Gram-Schmidt algorithm

nq = 0 % nq will become the number of q vectors

for k = 1 to nx

y = xk

for ℓ = 1 to nq % if nq = 0 the loop is skipped

rℓk = qℓ · xk

y = y - rℓkqℓ

end

rkk =
√
y · y

if rkk > 0

nq = nq + 1

qnq = y/rkk
end

end

You should be able to match this algorithm to the previous verbal description. Can you see how the L2

norm of a vector is being computed? Note that the auxilliary vector y is needed here because without it the
vector xk would be changed during the loop on ℓ instead of only after the loop is complete.

2

The Gram-Schmidt algorithm as described above can be subject to errors due to roundoff when imple-
mented on a computer. Nonetheless, in the first exercise you will implement it and confirm that it works well
in some cases. In the subsequent exercise, you will examine an alternative version that has been modifed to
reduce its sensitivity to roundoff error.

Exercise 1:

(a) Implement the Gram-Schmidt process in an m-file called unstable gs.m. Your function should
have the signature:

function Q = unstable_gs (X)

% Q = unstable_gs(X)

% more comments

% your name and the date

Assume the x vectors are stored as columns of the matrix X. Be sure you understand this data
structure because it is a potential source of confusion. In the algorithm description above, the
x vectors are members of a set X , but here these vectors are stored as the columns of a matrix
X. Similarly, the vectors in the set Q are stored as the columns of a matrix Q. The first column

of X corresponds to the vector x1, so that the Matlab expression X(k,1) refers to the kth

component of the vector x1, and the Matlab expression X(:,1) refers to the Matlab column
vector corresponding to x1. Similarly for the other columns. Include your code with your summary
report.

(b) It is always best to test your code on simple examples for which you know the answers. Test your
code using the following input:

X = [1 1 1

0 1 1

0 0 1]

You should be able to see that the correct result is the identity matrix. If you do not get the
identity matrix, find your bug before continuing.

(c) Another simple test you can do in your head is the following:

X = [1 1 1

1 1 0

1 0 0]

The columns of Q should have L2 norm 1, and be pairwise orthogonal, and you should be able to
confirm these facts “by inspection.”

(d) Test your Gram-Schmidt code to compute a matrix Q using the following input:

X = [2 -1 0

-1 2 -1

0 -1 2

0 0 -1]

If your code is working correctly, you should compute approximately:

[0.8944 0.3586 0.1952

-0.4472 0.7171 0.3904

0.0000 -0.5976 0.5855

0.0000 0.0000 -0.6831]

3

You should verify that the columns of Q have L2 norm 1, and are pairwise orthogonal. If you like
programming problems, think of a way to do this check in a single line of Matlab code.

(e) Show that the matrix Q you just computed is not an orthogonal matrix, even though its columns
form an orthornormal set. Are you surprised?

(f) Consider a Hilbert matrix X=hilb(10), and compute the result Q1=unstable gs(X). Is Q1 an
orthogonal matrix? Is it close to an orthogonal matrix? You do not need to include Q1 in your
summary, but please describe the results of the tests your performed.

(g) To examine Q1 further, compute B1=Q1’*Q1, where Q1 is the matrix you just computed from a
Hilbert matrix. If Q1 were orthogonal, B1 would be the identity. Look at the 3× 3 submatrix at
the top left of B1 (print the 3× 3 submatrix B1(1:3,1:3). Similarly, look at the 3× 3 submatrix
at the lower right of B1, and choose a 3× 3 submatrix including the diagonal near the middle of
B1. You should be able see how roundoff has grown as the algorithm progressed. Include these
submatrices in your summary.

It would be foolish to use the unstable form of the Gram-Schmidt factorization when the modified
Gram-Schmidt algorithm is only slightly more complicated. The modified Gram-Schmidt algorithm can be
described in the following way.

Modified Gram-Schmidt algorithm
nq = 0 % nq will become the number of q vectors

for k = 1 to nx

y = xk

for ℓ = 1 to nq % if nq = 0 the loop is skipped

rℓk = qℓ · y % modification

y = y - rℓkqℓ

end

rkk =
√
y · y

if rkk > 0

nq = nq + 1

qnq
= y/rkk

end

end
The modification seems pretty minor. In exact arithmetic, it makes no difference at all. Suppose, however,

that because of roundoff errors a “little bit” of q1 slips into q3. In the original algorithm the “little bit” of
q1 will cause r31 = q3 ·x1 to be slightly less accurate than r31 = q3 ·y because there is a “more of” q1 inside
x3 than there is inside y. In the next exercise you will see that the modified algorithm can be less affected
by roundoff than the original one.

Exercise 2:

(a) Implement the modified Gram-Schmidt process in an m-file named modified gs.m. Your function
should have the signature:

function Q = modified_gs(X)

% Q = modified_gs(X)

% more comments

% your name and the date

Your code should be something like unstable gs.m.

(b) Choose at least three different 3 × 3 matrices and compare the results from modified gs.m

with those from unstable gs.m. The results should agree, up to roundoff. If they do not,
fix modified gs.m. Describe your tests completely in the summary in a manner that your tests
can be replicated.

4

(c) Consider again the Hilbert matrix X1=hilb(10) and compute Q2=modified gs(X1) and B2=Q2’*Q2.
Show that B2 is “closer” to the identity matrix than B1 (from Exercise 1) by computing the Frobe-
nius norm of the differences norm(B1-eye(10),’fro’) and norm(B2-eye(10),’fro’). Include
your results in your summary.

4 Gram-Schmidt Factorization

We need to take a closer look at the Gram-Schmidt process. Recall how the process of Gauss elimination
could actually be regarded as a process of factorization. This insight enabled us to solve many other problems.
In the same way, the Gram-Schmidt process is actually carrying out a different factorization that will give
us the key to other problems. Just to keep our heads on straight, let me point out that we’re about to stop
thinking of X as a bunch of vectors, and instead regard it as a matrix. Since it is traditional for matrices to
be called A, that’s what we’ll call our set of vectors from now on.

Now, in the Gram-Schmidt algorithm, the numbers that we called rℓk and rkk, that we computed, used,
and discarded, actually record important information. They can be regarded as the nonzero elements of an
upper triangular matrix R. The Gram-Schmidt process actually produces a factorization of the matrix A of
the form:

A = QR

Here, the matrix Q has the same M × N “shape” as A, so it’s only square if A is. The matrix R will be
square (N × N), and upper triangular. Now that we’re trying to produce a factorization of a matrix, we
need to modify the Gram-Schmidt algorithm of the previous section. Every time we consider a vector xk at
the beginning of a loop, we must produce a vector qk at the end of the loop, instead of dropping some out.
Otherwise, the product QR will be missing some columns. The choice of column is not important because
the corresponding row of R is zero, but the additional column of Q must result in Q being orthogonal. It is
not hard to make such a choice, but it adds complexity. For the purpose of this exercise, if rkk, the norm of
vector xk, is zero, call error() with an appropriate error message.

Exercise 3:

(a) Make a copy of the m-file modified gs.m and call it gs factor.m. Modify it to compute the Q
and R factors of a (possibly) rectangular matrix A. It should have the signature

function [Q, R] = gs_factor (A)

% [Q, R] = gs_factor (A)

% more comments

% your name and the date

Include a copy of your code with your summary.

Recall: [Q,R]=gs factor is the syntax that Matlab uses to return two matrices from the function.
When calling the function, you use the same syntax:

[Q,R]=gs_factor(...

When you use this syntax, it is OK (but not a great idea) to leave out the comma between the Q
and the R but leaving out that comma is a syntax error in the signature line of a function m-file.
I recommend you use the comma all the time.

(b) Compute the QR factorization of the following matrix.

A = [1 1 1

1 1 0

1 0 0]

5

Compare the matrix Q computed using gs factor with the matrix computed using modified gs.
They should be the same. Check that A = QR and R is upper triangular. If not, fix your code
now.

(c) Compute the QR factorization of a 100 × 100 matrix of random numbers (A=rand(100,100)).
(Hint: use norms to check the equalities.)

• Is it true that QTQ = I? (Hint: Does norm(Q’*Q-eye(100),’fro’) equal 0?)

• Is it true that QQT = I?

• Is Q orthogonal?

• Is the matrix R upper triangular? (Hint: the Matlab functions tril or triu can help, so you
don’t have to look at all those numbers.)

• Is it true that A = QR?

(d) Compute the QR factorization of the following matrix.

A = [0 0 1

1 2 3

5 8 13

21 34 55]

• Is it true that QTQ = I?

• Is it true that QQT = I?

• Is Q orthogonal?

• Is the matrix R upper triangular?

• Is it true that A = QR?

5 Householder Matrices

It turns out that it is possible to take a given vector d and a given integer k and find a matrix H so that
the product Hd is proportional to the vector ek = (0, . . . , 0, 1︸︷︷︸

k

, 0, . . . , 0)T . That is, it is possible to find a

matrix H that “zeros out” all but the kth entry of d. (In this section, we will be concerned primarily with
the case k = 1.) The matrix is given by

v =
d− ∥d∥ek

||(d− ∥d∥ek)||
H = I − 2vvT (1)

Note that vTv is a scalar (the inner or dot product) but vvT is a matrix (the outer or exterior product).
To see why Equation (1) is true, denote d = (d1, d2, . . .)

T and do the following calculation.

Hd = d− 2
(d− ∥d∥ek)(d− ∥d∥ek)T

(d− ∥d∥ek)T (d− ∥d∥ek)
d

= d− 2

∥d∥2 − 2dk∥d∥) + ∥d∥2
(d− ∥d∥ek)(∥d∥2 − ∥d∥dk)

= d− 2(∥d∥2 − ∥d∥dk)
(2∥d∥2 − 2dk∥d∥)

(d− ∥d∥ek)

= ∥d∥ek

You can find further discussion in Quarteroni, Sacco & Saleri (Sec. 5.6.1), in a Planet Math encyclopedia
article http://planetmath.org/householdertransformtion, or many other references.

6

There is a way to use this idea to take any column of a matrix and make those entries below the
diagonal entry be zero, as is done in the kth step of Gaußian factorization. This will lead to another matrix
factorization.

Consider a column vector of length n split into two

b =



b1
b2
...

bk−1

bk
bk+1

...
bn


,

and denote part of b below the line as d, a column vector of length n− k + 1.

d =


d1
d2
...

dn−k+1

 =


bk

bk+1

...
bn

 .

Construct an (n − k + 1) × (n − k + 1) matrix Hd that changes d so it has a nonzero first component and
zeros below it. Then


I 0

0 Hd





b1
b2
...

bk−1

bk
bk+1

...
bn


=



b1
b2
...

bk−1

∥d∥
0
...
0


.

Setting

H =

[
I 0
0 Hd

]
allows us to write

Hb = H



b1
b2
...

bk−1

bk
bk+1

...
bn


=



b1
b2
...

bk−1

∥d∥
0
...
0


. (2)

7

The algorithm for computing Hd involves constructing a (n− k + 1)-vector v, the same size as d. Once
v has been constructed, it will be expanded to a n-vector w by adding k − 1 leading zeros.

w =



0
...
0
v1
v2
...

vn−k+1


It should be clear that H = I − 2wwT satisfies

H =

[
I 0
0 Hd

]
.

The following algorithm for constructing v and w includes a choice of sign that minimizes roundoff errors.
This choice results in the sign of (Hb)k in (2) being either positive or negative.

Constructing a Householder matrix

1. Set α = ±∥d∥ with signum(α) = −signum(d1), and α > 0 if d1 = 0. (The sign is chosen to minimize
roundoff errors.)

2. Set v1 =
√

1
2

[
1− d1

α

]
3. Set p = −αv1

4. Set vj =
dj

2p for j = 2, 3, . . . , (n− k + 1)

5. Set w =


0
...
0
v

 .

6. Set H = I − 2wwT .

The vector v is specified above in (1) and clearly is a unit vector. It is hard to see that the vector v as
defined in the algorithm above is a unit vector satisfying (1). The calculation confirming that v is a unit
vector is presented here. You should look carefully at the algorithm to convince yourself that v also satsifies
(1).

Suppose you are given a vector d. Define

α = ∥d∥

v1 =

√
1

2

(
1− d1

α

)
p = −αv1

vj =
dj
2p

for j ≥ 2

8

Then the following calculation shows that v is a unit vector.

∥v∥2 =
1

2

(
1− d1

α

)
+
∑(

d2j

4α2
(
1
2

(
1− d1

α

)))

=
α2
(
1− d1

α

)2
+
∑

d2j

2α2
(
1− d1

α

)
=

(α− d1)
2 + α2 − d21

2α(α− d1)

=
(α− d1) + (α+ d1)

2α
= 1

In the following exercise you will write a Matlab function to implement this algorithm.

Exercise 4:

(a) Start a function m-file named householder.m with signature and beginning lines

function H = householder(b, k)

% H = householder(b, k)

% more comments

% your name and the date

n = size(b,1);

if size(b,2) ~= 1

error(’householder: b must be a column vector’);

end

d(:,1) = b(k:n);

if d(1)>=0

alpha = -norm(d);

else

alpha = norm(d);

end

(b) Add comments at the beginning, being sure to explain the use of the variable k.

(c) In the case that alpha is exactly zero, the algorithm will fail because of a division by zero. For
the case that alpha is zero, return

H = eye(n);

otherwise, complete the above algorithm.

(d) Test your function on the vector b=[10;9;8;7;6;5;4;3;2;1]; with k=1 and again with k=4.
Check that H is orthogonal and H*b has zeros in positions k+1 and below.
Debugging hints:

• w is an n× 1 (column) unit vector.

• Orthogonality of H is equivalent to the vector w being a unit vector. If H is not orthogonal,
check w.

• v is a (n− k + 1)× 1 (column) unit vector.

• No individual component of a unit vector can ever be larger than 1.

9

This householder function can be used for the QR factorization of a matrix by proceeding through a
series of partial factorizations A = QkRk, where Q0 is the identity matrix, and R0 is the matrix A. When

we begin the kth step of factorization, our factor Rk−1 is only upper triangular in columns 1 to k − 1. Our
goal on the k-th step is to find a better factor Rk that is upper triangular through column k. If we can
do this process n − 1 times, we’re done. Suppose, then, that we’ve partially factored the matrix A, up to
column k − 1. In other words, we have a factorization

A = Qk−1Rk−1

for which the matrix Qk−1 is orthogonal, but for which the matrix Rk−1 is only upper triangular for the
first k− 1 columns. To proceed from our partial factorization, we’re going to consider taking a Householder
matrix H, and “inserting” it into the factorization as follows:

A = Qk−1Rk−1

= Qk−1H
THRk−1

Then, if we define

Qk = Qk−1H
T

Rk = HRk−1

it will again be the case that:
A = QkRk

and we’re guaranteed that Qk is still orthogonal. Our construction of H guarantees that Rk is actually upper
triangular all the way through column k.

Exercise 5: In this exercise you will see how the Householder matrix can be used in the steps of an
algorithm that passes through a matrix, one column at a time, and turns the bottom of each column
into zeros.

(a) Define the matrix A to be the magic square of order 5, A=magic(5).

(b) Compute H1, the Householder matrix that knocks out the subdiagonal entries in column 1 of A,
and then compute A1=H1*A. Are there any non-zero values below the diagonal in the first column?

(c) Now let’s compute H2, the Householder matrix that knocks out the subdiagonal entries in column
2 of A1 (not A), and compute A2=H2*A1. This matrix should have subdiagonal zeros in column 2
as well as in column 1. You should be convinced that you can zero out any subdiagonal column
you want. Since zeroing out one subdiagonal column doesn’t affect the previous columns, you can
proceed sequentially to zero out all subdiagonal columns.

6 Householder Factorization

For a rectangular M by N matrix A, the Householder QR factorization has the form

A = QR

where the matrix Q is M ×M (hence square and truly orthogonal) and the matrix R is M ×N , and upper
triangular (or upper trapezoidal if you want to be more accurate.)

If the matrix A is not square, then this definition is different from the Gram-Schmidt factorization we
discussed before. The obvious difference is the shape of the factors. Here, it’s the Q matrix that is square.
The other difference, which you’ll have to take on faith, is that the Householder factorization is generally
more accurate (smaller arithmetic errors), and easier to define compactly.

10

Householder QR Factorization Algorithm:
Q = I;

R = A;

for k = 1:min(m,n)

Construct the Householder matrix H for column k of the matrix R;
Q = Q * H’;

R = H * R;

end

Exercise 6:

(a) Write an m-file h factor.m. It should have the form

function [Q, R] = h_factor (A)

% [Q, R] = h_factor (A)

% more comments

% your name and the date

Use the routine householder.m in order to compute the H matrix that you need at each step.

(b) A simple test is the matrix

A = [0 1 1

1 1 1

0 0 1]

You should see that simply interchanging the first and second rows of A turns it into an upper
triangular matrix. The matrix Q that you get is equivalent to a permutation matrix, execpt
possibly with (-1) in some positions. You can guess what the solution is. Be sure that Q*R is A.

(c) Test your code by computing the QR factorization of the matrix A=magic(5). Visually compare
your results with those from your gs factor. Warning: Q remains an orthogonal matrix if one of
its columns is multiplied by (-1). This is equivalent to multiplying on the right by a matrix that is
like the identity matrix except with one (-1) on the diagonal instead of all (+1). Call this matrix
J. The product Q*J is clearly orthogonal and can be incorporated into the QR factorization, but
R is changed, too, by multiplying on the left by J. This changes the sign of the corresponding row
of R. Aside from these signs, the two methods should yield the same results.

(d) There is a Matlab function for computing the QR factorization called qr. Visually compare your
results from h factor applied to the matrix A=magic(5) with those from qr.

(e) Householder factorization is much less sensitive to roundoff errors. Test h factor on the same
Hilbert matrix, A=hilb(10) that you used before in Exercise 2. Call the resulting orthogonal
matrix Q3. Show that B3=Q3’*Q3 is much closer to the identity matrix than either B2 or B1 (from
Exercise 2) are.

7 The QR Method for Linear Systems

If we have computed the Householder QR factorization of a matrix without encountering any singularities,
then it is easy to solve linear systems. We use the property of the Q factor that QTQ = I:

Ax = b

QRx = b

QTQRx = QTb

Rx = QTb (3)

11

so all we have to do is form the new right hand side QTb and then solve the upper triangular system. And
that’s easy because it’s the same as the u solve step of our old PLU solution algorithm from the previous
lab.

Exercise 7: Make a copy of your file u solve.m from the previous lab (upper-triangular solver), or
get a copy of my version. Write a file called h solve.m. It should have the signature

function x = h_solve (Q, R, b)

% x = h_solve (Q, R, b)

% more comments

% your name and the date

The matrix R is upper triangular, so you can use u solve to solve (3) above. Assume that the QR
factors come from the h factor routine. Set up your code to compute QTb and then solve the upper
triangular system Rx = QTb using u solve.

When you think your solver is working, test it out on a system as follows:

n = 5;

A = magic (n);

x = [1 : n]’;

b = A * x;

[Q, R] = h_factor (A);

x2 = h_solve (Q, R, b);

norm(x - x2)/norm(x) % should be close to zero.

Now you know another way to solve a square linear system. It turns out that you can also use the QR
algorithm to solve non-square systems, but that task is better left to the singular value decomposition in a
later lab.

8 Extra Credit: Cholesky factorization (8 points)

In the case that the matrix A is symmetric positive definite, then A can be factored uniquely as LLT , where
L is a lower-triangular matrix with positive values on the diagonal. This factorization is called the “Cholesky
factorization” and is both highly efficient (in terms of both storage and time) and also not very sensitive to
roundoff errors.

You can find more information about Cholesky factorization in your text and also in a Wikipedia article
http://en.wikipedia.org/wiki/Cholesky decomposition.

Exercise 8: The Cholesky factorization can be described by the following equations.

Ljj =

√√√√Ajj −
j−1∑
m=1

L2
jm

Lkj =
1

Ljj

(
Akj −

j−1∑
m=1

LkmLjm

)
for j < k ≤ n

(a) As you recall, the Matlab command A=pascal(6) generates a symmetric positive definite matrix
based on Pascal’s triangle, and the command L1=pascal(6,1) generates a lower triangular matrix
based on Pascal’s triangle. Further, you know that A=L1*L1’. Why is L1 not the Cholesky factor
of A?

12

(b) Write a function m-file with signature and comments

function L=cholesky(A)

% L=cholesky(A)

% more comments

% your name and the date

(c) Test your function on the matrix A=(eye(6)+pascal(6)) by computing L=cholesky(A). Check
that L*L’=A.

(d) Matlab has a built-in version of Cholesky factorization named chol. By default this function
returns an upper triangular matrix, but chol(A,’lower’) returns a lower triangular matrix.
Compare the results from chol with those from your cholesky function on a matrix of your
choice. Be sure to describe your test fully in your summary.

(e) Download my copy of l solve.m. This function is similar to the one you wrote in the previous
lab, but it is modified to avoid the assumption that the lower triangular matrix has ones on the
diagonal.

(f) Use the following code to generate a 50×50 positive definite symmetric matrix (using Gershgorin’s
theorem) along with solution and right side vectors.

N = 50;

A = rand(N,N); % random numbers between 0 and 1

A = .5 * (A + A’); % force A to be symmetric

A = A + diag(sum(A)); % make A positive definite by Gershgorin

x = rand(N,1); % solution

b = A*x; % right side

(g) Use your cholesky function along with l solve and u solve to solve the system Ax0 = b and
show that ∥x0 − x∥/∥x∥ is small. It turns out that solving by Cholesky factorization is generally
the most efficient way to solve a positive definite symmetric matrix system.

Last change $Date: 2017/01/31 16:24:40 $

13

