
MATH2071: LAB 5: Norms, Errors and Whatnot

Introduction Exercise 1
Vector Norms Exercise 2
Matrix Norms Exercise 3
Compatible Matrix Norms Exercise 4
More on the Spectral Radius Exercise 5
Types of Errors Exercise 6
A matrix example Exercise 7
Extra credit: the determinant Exercise 8

Exercise 9
Extra Credit

1 Introduction

The objects we work with in linear systems are vectors and matrices. In order to make statements about
the size of these objects, and the errors we make in solutions, we want to be able to describe the “sizes” of
vectors and matrices, which we do by using norms.

We then need to consider whether we can bound the size of the product of a matrix and vector, given
that we know the “size” of the two factors. In order for this to happen, we will need to use matrix and
vector norms that are compatible. These kinds of bounds will become very important in error analysis.

We will then consider the notions of forward error and backward error in a linear algebra computation.
We will then look at one useful matrix example: a tridiagonal matrix with well-known eigenvalues and

eigenvectors.
This lab will take two sessions. You may find it convenient to print the pdf version of this lab rather

than the web page itself.

2 Vector Norms

A vector norm assigns a size to a vector, in such a way that scalar multiples do what we expect, and the
triangle inequality is satisfied. There are four common vector norms in n dimensions:

• The L1 vector norm

∥x∥1 =
n∑

i=1

|xi|

• The L2 (or “Euclidean”) vector norm

∥x∥2 =

√√√√ n∑
i=1

|xi|2

• The Lp vector norm

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

• The L∞ vector norm
∥x∥∞ = max

i=1,...,n
|xi|

To compute the norm of a vector x in Matlab:
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• ∥x∥1 = norm(x,1);

• ∥x∥2 = norm(x,2)= norm(x);

• ∥x∥p = norm(x,p);

• ∥x∥∞ = norm(x,inf)

(Recall that inf is the Matlab name corresponding to ∞.)

Exercise 1: For each of the following column vectors:

x1 = [ 4; 6; 7 ]

x2 = [ 7; 5; 6 ]

x3 = [ 1; 5; 4 ]

compute the vector norms, using the appropriate Matlab commands. Be sure your answers are reason-
able.

L1 L2 L Infinity

x1 __________ __________ __________

x2 __________ __________ __________

x3 __________ __________ __________

3 Matrix Norms

A matrix norm assigns a size to a matrix, again, in such a way that scalar multiples do what we expect,
and the triangle inequality is satisfied. However, what’s more important is that we want to be able to mix
matrix and vector norms in various computations. So we are going to be very interested in whether a matrix
norm is compatible with a particular vector norm, that is, when it is safe to say:

∥Ax∥ ≤ ∥A∥ ∥x∥

There are four common matrix norms and one “almost” norm:

• The L1 or “max column sum” matrix norm:

∥A∥1 = max
j=1,...,n

n∑
i=1

|Ai,j |

Remark: This is not the same as the L1 norm of the vector of dimension n2 whose components are
the same as Ai,j .

• The L2 matrix norm:
∥A∥2 = max

j=1,...,n

√
λi

where λi is a (necessarily real and non-negative) eigenvalue of AHA or

∥A∥2 = max
j=1,...,n

µi

where µi is a singular value of A;

2



• The L∞ or “max row sum” matrix norm:

∥A∥∞ = max
i=1,...,n

n∑
j=1

|Ai,j |

Remark: This is not the same as the L∞ norm of the vector of dimension n2 whose components are
the same as Ai,j .

• There is no Lp matrix norm in Matlab.

• The “Frobenius” matrix norm:

∥A∥fro =
√ ∑

i,j=1,...,n

|Ai,j |2

Remark: This is the same as the L2 norm of the vector of dimension n2 whose components are the
same as Ai,j .

• The spectral radius (not a norm):
ρ(A) = max |λi|

(only defined for a square matrix), where λi is a (possibly complex) eigenvalue of A.

To compute the norm of a matrix A in Matlab:

• ∥A∥1 = norm(A,1);

• ∥A∥2 = norm(A,2)=norm(A);

• ∥A∥∞ = norm(A,inf);

• ∥A∥fro = norm(A,’fro’)

• See below for computation of ρ(A) (the spectral radius of A)

4 Compatible Matrix Norms

A matrix can be identified with a linear operator, and the norm of a linear operator is usually defined in the
following way.

∥A∥ = max
x̸=0

∥Ax∥
∥x∥

(It would be more precise to use sup rather than max here but the surface of a sphere in finite-dimensional
space is a compact set, so the supremum is attained, and the maximum is correct.) A matrix norm defined
in this way is said to be “vector-bound” to the given vector norm.

In order for a matrix norm to be consistent with the linear operator norm, you need to be able to say
the following:

∥Ax∥ ≤ ∥A∥ ∥x∥ (1)

but this expression is not necessarily true for an arbitrarily chosen pair of matrix and vector norms. When
it is true, then the two are “compatible”.

If a matrix norm is vector-bound to a particular vector norm, then the two norms are guaranteed to
be compatible. Thus, for any vector norm, there is always at least one matrix norm that we can use. But
that vector-bound matrix norm is not always the only choice. In particular, the L2 matrix norm is difficult
(time-consuming) to compute, but there is a simple alternative.

Note that:
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• The L1, L2 and L∞ matrix norms can be shown to be vector-bound to the corresponding vector norms
and hence are guaranteed to be compatible with them;

• The Frobenius matrix norm is not vector-bound to the L2 vector norm, but is compatible with it; the
Frobenius norm is much faster to compute than the L2 matrix norm (see Exercise 5 below).

• The spectral radius is not really a norm and is not vector-bound to any vector norm, but it “almost”
is. It is useful because we often want to think about the behavior of a matrix as being determined by
its largest eigenvalue, and it often is. But there is no vector norm for which it is always true that

∥Ax∥ ≤ ρ(A)∥x∥.

There is a theorem, though, that states that, for any matrix A, and for any chosen value of ϵ > 0, a
norm can be found so that ∥Ax∥ ≤ (ρ(A) + ϵ)∥x∥. Note that the norm depends both on ϵ and A.

Exercise 2: Consider each of the following column vectors:

x1 = [ 4; 6; 7 ];

x2 = [ 7; 5; 6 ];

x3 = [ 1; 5; 4 ];

and each of the following matrices

A1 = [38 37 80

53 49 49

23 85 46];

A2 = [77 89 78

6 34 10

65 36 26];

Check that the compatibility condition (1) holds for each case in the following table by computing the
ratios

rp,q(A, x) =
∥Ax∥q

∥A∥p∥x∥q
and filling in the following table. The third column should contain the letter “S” if the compatibility
condition is satisfied and the letter “U” if it is unsatisfied.

Suggestion: I recommend you write a script m-file for this exercise. If you do, please include it with
your summary.

Matrix Vector

norm norm S/U r(A1,x1) r(A1,x2) r(A1,x3) r(A2,x1) r(A2,x2) r(A2,x3)

(p) (q)

1 1 ___ _________ __________ __________ __________ __________ __________

1 2 ___ _________ __________ __________ __________ __________ __________

1 inf ___ _________ __________ __________ __________ __________ __________

2 1 ___ _________ __________ __________ __________ __________ __________

2 2 ___ _________ __________ __________ __________ __________ __________

2 inf ___ _________ __________ __________ __________ __________ __________
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inf 1 ___ _________ __________ __________ __________ __________ __________

inf 2 ___ _________ __________ __________ __________ __________ __________

inf inf ___ _________ __________ __________ __________ __________ __________

’fro’ 1 ___ _________ __________ __________ __________ __________ __________

’fro’ 2 ___ _________ __________ __________ __________ __________ __________

’fro’ inf ___ _________ __________ __________ __________ __________ __________

5 More on the Spectral Radius

In the above text there is a statement that the spectral radius is not vector-bound with any norm, but that
it “almost” is. In this section we will see by example what this means.

In the first place, let’s try to see why it isn’t vector-bound to the L2 norm. Consider the following false
“proof”. Given a matrix A, for any vector x, break it into a sum of eigenvectors of A as

x =
∑

xiei

where ei are the eigenvectors of A, normalized to unit length. Then, for λi the eigenvalues of A,

∥Ax∥22 = ∥
∑

λixiei∥22

≤ max
i

|λi|2
∑

|xi|2

≤ ρ(A)2∥x∥2

and taking square roots completes the “false proof.”
Why is this “proof” false? The error is in the statement that all vectors can be expanded as sums

of orthonormal eigenvectors. If you knew, for example, that A were positive definite and symmetric, then,
the eigenvectors of A would form an orthonormal basis and the proof would be correct. Hence the term
“almost.” On the other hand, this observation provides the counterexample.

Exercise 3: Consider the following (nonsymmetric) matrix

A=[0.5 1 0 0 0 0 0

0 0.5 1 0 0 0 0

0 0 0.5 1 0 0 0

0 0 0 0.5 1 0 0

0 0 0 0 0.5 1 0

0 0 0 0 0 0.5 1

0 0 0 0 0 0 0.5]

You should recognize this as a Jordan block. Any matrix can be decomposed into several such blocks
by a change of basis.

(a) Use the Matlab routine [V,D]=eig(A) (recall that the notation [V,D]= is the way that Matlab
denotes that the function—eig in this case—returns two quantities) to get the eigenvalues (diago-
nal entries of D) and eigenvectors (columns of V) of A. How many linearly independent eigenvectors
are there?

(b) You just computed the eigenvalues of A. What is the spectral radius of A?

(c) For the vector x=[1;1;1;1;1;1;1], what are ∥x∥2, ∥Ax∥2, and (ρ(A))(∥x∥2)?
(d) For this case, is ∥Ax∥2 ≤ ρ(A)∥x∥2?
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It is a well-known fact that if the spectral radius of a matrix A is smaller than 1.0 then limn→∞ An = 0.

Exercise 4:

(a) For x=[1;1;1;1;1;1;1] compute and plot ∥Akx∥2 for k = 0, 1, . . . , 40. Please include this plot
with your summary.

(b) What is the smallest value of k > 2 for which ∥Akx∥2 ≤ ∥Ax∥2?
(c) What is max0≤k≤40 ∥Akx∥2?

The Euclidean norm (two norm) for matrices is a natural norm to use, but it has the disadvantage of
requiring more computation time than the other norms. However, the two norm is compatible with the
Frobenius norm, so when computation time is an issue, the Frobenius norm should be used instead of the
two norm.

The two norm of a matrix is computed in Matlab as the largest singular value of the matrix. (See Quar-
teroni, Sacco, Saleri, p. 17-18, or aWikipedia article http://en.wikipedia.org/wiki/Singular value decomposition

for a discussion of singular values of a matrix.) We will visit singular values again in Lab 9 and you will
see some methods for computing the singular values of a matrix. You will see in the following exercise that
computing the singular value of a large matrix can take a considerable amount of time.

Matlab provides a “stopwatch” timer that measures elapsed time for a command. The command tic

starts the stopwatch and the command toc prints (or returns) the time elapsed since the tic command.
When using these commands, you must take care not to type them individually on different lines since then
you would be measuring your own typing speed.

Exercise 5:

(a) You have encountered the magic command earlier. It generates a “magic square” matrix. A
magic square of size n contains the integers 1, . . . , n2. Compute the magic square of size 1000
with the command

A=magic(1000); % DO NOT LEAVE THE SEMICOLON OUT!

(b) Use the command

tic;x=norm(A);toc

to discover how long it takes to compute the two norm of A. (Be patient, this computation may
take a while.) Please include both the value of x and the elapsed time in your summary. (You
may be interested to note that x = sum(diag(A)) = trace(A) = norm(A,1) = norm(A,inf).)

(c) How long does it take to compute the Frobenius norm of A?

(d) Which takes longer, the two norm or Frobenius norm?

6 Types of Errors

A natural assumption to make is that the term “error” refers always to the difference between the computed
and exact “answers.” We are going to have to discuss several kinds of error, so let’s refer to this first error
as “solution error” or “forward error.” Suppose we want to solve a linear system of the form Ax = b, (with
exact solution x) and we computed xapprox. We define the solution error as ∥xapprox − x∥.

Usually the solution error cannot be computed, and we would like a substitute whose behavior is accept-
ably close to that of the solution error. One example would be during an iterative solution process where we
would like to monitor the progress of the iteration but we do not yet have the solution and cannot compute
the solution error. In this case, we are interested in the “residual error” or “backward error,” which is defined
by ∥Axapprox−b∥ = ∥bapprox−b∥ where, for convenience, we have defined the variable bapprox to equal
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Axapprox. Another way of looking at the residual error is to see that it’s telling us the difference between
the right hand side that would “work” for xapprox versus the right hand side we have.

If we think of the right hand side as being a target, and our solution procedure as determining how we
should aim an arrow so that we hit this target, then

• The solution error is telling us how badly we aimed our arrow;

• The residual error is telling us how much we would have to move the target in order for our badly
aimed arrow to be a bullseye.

There are problems for which the solution error is huge and the residual error tiny, and all the other possible
combinations also occur.

Exercise 6: For each of the following cases, compute the Euclidean norm (two norm) of the solution
error and residual error and characterize each as “large” or “small.” (For the purpose of this exercise,
take “large” to mean greater than 1 and “small” to mean smaller than 0.01.) In each case, you must
find the true solution first (Pay attention! In each case you can solve in your head for the true solution,
xTrue.), then compare it with the approximate solution xApprox.

(a) A=[1,1;1,(1-1.e-12)], b=[0;0], xApprox=[1;-1]

(b) A=[1,1;1,(1-1.e-12)], b=[1;1], xApprox=[1.00001;0]

(c) A=[1,1;1,(1-1.e-12)], b=[1;1], xApprox=[100;100]

(d) A=[1.e+12,-1.e+12;1,1], b=[0;2], xApprox=[1.001;1]

Case Residual large/small xTrue Error large/small

1 ________ _______ ______ _______ ________

2 ________ _______ ______ _______ ________

3 ________ _______ ______ _______ ________

4 ________ _______ ______ _______ ________

The norms of the matrix and its inverse exert some limits on the relationship between the forward and
backward errors. Assuming we have compatible norms:

∥xapprox − x∥ = ∥A−1A(xapprox − x)∥ ≤ (∥A−1∥)(∥bapprox − b∥)

and
∥Axapprox − b∥ = ∥Axapprox −Ax∥ ≤ (∥A∥)(∥xapprox − x∥)

Put another way,

(solution error) ≤ ∥A−1∥(residual error)

(residual error) ≤ ∥A∥(solution error)

6.1 Relative error

It’s often useful to consider the size of an error relative to the true quantity. This quantity is sometimes
multiplied by 100 and expressed as a “percentage.” If the true solution is x and we computed xapprox =
x+∆x, the relative solution error is defined as

(relative solution error) =
∥xapprox − x∥

∥x∥

=
∥∆x∥
∥x∥
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Given the computed solution xapprox, we know that it satifies the equation Axapprox = bapprox. If we
write bapprox = b+∆b, then we can define the relative residual error as:

(relative residual error) =
∥bapprox − b∥

∥b∥

=
∥∆b∥
∥b∥

These quantities depend on the vector norm used, they cannot be defined in cases where the divisor is zero,
and they are problematic when the divisor is small.

Actually, relative quantities are important beyond being “easier to understand.” Consider the boundary
value problem (BVP) for the ordinary differential equation

u′′ = − π2

100
sin(

πx

10
)

u(0) = 0 (2)

u(5) = 1

This problem has the exact solution u = sin(πx/10). In the following exercise you will be computing the
solution for various mesh sizes and using vector norms to compute the solution error. You will see why
relative errors are most convenient for error computation.

Exercise 7:

(a) Make a copy of your rope bvp.m file from last lab. Change its name to bvp.m and modify it
so that it corresponds to the boundary value problem in 2 above. This modification will involve
setting c = 0, changing the values at the left and right boundaries, and changing the right side
from a constant vector to one that varies as sin πx

10 . Do not forget to change the comments.
Note: In earlier sections, the vector x represented the unknown. Here, u represents the unknown
(dependent variable) and x represents the independent variable.

(b) As a test, solve the system for npts=10, plot the solution and compare it with sin(pi*x/10).
You can use the following code to do so.

[x,u]=bvp(10);

plot(x,u,x,sin(pi*x/10));

legend(’computed solution’,’exact solution’);

The two solutions curves should lie almost on top of one another. You do not need to send me
the plot.

(c) Use code such as the following to compute solution errors for various mesh sizes, and fill in the
following table. Recall that the exact solution is sinπx/10. (Note: you may want to put this
code into a script m-file.)

sizes=[10 20 40 80 160 320 640];

for k=1:numel(sizes)

[x,u]=bvp(sizes(k));

error(k,1)=norm(u’-sin(pi*x/10));

relative_error(k,1)=error(k,1)/norm(sin(pi*x/10));

end

disp([error(1:6)./error(2:7) , ...

relative_error(1:6)./relative_error(2:7)])
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Euclidean norm

error ratio relative error ratio

10/ 20 ___________ ___________

20/ 40 ___________ ___________

40/ 80 ___________ ___________

80/160 ___________ ___________

160/320 ___________ ___________

320/640 ___________ ___________

(d) Repeat the above for the L1 vector norm.

1 vector norm

error ratio relative error ratio

10/ 20 ___________ ___________

20/ 40 ___________ ___________

40/ 80 ___________ ___________

80/160 ___________ ___________

160/320 ___________ ___________

320/640 ___________ ___________

(e) Repeat the above for the L∞ vector norm.

Infinity vector norm

error ratio relative error ratio

10/ 20 ___________ ___________

20/ 40 ___________ ___________

40/ 80 ___________ ___________

80/160 ___________ ___________

160/320 ___________ ___________

320/640 ___________ ___________

(f) The method used to solve this boundary value problem converges as O(h2). Since the number
of mesh points is about 1/h, then doubling the number of mesh points should quarter the error.
To see which of the above calculations yields this rate, fill in the following table with the words
“error”, “relative error” or “both”.

Rate=h^2?

Euclidean ____________

one ____________

infinity ____________

As you will see, convergence rates are an important component of this course, and you can see it is almost
always best to use relative errors in computing convergence rates of vector quantities. You may have noticed
that relative norms have not been used in these labs, and the reason is, mainly, to avoid introducing an extra
step into the computations.

The reason that the L1 and L2 norms give different results is that the dimension of the space, n creeps

into the calculation. For example, if a function is identically one, f(x) = 1, then its L2 norm,
∫ 1

0
|f(x)|2dx is

one, but if a vector of dimension n has all components equal to one, then its L2 norm is
√
n. Taking relative

norms eliminates the dependence on n.
When you are doing your own research, you will have occasion to compare theoretical and computed

convergence rates. When doing so, you may use tables such as those above. If you find that your computed
convergence rates differ from the theoretical ones, before looking for some error in your theory, you should
first check that you are using the correct norm!
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7 A matrix example

It is a good idea to have several matrix examples at hand when you are thinking about some method. One
excellent example a class of tridiagonal matrices that arise from second-order differential equations. You saw
matrices of this class in the previous lab in the section on Discretizing a BVP. A 5× 5 matrix in this class
is given as

A =


2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 . (3)

More generally, the N ×N matrix A has components akj given as

akj =

 2 k = j
−1 k = j ± 1
0 |k − j| ≥ 2

(4)

This matrix is tridiagonal (nonzero entries can be found only in three diagonals, the main diagonal and first
superdiagonal and first subdiagonal). It turns out that the eigenvectors and eigenvalues of this matrix are
well-known.

Exercise 8:

(a) Consider a set of N vectors, {v(j) | j = 1, 2, . . . , N}, each vector of which is N -dimensional and

has components v
(j)
k given as

v
(j)
k = sin(jπ

k

N + 1
). (5)

Recalling that the “sum of angles” formula for sin is given as

sin(θ + ϕ) = sin(θ) cos(ϕ) + cos(θ) sin(ϕ)

show by a direct (symbolic) calculation that Av(j) = λjv
(j), and find the value λj .

Note: Do this calculation by hand or use the Matlab symbolic toolbox or use Maple or another
computer algebra program.
Hint: Choose one row of the vector equation Av(j) = λjv

(j) and insert the expressions (4) and
(5) into the row equation. Simplifying should yield an expression for λj . Please incude your
calculation with your summary. If you did it by hand, type it in as best you can or use LATEX or
scan it in and send me the file.

(b) Complete the following Matlab function so that it generates the tridiagonal matrix A according
to (4).

function A=tridiagonal(N)

% A=tridiagonal(N) generates the tridiagonal matrix A

% your name and the date

A=zeros(N);

??? code corresponding to equation (4) ???

(c) Check that your code is correct by generating the tridiagonal matrix for N=5 and comparing with
(3).

(d) Test your hand calculation is correct by using Matlab to compute with N = 25 and for the values
j=1 and j=10, ∥Av(j) − λjv

(j)∥2.
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Exercise 9: It may not be obvious from the eigenvalues you found in the previous exercise, but the
determinant of the tridiagonal matrix A given in (4) is (N +1). (Recall the determinant is the product
of the eigenvalues.) In the case N = 5, this can easily be seen by computing the determinant by “row
reduction.” Starting from the original matrix, add 1/2 times the first row to the second to get

det(A) = det


2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 = det


2 −1 0 0 0
0 3

2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 . (6)

Next, adding 2/3 times the second row to the third gives

det(A) = det


2 −1 0 0 0
0 3

2 −1 0 0
0 0 4

3 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 . (7)

Continuing this process gives

det(A) = det


2 −1 0 0 0
0 3

2 −1 0 0
0 0 4

3 −1 0
0 0 0 5

4 −1
0 0 0 0 6

5

 . (8)

Since the determinant of an upper triangular matrix is the product of the diagonals, the determinant
of this matrix is 6. In the following steps, you will transform this process into a calculational “proof.”

(a) Complete the following Matlab function so that it performs one Row Reduction Step (rrs) of a
matrix A for row j,

function A=rrs(A,j)

% A=rrs(A,j) performs one row reduction step for row j

% j must be between 2 and N

% your name and the date

N=size(A,1);

if (j<=1 | j>N) % | means "or"

j

error(’rrs: value of j must be between 2 and N’);

end

factor=1/A(j-1,j-1); % factor to multiply row (j-1) by

??? include code to multiply row (j-1) by factor and ???

??? add it to row (j). Row (j-1) remains unchanged. ???

Check your work by comparing it with (6-8).

(b) For N=25, use your tridiagonal.m code to generate the matrix A. Use the Matlab det function
to compute its determinant.

(c) Take one row reduction step using rrs.m with j=2. Using det, find the determinant of this matrix.
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(d) Using a Matlab script m-file, write a loop to continue the row reduction process until it is complete.
Using det, has the determinant changed?

(e) Use the Matlab function diag to extract the diagonal entries of your reduced matrix. Check that
some of them are given by (j+1)/j for row number j. Use the Matlab prod command to compute
the determinant as the product of the diagonal entries.

8 Extra credit: the determinant (8 points)

The Laplace rule for computing the determinant of an N ×N matrix A with entries akj is given by

det(A) =

{
a11 N = 1∑N

j=1 akj∆kj N > 1
(9)

where k is any fixed index, and ∆kj = (−1)k+jdet(Akj) and Akj is the (N − 1) × (N − 1) matrix whose
entries are obtained from A but with all of row k and column j omitted. For example, if

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


then a24 = 8 and

A24 =

 1 2 3
9 10 11
13 14 15


Exercise 10:

(a) Write a recursive Matlab function compute the determinant of an arbitrary matrix A. Use your
function to compute the determinant of the matrix A=magic(5) and check that your value of the
determinant agrees with the one from the Matlab det function.

(b) This is an extremely inefficient way to compute a determinant. The time taken by this algorithm
is O(N !), a very large value. Time the computations of the determinants of magic(7), magic(8),
magic(9) and magic(10), calling them T7, T8, T9, and T10. Show that T8 ≈ 8T7, T9 ≈ 9T8 and
T10 ≈ 10T9, confirming the O(N !) estimate.
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