
MATH2071: LAB 4: BVPs and PDEs

Introduction Exercise 1
Boundary Value Problems Exercise 2
Discretizing a BVP Exercise 3
Finite element method Exercise 4
Burgers’ Equation Exercise 5
The Method of Lines Exercise 6
Extra Credit: Shooting Methods Exercise 7

Exercise 8
Extra Credit

1 Introduction

The initial value problem for ordinary differential equations of the previous labs is only one of the two
major types of problem for ordinary differential equations. The other type is known as the “boundary value
problem” (BVP). A simple example of such a problem would describe the shape of a rope hanging between
two posts. We know the position of the endpoints, and we have a second order differential equation describing
the shape. If the two conditions were both given at the left endpoint, we’d know what to do right away. But
how do we handle this “slight” variation?

This lab is concerned with two of the most common approaches to solving BVPs as well as a combined
IVP-BVP for a partial differential equation. The extra credit problem introduces a third approach to solving
BVPs. The discussion in this lab is limited to relatively simple approaches in a single space dimension
and is intended to give the flavor of these approaches, each of which could easily be the subject of a full
semester’s course. Except for the extra credit exercise, these methods are easily extended to two and three
space dimensions.

The approaches included in this lab are the following:

• The Finite Difference method (FDM),

• The Finite Element method (FEM),

• The Method of Lines, and,

• The Shooting method (extra credit).

This lab will take four sessions. If you print this lab, you may prefer to use the pdf version.

2 Boundary Value Problems

A one-dimensional boundary value problem (BVP), is similar to an initial value problem, except that the
data we are given isn’t conveniently located at a starting point, but rather some is specified at the left end
point and some at the right. (We’re also usually thinking of the independent variable as representing space,
rather than time, in this setting).

We will be using the following problem as the illustrative example for several of the following exercises.
The clothesline BVP: A rope is stretched between two points. If the rope were weightless, or if it were

rigid, it would lie along a straight line; however, the rope has a weight and is elastic, so it sags down slightly

1



from its ideal linear shape. We wish to determine the curve described by the rope. We will use the variable
x to denote horizontal distance and u(x) to denote height of the rope at the point x.

Forces on a clothesline
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The equation for the curve described by the rope can be derived (this is not a proof: it is a description
of why you should believe the equation) in the following manner. Suppose that the tension in the rope is
T (a constant because the rope is in equilibrium), and consider a tiny piece of the rope of length dx, and
with mass per unit length ρ. The total mass of the differential piece of rope is ρ dx, so that the force due to
gravity is directed downward and is given by ρg dx. This piece of rope observes forces on each of its ends.
The magnitudes of these forces are equal to the tension, T , and the directions are given by the slope of the
curve at the ends of the differential piece. Hooke’s law says that the tension is proportional to the amount
of strain in the string, T = −Kdu/dx, where K is a constant of proportionality (Young’s modulus). Hence,
the equation can be written as

−K du

dx

]
right

+K
du

dx

]
left

= −ρg dx.

Dividing both sides by dx and letting dx→ 0 yields the equation

− d

dx

(
K
du

dx

)
= −ρg

. There is no reason that the “constant” of proportionality cannot change from place to place. For the sake
of definiteness, assume K varies as K(x) = 1 + cx, for constant C, representing a rope (or spring) whose
stiffness varies from end to end. The result is the equation

(1 + cx)u′′ + cy′ = ρg.

When c = 0, this equation is called the “Poisson equation” and also describes the distribution of heat in a
solid bar, among other common physical problems.

For the sake of definiteness, take ρg = 0.4 and c = 0.05, the left end of height 1 at x = 0, and the right
end height of 1.5 at x = 5. Thus, the system to be solved is

(1 + cx)u′′ + cu′ = ρg

c = 0.05

ρg = 0.4 (1)

u(0) = 1

u(5) = 1.5

The ODE is linear. Linearity implies good things such as the existence and uniqueness of solutions.
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3 Finite Difference Method for a BVP

The “derivation” presented above for the shape of the rope is suggestive of a way to solve for the shape,
called the “finite difference method.” Assume that we have divided the interval up into N equal intervals of
width ∆x determined by N + 1 points. Denote the spatial points xn, n = 0, 1, . . . , N + 1. Approximate the
value of y(xn) by yn. Also approximate the Young’s modulus function as Kn = K(xn) = (1 + cxn).

Now, consider the nth interval as if it were the differential piece of rope mentioned in the derivation.
Using the standard finite difference approximation for a derivative, the slope of the rope at the left of the

nth interval could be approximated as (yn−yn−1)/∆x and the slope on the right of the nth interval could be
approximated as (yn+1−yn)/∆x. The difference between these is an approximation of the second derivative

y′′n ≈ yn+1 − 2yn + yn−1

∆x2
.

Along similar lines, approximate the first derivative as

y′n ≈ yn+1 − yn−1

2∆x
.

Both approximations (of y′ and y′′) have the same Taylor-series (truncation) error of O(∆x2).
Put all these together into (1) to get

(1 + cxn)
yn+1 − 2yn + yn−1

∆x2
+ c

yn+1 − yn−1

2∆x
= ρg

and, as above, c = 0.05 and ρg = 0.4. We can associate this equation with the solution value at yn, except
for n = 0 and n = N + 1 (do you see why?). Conveniently, those are the points at which we have boundary
conditions specified.

In particular, let us look at approximating our rope BVP at 6 points. We set up the ODE at points 1,
2, 3, and 4, and associate the boundary conditions with the n = 0 and n = 5 solution values. Note that
xn = n∆x. I also multiplied through by ∆x2 to make things look nicer:

u0 = 1

(1 + c∆x− c∆x/2)u0 − 2(1 + c∆x)u1 + (1 + c∆x+ c∆x/2)u2 = 0.4∆x2

(1 + 2c∆x− c∆x/2)u1 − 2(1 + 2c∆x)u2 + (1 + 2c∆x+ c∆x/2)u3 = 0.4∆x2 (2)

(1 + 3c∆x− c∆x/2)u2 − 2(1 + 3c∆x)u3 + (1 + 3c∆x+ c∆x/2)u4 = 0.4∆x2

(1 + 4c∆x− c∆x/2)u3 − 2(1 + 4c∆x)u4 + (1 + 4c∆x+ c∆x/2)u5 = 0.4∆x2

u5 = 1.5

Actually, in Equation (2), the quantities u0 and u5 are not really variables, being fixed by the boundary
conditions. Hence the only variables are u1, u2, u3 and u4. The system can be rewritten as

−2(1 + c∆x)u1 +(1 + 1.5c∆x)u2 +0 +0 = 0.4∆x2 − (1 + 0.5c∆x)u0
(1 + 1.5c∆x)u1 −2(1 + 2c∆x)u2 (1 + 2.5c∆x)u3 +0 = 0.4∆x2

0 +(1 + 2.5c∆x)u2 −2(1 + 3c∆x)u3 +(1 + 3.5c∆x)u4 = 0.4∆x2

0 +0 +(1 + 3.5c∆x)u3 −2(1 + 4c∆x)u4 = 0.4∆x2 − (1 + 4.5c∆x)u5

and this system has been formatted to suggest the matrix equation
−2(1 + c∆x) +(1 + 1.5c∆x) +0 +0
(1 + 1.5c∆x) −2(1 + 2c∆x) (1 + 2.5c∆x) +0

0 +(1 + 2.5c∆x) −2(1 + 3c∆x) +(1 + 3.5c∆x)
0 +0 +(1 + 3.5c∆x) −2(1 + 4c∆x)



u1
u2
u3
u4

 =


0.4∆x2 − (1 + 0.5c∆x)u0
0.4∆x2

0.4∆x2

0.4∆x2 − (1 + 4.5c∆x)u5


(3)

By discretizing the differential equations we have created a set of linear algebraic equations that have
the symbolic form AU = b. To set up and solve the equations (3) in Matlab, we could type:

3



N = 4;

C = 0.05;

RHOG = 0.4;

% N interior mesh points, N+1 intervals

dx = 5.0 / ( N + 1 );

x = dx * (0:N+1);

A = [ -2*(1+C*dx) +(1+1.5*C*dx) 0 0;

+(1+1.5*C*dx) -2*(1+2*C*dx) +(1+2.5*C*dx) 0;

0 +(1+2.5*C*dx) -2*(1+3*C*dx) (1+3.5*C*dx);

0 0 +(1+3.5*C*dx) -2*(1+4*C*dx) ];

ULeft=1;

URight=1.5;

b = [ RHOG*dx^2-(1+0.5*C*dx)*ULeft

RHOG*dx^2

RHOG*dx^2

RHOG*dx^2-(1+4.5*C*dx)*URight];

U = A \ b;

U = [ULeft; U; URight]

Make sure you understand the first and last components in b. You should recall that the backslash notation
is shorthand for saying U=inv(A)*b but tells Matlab to solve the equation A*U=b without actually forming
the inverse of A.
Remark: The vector x is a row vector and the vector U is a column vector! This is the convention that has
been followed for the ode.m files and will be followed throughout these labs.

Exercise 1: In this exercise, you will be using the above code to solve the rope BVP. You will also be
exhaustively checking that the code is correct.

(a) Copy the above code and paste it into a script m-file named exer1a.m. Execute exer1a to find
a solution of Equation (3). Please include the printed values of U as part of the lab summary.

(b) Verify that the values of U and b that you found satisfy at least one of the middle four equations in
(2). To do this, write a script m-file named exer1b.m and plug the values of c, ∆x, uk, k = 0, . . . , 5
into your chosen equation. Show the result is essentially zero.
Be careful! Lower-case c is upper-case C, ∆x is dx and uk, k = 0, 1, . . . 5 is U(1:6) in exer1a.

(c) Direct substitution into (3) shows that the function u(x) = 1 would be a solution if ρg = 0 and
u(5) = 1. As a second verification step, make a copy of exer1a.m called exer1c.m with rhog=0

and URight=1 and check that the discrete solution is (exactly or to roundoff) correct.

(d) Direct substitution into (3) shows that the function u(x) = x would be a solution if ρg = c,
u(1) = 0 and u(5) = 5. As a third verification step, make a copy of exer1a.m called exer1d.m

with rhog=C and and with boundary values ULeft and URight chosen to match the solution you
are testing. Check that the discrete solution is (exactly or to roundoff) correct.

(e) Direct substitution into (3) shows that the function u(x) = x2 would be a solution if ρg =
2 + 4cx, u(1) = 0) and u(5) = 25. As a fourth verification step, make a copy of exer1a.m called
exer1e.m with constant rhog, which is used four times, replaced by the four values of the vector
2+4*c*x(2:5)’ and with boundary values chosen to agree with u(x) = x2 and check that the
discrete solution is (exactly or to roundoff) correct.

(f) Now that you are confident that the code is correct, use exer1a.m to solve the unmodified BVP
(3). Plot U versus x. It should appear roughly parabolic, like a rope hanging from its ends, and
pass through (0, 1) and (5, 1.5) on its ends. Please include this plot with your summary.
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Remark: The exact solutions u = 1, u = x, and u = x2 can be used as exact discrete solutions and
verification tests only when the approximation expressions for first and second derivatives are sufficiently
accurate. Because the mesh is uniform, the expressions used here give rise to truncation error of O(∆x3) so
that polynomials up to quadratic will be exactly represented.

The purpose of the previous exercise is to verify that you have copied the code correctly and to illustrate
the powerful verification strategy of checking against known exact discrete solutions. You should always use
a small, simple problem to verify code by comparison with hand calculations. If possible, you should also
compare results with theoretical results and with results achieved using a different method. In the next
exercise you will be modifying the above code to handle the case of large N and solving a slightly more
realistic problem. Of course, you don’t want to bother typing in the matrix A if N is 100 or more, so you will
be writing Matlab code to do it.

Exercise 2:

(a) Make a copy of the script m-file exer1a.m and change it into a function m-file called rope bvp.m

with the signature

function [x,U] = rope_bvp(N)

% [x,U] = rope_bvp(N)

% comments

% your name and the date

(b) Add comments after the signature line and modify the matrix (A) and right side vector (b)
generation statements to be valid for arbitrary values of N. Make sure that the vector U is a
column vector. (You should also eliminate the line N = 4.) Hint: You can use the zeros(N,N)

statement to generate an N-by-N matrix of all zeros for A and then fill in the non-zero values. You
can use the command ones(N,1) to construct a column vector of length N containing all ones.

(c) Check your work by running rope bvp for N=4 and confirming that you get the same values of
U as from exer1a.m. One easy way to do this is to first run exer1a, then use the command
[x1,U1]=rope bvp(4) and check that U-U1 is the zero vector.
Debugging: If the results are not correct, print the matrix A from rope bvp and check it against
the matrix A from exer1a. Do the same for the vectors b. Fix any mistakes before continuing.

(d) You may still have mistakes in the treatment of N. To be sure of your code, make a copy of
rope bvp.m and modify it to get the constant solution u = 1 as you did for exer1c.m above.
Check your results for N=5. Fix any mistakes before continuing.
If you cannot find your mistakes by checking your code, re-do Equations (2) for n = 6 and check
the terms against your code, one term at a time.

(e) As a second test, make a copy of rope bvp.m and modify it to get the linear solution u = x as
you did for exer1d.m above. Check your results for N=5. Fix any mistakes before continuing.
If you cannot find your mistakes by checking your code, re-do Equations (2) for n = 6 and check
the terms against your code, one term at a time.

(f) As a third test, make a copy of rope bvp.m and modify it to get the quadratic solution u = x2

as you did for exer1d.m above. Check your results for N=5. Fix any mistakes before continuing.
If you cannot find your mistakes by checking your code, re-do Equations (2) for n = 6 and check
the terms against your code, one term at a time.

(g) Now we are ready to solve the big problem! Use N=119 so that there are 119 unknowns U(1:119).
Call the new solution [x2,U2], and plot U2 versus x2. Re-run exer1a to get U and x, and plot U
versus x as circles (plot(x,U,’o’) on the same frame (hold on) and send the single frame with
both plots to me with the summary. To help in grading, please include the value of U(50) in your
summary.
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Remark: You may wonder why the four-point mesh solution and the 119-point mesh solution seem to
agree at the four common points. This behavior is highly unusual. It happens because the solution of the
differential equation is almost quadratic and the difference scheme exactly reproduces quadratic functions.
For larger values of c, the solution looks less like a quadratic, and the solution for N = 4 agrees less well
with the solution for N = 119. Try it, if you wish.

4 Finite element method

In the previous section, you saw an example of the finite difference method of discretizing a boundary value
problem. This method is based on a finite difference expression for the derivatives that appear in the equation
itself. The finite difference method results in a list of values that approximate the true solution at the set
of mesh points. Approximate values between the mesh points might be generated using interpolation ideas,
but the method itself does not depend on any such interpolation. The reason that N = 119 was chosen for
comparison with N = 4 in the previous exercise is because the four x values in the N = 4 case appear among
the 119 x-values in the N = 119 case.

An alternative approach, called the “finite element method” (FEM) is based on approximating the
unknown as a sum of simple “shape functions” defined over the mesh intervals. Since the finite element
solution is actually a function, it is defined over the same spatial interval as the true solution and much of
the machinery of functional analysis is available for proving facts about the method and solutions that arise.
As a consequence, the FEM occupies a large part of the mathematics literature. You can find the FEM
discussed in Quarteroni, Sacco, and Saleri, Sections 12.4 and 12.5.

In this section, you will see the FEM applied to a particular boundary value problem. The problem is
somewhat simpler than the clothesline problem discussed above, but contains the same essential features.
Consider the equation

y′′ + y′ + y = f(x) (4)

defined for x in the interval [0, 1], for f(x) a given function, and with boundary values

y(0) = y(1) = 0. (5)

While the finite difference method attacks (4) directly, the FEM starts from the so-called “weak” form of
the equation. This form can be constructed from (4) by multiplying through by a function v(x), assumed to
satisfy the same boundary conditions (5), and integrating some terms by parts. In this case, the weak form
is given by

−
∫ 1

0

y′(x)v′(x)dx+
[
y′(x)v(x)

]1
0
+

∫ 1

0

y′(x)v(x)dx+

∫ 1

0

y(x)v(x)dx =

∫ 1

0

f(x)v(x)dx

Since v(x) satisfies (5), the bracketed term drops out and the result is

−
∫ 1

0

y′(x)v′(x)dx+

∫ 1

0

y′(x)v(x)dx+

∫ 1

0

y(x)v(x)dx =

∫ 1

0

f(x)v(x)dx. (6)

Remark: In this case, only the first term has been integrated by parts. Some authors might also integrate
the second term by parts. Doing so would not change the following discussion very much.

To approximate the function y, choose an odd integer N and a set of functions ϕn(x) for n = 1, 2, . . . , N ,
defined on the interval [0, 1], that form a basis of some reasonable approximating function space. For most
finite element constructions, these functions satisfy the following characteristics:

1. They are continuous and piecewise polynomials.

2. Each of the functions takes the value 1 at a single mesh node and zero at all other mesh nodes.
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In this exercise, the functions will be piecewise quadratic polynomials and the mesh nodes are given by
dividing the interval into N + 1 subintervals, each of length h = 1/(N + 1), so that a sequence of spatial
points is given by xn = nh for n = 0, 1, . . . , N,N + 1 (x0 = 0 and xN+1 = 1). The quadratic Lagrange
functions are defined in the following way (see Quarteroni, Sacco, Saleri, p. 562).

(n even) ϕn(x) =


(x−xn−1)(x−xn−2)

(xn−xn−1)(xn−xn−2)
for xn−2 < x ≤ xn,

(xn+1−x)(xn+2−x)
(xn+1−xn)(xn+2−xn)

for xn < x ≤ xn+2

0 otherwise

(7)

(n odd) ϕn(x) =

{
(xn+1−x)(x−xn−1)

(xn+1−xn)(xn−xn−1)
for xn−1 ≤ x ≤ xn+1

0 otherwise
(8)

This collection of functions is known to form a basis for a function space that includes all constant, linear,
and quadratic functions on [0, 1] and it has good approximation properties. It is also true that each of the
functions ϕn(x), for n = 1, . . . , N satisfies the boundary conditions (5).

Assume that an approximate solution to (6) can be written as

y(x) =
N∑

n=1

ynϕn(x) (9)

for (as yet unknown) constants yn. Plugging (9) into (6) and choosing v(x) = ϕm(x) yields N equations of
the form

N∑
n=1

(
−
∫ 1

0

ϕ′n(x)ϕ
′
m(x)dx+

∫ 1

0

ϕ′n(x)ϕm(x)dx+

∫ 1

0

ϕn(x)ϕm(x)dx

)
︸ ︷︷ ︸

amn

yn =

∫ 1

0

f(x)ϕm(x)dx︸ ︷︷ ︸
fm

. (10)

Regarding the values yn as the components of a (column) vector Y, the values amn as the components of
a matrix A, and the values fm as the components of a (column) vector F, then (10) can be written as the
matrix equation

AY = F. (11)

Solving the matrix equation (11) completes construction of the approximate solution (9).
In the following exercises, you will write Matlab functions to construct the basis functions ϕn(x) in

(7) and (8), to evaluate the matrix elements amn and vector components fn in (10), and solve the matrix
equation (11).

Remark: When the FEM is programmed, the integrals in (11) are typically performed element-by-
element. This is particularly important in multidimensional cases. Nontheless, we will be using a conceptually
simpler approach to the integrations.

Exercise 3: In this exercise, you will construct the Lagrange quadratic basis functions. The values
xk used in (7) and (8) will be evaluated as xk = kh, where h = 1/(N + 1). The expression kh is valid
even when k = 0, although Matlab does not allow subscripts equal to zero.

In the Matlab functions below, you should regard the variable x as a scalar value, not a vector.
Attempting to write vector (componentwise) code only complicates matters here.

(a) Write a Matlab function m-file for ϕn(x) by completing the following outline

function z=phi(n,h,x)

% z=phi(n,h,x)

% Lagrange quadratic basis functions
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% your name and the date

if numel(x) > 1

error(’x is a scalar, not a vector, in phi.m’);

end

if mod(n,2)==0 % n is even

if (n-2)*h < x & x <= n*h

z= ??? code implementing first part of (7) ???

elseif n*h < x & x <= (n+2)*h

z= ??? code implementing second part of (7) ???

else

z=0;

end

else % n is odd

??? code implementing (8) ???

end

(b) Plot some of your functions using the following code

N=7;

h=1/(N+1);

x=linspace(0,1,97);

mesh=linspace(0,1,N+2);

for k=1:numel(x)

y3(k)=phi(3,h,x(k));

y4(k)=phi(4,h,x(k));

end

plot(x,y3,’b’)

hold on

plot(x,y4,’r’)

plot(mesh,zeros(size(mesh)),’*’)

hold off

You should observe that each ϕ takes the value 1 at a single mesh node (x(k), indicated with
an asterisk), takes the value zero at all other mesh nodes, is continuous, and is parabolic or zero
between any two mesh nodes. Please include this plot with your summary file.

(c) Examine the definitions (7) and (8) and show that ϕn(x) is a continuous function by showing that
the pieces match up at xn−2, xn, and xn+2 for even n and at xn−1 and xn+1 for odd n. (You
don’t need Matlab to do this.) Similarly, show that

ϕn(xm) =

{
1 m = n
0 otherwise

(d) Write a Matlab function m-file similar to phi.m for the derivative ϕ′n(x). Differentiate (7) and
(8) by hand to find ϕ′n(x) and use your formulæ for the function phip.m with signature

function z=phip(n,h,x)
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% z=phip(n,h,x)

% derivative of Lagrange quadratic basis functions

% your name and the date

(e) For the case N=7, plot ϕ3(x) and hϕ
′
3(x) (multiply by h to get a better scaling) on the same plot.

Examine the plot carefully and convince yourself that ϕ′3 appears to be the derivative of ϕ3.

(f) Similarly, plot ϕ4 and ϕ′4. Examine both cases from (7).

(g) For the case N=7 and the point x = 0.4, use the finite difference expression

ϕ3(x+∆x)− ϕ3(x−∆x)

2∆x

with ∆x = 0.01 to estimate ϕ′3(x). Does it agree up to roundoff with the result from phip?
Similarly for ϕ4.

In the following three exercises, you will write m-files to construct and verify the three pieces of the matrix
A in (10). Following that, you will construct the full matrix A and solve for the finite element solution of
the given problem (4).

Exercise 4: In this exercise, you will generate the first part of the matrix A,

a(1)mn = −
∫ 1

0

ϕ′m(x)ϕ′n(x)dx (12)

You will be using many of the mathematical facts about this quantity in order to check that your code
is correct.

In order to do the integrations, you will be using code that I give you that provides a uniform way to
do the required integrations.

(a) Download a copy of a special integration function gaussquad.m. This code takes the names of
two functions (such as ’phi’ or ’phip’) along with their appropriate subscripts and the value of
the mesh spacing h and integrates the resulting product over the interval [a,b]. Its signature is

function q=gaussquad(f1,k1,f2,k2,h,a,b)

This gaussquad function will provide the exact value, not merely an approximate value, of the
integral for the cases considered in this lab: piecewise low degree polynomials.

(b) Choose N=7 and h=1/(N+1), and write an m-file named exer4.m to compute the matrix values

a
(1)
mn in (12). Call the resulting matrix A1. Do not overlook the fact that the basis function

derivatives appear in (12), not the basis functions themselves, and there is that pesky minus sign
in front of the integral. Please include the values of A1 in your summary file.
Remark 0: The following two remarks concern program efficiency. Real programs intended to
solve large problems should be concerned with efficiency, but the first time you write a program
you should strive for simplicity and clarity. It is easier to make a correct program run fast than
it is to make a fast program run correctly.
Remark 1: The support of ϕn(x) is contained in the interval [(n− 2)h, (n+2)h]. You could use
this fact to shrink your integration limits and improve the efficiency of the integration, but it is
not required.
Remark 2: Because the support of ϕn(x) and of ϕm(x) do not intersect when |n−m| ≥ 4, you

can take advantage of this fact to avoid computing components a
(1)
mn that must be zero, but it is

not required.
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(c) (12) indicates that the matrix A1 is symmetric. Check that your computation is symmetric by
showing that

norm(A1-A1’,’fro’)

is zero or roundoff. Add this code to exer4.m.

(d) For the case N=7 and h=1/(N+1), add code to exer4.m to compute the function ψ(x) =
∑N

n=1 ϕn(x)
for the 97 values x=linspace(0,1,97) and plot it. You should observe that it is equal to 1 ex-
cept near the endpoints of the interval. As a consequence, it has zero derivative, except near the
endpoints of the interval. Please include the plot with your summary.

(e) Since A1*ones(N,1)=
∑N

n=1

∫ 1

0
ϕ′n(x)ϕ

′
m(x)dx =

∫ 1

0
ψ′(x)ϕ′m(x)dx, and you just saw that ψ′ is

zero except for x0 ≤ x ≤ x2 and x6 ≤ x ≤ x8, verify the zeros in positions m = 3, 4, 5.

(f) Noting that a
(1)
mn =

∫ 1

0
ϕm(x)ϕ′′n(x)dx, you should be able to see why the following code

N=7;

h=1/(N+1);

v=(1:N)’*h; % v=x

A1*v

should yield a vector that is zero except in the positions m = 6, 7. Add this code to exer4.m and
verify that it does.

(g) Recall that the BVP −y′′ = 2 with y(0) = y(1) = 0 has solution x(1 − x). You can solve this
BVP using FEM. Write a Matlab function m-file with the signature

function z=rhs4(n,h,x)

% z=rhs4(n,h,x)

% your name and the date

to compute the constant function equal to (-2) everywhere. (This is an almost trivial exercise. It is
needed so that gaussquad.m can be used.) Add code to exer4.m to use the gaussquad.m function

to compute the vector components (f4)m =
∫ 1

0
f4(x)ϕm(x)dx and call the resulting vector RHS4.

Since the quadratic function x(1− x) satisfies the boundary conditions, it can be written exactly
as a combination of the ϕn! Hence, the following code should yield the zero vector.

N=7;

h=1/(N+1);

xx=(1:N)’*h; % the variable x has already been used.

v=xx.*(1-xx);

v-A1\RHS4 % should be zero

Add this code to exer4.m. Please include the values of RHS4 in your summary.

The tests in exer4.m construct and test the matrix A1, so you should now be reasonably sure that A1
is correct. In the following exercise, you will construct and test A3. In the subsequent exercise, you will
construct and test A2 so that you have all of the matrix A.

Exercise 5:

(a) Start writing an m-file named exer5.m similar to exer4.m but for the terms

a(3)mn =

∫ 1

0

ϕm(x)ϕn(x)dx.

Call the resulting matrix A3. Include this matrix in your summary.
Warning: If you copy code from A1 for A3, don’t forget that A1 has a minus sign in it from the
integration by parts but that A3 does not.
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(b) Add code to check that A3 is symmetric.

(c) Note that the boundary value problem

y′′ + y = −2 + x(1− x) (13)

with y(0) = y(1) = 0 has the exact solution y = x(1 − x), and this quadratic function can be
expressed exactly as a sum of the ϕn.

(d) Write a Matlab function m-file rhs2.m with signature

function z=rhs5(k,h,x)

% z=rhs5(k,h,x)

% your name and the date

to compute the function f5(x) = −2 + x(1 − x). Add code to exer5.m to use rhs5.m and

gaussquad.m to compute the (column) vector
∫ 1

0
f5(x)ϕm(x)dx, and call the resulting vector

RHS5. Include these values in your summary

(e) The matrix A1 was computed by exer4.m, and A2 and RHS5 are computed by exer5.m. Add code
to exer5.m to solve the matrix equation (A1+A3)*Y=RHS5. You have just solved (13), and your
solution should equal xn(1− xn) at each of the nodes xn = nh exactly, with only roundoff errors.
Add code to exer5.m to check that this is true. If it is not true, there is a mistake somewhere.
Fix it before continuing.

Exercise 6:

(a) Write another m-file named exer6.m to compute the terms

a(2)mn =

∫ 1

0

ϕm(x)ϕ′n(x)dx (14)

Call this matrix A2. Include this matrix in your summary.

(b) Integrating (14) by parts and applying the boundary conditions shows that the matrix A2 is
skew-symmetric (i.e., A2’=-A2. Add code to exer6.m to confirm this is true.

(c) Note that adding the terms A1, A2 and A3 together generates the matrix A.

(d) Note that boundary value problem

y′′ + y′ + y = −2 + (1− 2x) + x(1− x) (15)

with boundary values y(0) = y(1) = 0 has exact solution y = x(1− x).

(e) Write a Matlab function m-file rhs6.m with signature

function z=rhs6(k,h,x)

% z=rhs6(k,h,x)

% your name and the date

to compute the function f6(x) = −2 + (1− 2x) + x(1− x). Add code to exer6.m to compute the

(column) vector
∫ 1

0
f6(x)ϕm(x)dx, and call the resulting vector RHS6.

(f) Solve the matrix equation A*Y=RHS6. You have just solved (15), and your solution should equal
x(1− x) exactly, with only roundoff errors.

Remark: Writing test scripts like exer4.m, exer5.m and exer6.m allows you to re-test your work at any
time. This strategem helps you maintain confidence in your code and also allows you to propose and test
modifications easily.
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Exercise 7: The boundary value problem

y′′ + y′ + y = x+ 1

with boundary values y(0) = y(1) = 0 has exact solution y = x − e−0.5(x−1) sinωx/ sinω, with ω =√
3/2.

(a) Write a function m-file exact7.m to evaluate the above exact solution.

(b) Write a function m-file rhs7.m to evaluate the right side function z = x+ 1.

(c) Write a function m-file solve7.m with signature

function [x,Y]=solve7(N)

% [x,Y]=solve7(N)

% ... more comments ...

% your name and the date

that performs the following tasks:

i. Compute the finite element matrix A

ii. Compute the right side vector RHS7

iii. Solve the system A*Y=RHS7 for Y

iv. Compute the spatial coordinate vector (1:N)’*h

(d) Fill in the following table and estimate the rate of convergence of this method. Measure the error
as the maximum absolute value of the difference between the calculated and true solutions at the
nodes xn = nh, and take the ratio as the error(h) divided by error(h/2).

N h error ratio

7 1.2500e-1 ________ ________

15 6.2500e-2 ________ ________

31 3.1250e-2 ________ ________

61 1.6129e-2 ________ ________

121 8.1967e-3 ________

Remark: The rate of convergence is higher than expected from theory because the mesh is
uniform.

5 Burgers’ Equation

A partial differential equation (PDE) involves derivatives of a function u which depends on more than
one independent variable. One interesting PDE is the one-dimensional Burgers’ equation, which is a one-
dimensional nonlinear equation whose nonlinear term is similar to the one in the Navier-Stokes equations of
fluid flow. In this case, the variable will be called u and it is a function of space (x) and time (t), u(x, t).
The variable u is called “velocity” in the Navier-Stokes equations. Burgers’ equation on the spatial interval
[0, 1] can be written as

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(16)

where ν is a constant. Boundary conditions can be taken as u(0, t) = 1 and u(1, t) = 0, both for all time. Two
space boundary conditions are necessary because the equation is second-order in space. Since the equation
is first-order in time, only one intitial condition is needed.

To get an idea of what the solution to Burgers’ equation might look like, first imagine that ν = 0 and
also that the coefficient u = v is a constant, so that the equation becomes the wave equation

∂u

∂t
+ v

∂u

∂x
= 0.
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If v > 0, this equation represents a right-going wave that moves without changing shape. To see this, note
that for any given function of one variable, f , u = f(tv−x) is a solution of the wave equation. Changing ν to
a small, positive number means that the wave propagates as before, but slowly spreads and decays to zero.
Finally, since the coefficient v is not constant, the wave propagates faster where u is larger and slower where
u is smaller. Thus a wave that is larger to the left and smaller to the right will steepen as it propagates to
the right.

6 The Method of Lines

Look at (16) and pretend, just for a moment, that time is frozen. The equation suddenly starts looking
like the boundary value problem (1) that we solved before, only with a extra term on the left and with
∂u/∂t replacing the right side. This observation is the basis for the “method of lines,” wherein the spatial
discretization is performed separately from the temporal. Consider the function u(t, x), but think of it as a
function of x first. The resulting BVP can be written with primes denoting spatial differentiation so it looks
more like what we have been doing.

νu′′ − uu′ =
∂u

∂t
,

where we are focussing on the left side for the moment, along with spatial boundary conditions u(0, t) = 1
and u(1, t) = 0.

We solved a BVP a lot like this one above. We broke the interval [0, 1] into N+1 subintervals and labelled
the (N+2) resulting points xn, n = 0, 1, 2, ..., (N+1). Next, we defined un as being the approximate solution
at xn. Keep in the back of you mind, though, that un is really still a function of t, un(t). We will denote
the vector of values un by U , because we have already used the unsubscripted u to denote the continuous
solution. Keep in mind that U(t) is a function of time. We will use the same finite difference discretization
as before for the term u′′

u′′ ≈ un+1 − 2un + un−1

∆x2
(17)

and will choose a natural discretization for the first-order nonlinear term

uu′ ≈ un
un+1 − un−1

2∆x
(18)

(The truncation error of each of these forms is O(∆x2).) The resulting discrete equations become

∂u

∂t
= ν

un+1 − 2un + un−1

∆x2
− un

un+1 − un−1

2∆x
. (19)

But we remain on familiar ground: (19) is just a system of IVPs! We know a bunch of different methods
to solve it. It turns out that the system is moderately stiff, and will become more stiff when N is taken larger
and larger. We will use backwards Euler to solve this system. Recall that backwards Euler requires an m-file
to evaluate both the function F and its partial derivative (Jacobian)

Dmn =
∂Fm

∂Un
(20)

In Matlab notation, the variable U will be a matrix whose entries Ukn approximate the values un(tk). In

Matlab notation, for the kth time interval, U(:,k) represents the (column vector of) values at the locations
x(:). The initial condition for U should be a column vector whose values are specified at the locations x(:).

Exercise 8: In this exercise you will write, debug, and solve an m-file for the solution of Burgers’
equation in the form of (19) with ν = 0.001 and using N=500.

(a) Begin a function m-file called burgers ode.m to construct the spatial discretization of Burgers’
equation and its gradient. The function F refers to the right side of (19). Here is an outline:
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function [F,D]=burgers_ode(t,U)

% [F,D]=burgers_ode(t,U)

% compute the right side of the time-dependent ODE arising from

% a method of lines reduction of Burgers’ equation

% and its derivative, D.

% Boundary conditions are fixed =0 at the

% endpoints x=0 and x=1.

% A fixed number of spatial points (=N) is used.

% The variable t is not used, but is kept as a place holder.

% U is the vector of the approximate solution at all spatial points

% output F is the time derivative of U (column vector)

% output D is the Jacobian matrix of

% partial derivatives of F with respect to U

% spatial intervals

N=500;

NU=0.001;

dx=1/(N+1);

ULeft=1; % left boundary value

URight=0; % right boundary value

F=zeros(N,1); % force F to be a column vector

D=zeros(N,N); % matrix of partial derivatives

% construct F and D in a loop

for n=1:N

if n==1 % left boundary

F(n) = ??? Function, left endpoint ???

D(?,?)= ??? Derivative, left endpoint ???

elseif n<N % interior of interval

F(n) = ??? Function, interior points ???

D(?,?)= ??? Derivative, interior points ???

else % right boundary

F(n) = ??? Function, right endpoint???

D(?,?)= ??? Derivative, right endpoint???

end

end

(b) It is easiest to treat the interior points (the case n<N) first. Replace the line

F(n)= ??? Function, interior points ???

with the discretization for F(n) given in (19).

(c) Replace the line

D(?,?)= ??? Derivative, interior points ???

with the values D(n,n), D(n,n+1), and D(n,n-1) according to the formula that was given above
in (20) and is repeated here.

Dnm =
∂Fn

∂Um
(21)

The variable m will take on the three values n, n+1, and n-1. To do, for example, D(n,n+1), write
out the expression for F(n) and differentiate it with respect to U(n+1). Remark: It is easy to
see from the formula that Dnm = 0 for m < n− 1 or m > n+ 1.
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(d) When n=1, the variable corresponding with n-1 is the left boundary value ULeft. With this in
mind, replace the lines

F(n) = ??? Function, left endpoint ???

D(?,?)= ??? Derivative, left endpoint ???

with the expressions for F(n), D(n,n) and D(n,n+1).

(e) When n=N, the variable corresponding with n+1 is the right boundary value URight. With this in
mind, replace the lines

F(n) = ??? Function, right endpoint???

D(?,?)= ??? Derivative, right endpoint???

with the expressions for F(n), D(n,n) and D(n,n-1).

(f) The spatial values represent a uniform mesh

N=500; % must agree with value inside burgers_ode.m

x=linspace(0,1,N+2);

x=x(2:N+1);

and we will assume an initial velocity distribution that looks like a shallowly sloped wave.

UInit=((1-x).^3)’;

(g) Test your version of burgers ode.m by calling it with UInit (the value of t does not matter) and
comparing the result with the following values:

results burgers_ode(0,UInit)

n F(n) D(n-1,n) D(n,n) D(n+1,n)

1 2.9761711475 -499.01396011 498.51296011

2 2.9465759259 1.99800798 -499.02590030 497.02789232

250 0.0976958603 219.12262501 -501.24899902 282.12637400

499 2.395210e-05 251.00094622 -502.00194821 251.00100199

500 1.197605e-05 251.00098406 -502.00198406

(h) Retrieve your copies of back euler.m and newton4euler.m, or download my copies of back euler.m

and newton4euler.m.

(i) Use back euler to solve Burgers’ equation starting from UInit. You should use 100 steps from
time t=0 to time t=1.

[t,U]=back_euler(’burgers_ode’,[0,1],UInit,100);

The solution should converge at each step. If you get the “failed to converge” message, your
derivative (D) is probably wrong. To help with grading, please include the value of U(200,50) in
your summary.

(j) Recall that the columns of U represent velocities at different places all at the same time and rows
of U represent velocities at different times all at the same place. To see a snapshot of the solution
at timestep k, use the command

plot(x, U(:,k) )

where x is the value assigned above. Please include this plot for the choice k=50 with your
summary.

(k) You can see a “flicker picture” of the evolution with the following steps
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plot(x,U(:,1))

axis([0,1,0,1.5])

for k=2:100

pause(0.1);

plot(x,U(:,k));

axis([0,1,0,1.5])

end

You should be able to see the “wave” steepen as it moves to the right. Please include the final
frame of this sequence with your summary.

Remark: The boundary condition is inappropriate for the case that the “wave” actually reaches the
right boundary, and the solution will fail if the time interval is long enough for the wave to reach x = 1.

7 Extra Credit: Shooting Methods (8 points)

Shooting methods solve a BVP by reformulating it as an IVP, using initial values as parameters. The BVP
is solved by finding the parameters that reproduces the desired boundary values. For this exercise, we return
to considering the BVP of a hanging rope.

Taking as our example the rope BVP (1), how much violence do we have to do to it in order to make it
look like an IVP? Well, we expect to have two conditions at the left point and none at the right point. So
let’s temporarily consider the related problem, where we have made up an extra boundary condition at our
initial value of x = 0:

(1 + cx)u′′ + cu′ = ρg, c = 0.05, ρg = 0.4

u(0) = 1 (22)

u′(0) = α

The following exercise attacks this system using a method called “shooting.” The strategy behind this
method is the following.

• For each value of α, we can solve this problem, and get a numerical solution at a sequence of points
up to the right endpoint.

• Since every value of α determines a (numerical) solution u(5), we can regard the difference between the
value we got, and the value we want, as a function F (α) = u(5)− 1.5. (Where we write u(5), but we
should really write something like uα(5), to emphasize that the solution depends on the parameter.)

• The BVP solution we are looking for has the property that F (α) = 0. The Matlab function fzero will
be used to find α.

As you know, the ODE (1) can be written as a system of first order differential equations. This is done
by identifying y1 = u and y2 = u′, yielding the system

y′1 = y2

y′2 = (ρg − cy2)/(1 + cx)

For this exercise, you will be using built-in Matlab ODE routines to solve the initial value problem that
arises from a guessed initial condition and then you will use the Matlab function fzero to solve for the
correct initial condition.

Exercise 9:

(a) Write a function m-file named rope ode.m with signature
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function fValue=rope_ode(x,y)

% fValue=rope_ode(x,y) computes the

% rhs of the first-order system

% your name and the date

Note that since we plan to use ode45 there is no need to add the Jacobian matrix to rope ode.m!
This is a great convenience, but in many cases you would have to provide a function for the
Jacobian or ode45 (or ode15s, etc.) might fail. In that case, setting an option allows the Jacobian
computation.

(b) Choose a provisional value α = 0 and use the Matlab function ode45 to solve the system (22) on
the interval [0,5]. What is the value of u(5)− 1.5? Is it positive or negative? (Be careful: which
of the components of y corresponds with u?)

(c) By trial and error, find a second value of α for which the value of u(5) − 1.5 is of the opposite
sign as for α = 0. The correct value of α lies between the two values you just found.

(d) Write an m-file called rope shoot.m that accepts a value of alpha and evaluates F(alpha), for
the rope BVP. The file should have the signature

function F = rope_shoot ( alpha )

% F = rope_shoot ( alpha )

% comments

% your name and the date

and this code should do the following:

• Use the input value of alpha as the initial condition for y′(0);

• Use ode45 to compute the solution [x,y] of the IVP (22) defined by the initial conditions,
and the right hand side function rope ode, for x ∈ [0, 5];

• Return in the function value F the value of u(5)− 1.5.

For a given value of α, the function you just wrote will return y(5) − 1.5. When α is just right,
it will return 0.

(e) Test that rope shoot returns the same value you obtained above when alpha=0.

(f) Use the Matlab function fzero to find the value of α that makes F (α) = y(5) − 1.5 = 0. fzero
requires two parameters, a function handle (@) first and second the vector [alpha1,alpha2] of
the two values of α that you just found for which F has opposite signs. What is the value of
alpha you found?

(g) Plot the solution you found. Does the curve have a height of 1 at x = 0 and a height of 1.5 at
x = 5? You do not need to send me this plot.

(h) Return to your solution for N=119 in Exercise 2. Use a finite difference expression for the derivative
to estimate the derivative of U2 at the left endpoint. How does it compare with the value α you
just computed?
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