
MATH2071: LAB 2: Explicit ODE methods

Introduction Exercise 1
Matlab hint Exercise 2
Euler’s method Exercise 3
The Euler Halfstep (RK2) Method Exercise 4
Runge-Kutta Methods Exercise 5
Stability Exercise 6
Adams-Bashforth Methods Exercise 7
Stability region plots (extra) Extra Credit

1 Introduction

In this lab we consider solution methods for ordinary differential equations (ODEs). We will be looking at
two classes of methods that excel when the equations are smooth and derivatives are not too large. This lab
will take two class sessions. If you print this lab, you may prefer to use the pdf version.

The lab begins with an introduction to Euler’s (explicit) method for ODEs. Euler’s method is the simplest
approach to computing a numerical solution of an initial value problem. However, it has about the lowest
possible accuracy. If we wish to compute very accurate solutions, or solutions that are accurate over a long
interval, then Euler’s method requires a large number of small steps. Since most of our problems seem to be
computed “instantly,” you may not realize what a problem this can become when solving a “real” differential
equation.

Applications of ODEs are divided between ones with space as the independent variable and ones with
time as the independent variable. We will use x as independent variable consistently. Sometimes it will be
interpreted as a space variable (x-axis) and sometimes as time.

A number of methods have been developed in the effort to get solutions that are more accurate, less
expensive, or more resistant to instabilities in the problem data. Typically, these methods belong to “families”
of increasing order of accuracy, with Euler’s method (or some relative) often being the member of the lowest
order.

In this lab, we will look at “explicit” methods, that is, methods defined by an explicit formula for yk+1,
the approximate solution at the next time step, in terms of quantities derivable from previous time step data.
In a later lab, we will address “implicit” methods that require the solution of an equation in order to find
yk+1. We will consider the Runge-Kutta and the Adams-Bashforth families of methods. We will talk about
some of the problems of implementing the higher order versions of these methods. We will try to compare
the accuracy of different methods applied to the same problem, and using the same number of steps.

Runge-Kutta methods are “single-step” methods while Adams-Bashforth methods are “multistep” meth-
ods. Multistep methods require information from several preceding steps in order to find yk+1 and are a
little more difficult to use. Nonetheless, both single and multistep methods have been very successful and
there are very reliable Matlab routines (and libraries for other languages) available to solve ODEs using both
types of methods.

2 Matlab hint

Matlab vectors can be either row vectors or column vectors. Unlike ordinary vectors in theoretical work, row
and column vectors behave almost as if they belong to different vector spaces. They cannot, for example be
added together and a matrix can only be multiplied on the right by a column vector or on the left by a row
vector. The reason for the distinction is that vectors are really special cases of matrices with a “1” for the

1

other dimension. A row vector of length n is really a 1× n matrix and a column vector of length n is really
a n× 1 matrix.

You should recall that row vectors are separated by commas when using square brackets to construct
them and column vectors are separated by semicolons. It is sometimes convenient to write a column vector
as a column. In the following expressions

rv = [0, 1, 2, 3];

cv = [0; 1; 2; 3; 4];

cv1 = [0

1

2

3

4];

The vector rv is a row vector and the vectors cv and cv1 are column vectors.
If you do not tell Matlab otherwise, Matlab will generate a row vector when it generates a vector. The

output from linspace is, for example, a row vector. Similarly, the following code

for j=1:10

rv(j)=j^2;

end

results in the vector rv being a row vector. If you wish to generate a column vector using a loop, you can
either first fill it in with zeros

cv=zeros(10,1);

for j=1:10

cv(j)=j^2;

end

or use two-dimensional matrix notation

for j=1:10

cv(j,1)=j^2;

end

3 Euler’s method

A very simple ordinary differential equation (ODE) is the explicit scalar first-order initial value problem:

dy

dx
= fode(x, y)

y(x0) = y0.

The equation is explicit because dy/dx can be written explicitly as a function of x and y. It is scalar because
we assume that y(x) is a scalar quantity, not a vector. It is first-order because the highest derivative that
appears is the first derivative dy/dx. It is an initial value problem (IVP) because we are given the value of
the solution at some time or location x0 and are asked to produce a formula for the solution at later times.

An analytic solution of an ODE is a formula y(x), that we can evaluate, differentiate, or analyze in any
way we want. Analytic solutions can only be determined for a small class of ODE’s. The term “analytic”
used here is not quite the same as an analytic function in complex analysis.

A “numerical solution” of an ODE is simply a table of abscissæ and approximate values (xk, yk) that ap-
proximate the value of an analytic solution. This table is usually accompanied by some rule for interpolating
solution values between the abscissæ. With rare exceptions, a numerical solution is always wrong because

2

there is always some difference between the tabulated values and the true solution. The important question
is, how wrong is it? One way to pose this question is to determine how close the computed values (xk, yk)
are to the analytic solution, which we might write as (xk, y(xk)).

The simplest method for producing a numerical solution of an ODE is known as Euler’s explicit method,
or the forward Euler method. Given a solution value (xk, yk), we estimate the solution at the next abscissa
by:

yk+1 = yk + hy′(xk, yk).

(The step size is denoted h here. Sometimes it is denoted dx.) We can take as many steps as we want with
this method, using the result from one step as the starting point for the next step.

Matlab note: In the following function, the name of the function that evaluates dy/dx is arbitrary.
Recall that if you do not know the actual name of a function, but it is contained in a Matlab variable (I
often use the variable name “f ode”) then you can evaluate the function using the Matlab function using
the usual function syntax. Supposing you have a Matlab function m-file named my ode.m and its signature
line looks like the following.

function fValue=my_ode(x,y)

Suppose you wish to call it from inside another function whose signature line looks like the following.

function [x, y] = ode_solver (f_ode, xRange, yInitial, numSteps)

When you call ode solver using a command such as

[x, y] = ode_solver(@my_ode,[0,1],0,10)

then, inside ode solver you can use syntax such as

fValue=f_ode(x,y)

to call my ode. This is the approach taken in this and future labs.
Matlab has an alternative, slightly more complicated, way to do the same thing. Inside ode solver you

can use the Matlab feval utility

fValue=feval(f_ode,x,y)

to call my ode.
Typically, Euler’s method will be applied to systems of ODEs rather than a single ODE. This is because

higher order ODEs can be written as systems of first order ODEs. The following Matlab function m-file
implements Euler’s method for a system of ODEs.

function [x, y] = forward_euler (f_ode, xRange, yInitial, numSteps)

% [x, y] = forward_euler (f_ode, xRange, yInitial, numSteps) uses

% Euler’s explicit method to solve a system of first-order ODEs

% dy/dx=f_ode(x,y).

% f = function handle for a function with signature

% fValue = f_ode(x,y)

% where fValue is a column vector

% xRange = [x1,x2] where the solution is sought on x1<=x<=x2

% yInitial = column vector of initial values for y at x1

% numSteps = number of equally-sized steps to take from x1 to x2

% x = row vector of values of x

% y = matrix whose k-th column is the approximate solution at x(k).

x(1) = xRange(1);

h = (xRange(2) - xRange(1)) / numSteps;

3

y(:,1) = yInitial;

for k = 1 : numSteps

x(1,k+1) = x(1,k) + h;

y(:,k+1) = y(:,k) + h * f_ode(x(k), y(:,k));

end

In the above code, the initial value (yInitial) is a column vector, and the function represented by f

returns a column vector. The values are returned in the columns of the matrix y, one column for each value
of x. The vector x is a row vector.

In the following exercise, you will use forward euler.m to find the solution of the initial value problem

dy

dx
= −y − 3x (1)

y(0) = 1

The exact analytic solution of this IVP is y = −2e−x − 3x+ 3.

Exercise 1:

(a) If you have not done so already, copy (use cut-and-paste) the above code into a file named
forward euler.m.

(b) Copy the following code into a Matlab m-file called expm ode.m.

function fValue = expm_ode (x, y)

% fValue = expm_ode (x, y) is the right side function for

% the ODE dy/dx=-y+3*x

% x is the independent variable

% y is the dependent variable

% fValue represents dy/dx

fValue = -y-3*x;

(c) Now you can use Euler’s method to march from y=yInit at x=0:

yInit = 1.0;

[x, y] = forward_euler (@expm_ode, [0.0, 2.0], yInit, numSteps);

for each of the values of numSteps in the table below. Use at least four significant figures when
you record your numbers (you may need to use the command format short e), and you can use
the first line as a check on the correctness of the code. In addition, compute the error as the
difference between your approximate solution and the exact solution at x=2, y=-2*exp(-2)-3,
and compute the ratios of the error for each value of nstep divided by the error for the succeeding
value of nstep. As the number of steps increases, your errors should become smaller and the
ratios should tend to a limit.

Euler’s explicit method

numSteps Stepsize Euler Error Ratio

10 0.2 -3.21474836 5.5922e-02 _________

20 0.1 __________ __________ _________

40 0.05 __________ __________ _________

80 0.025 __________ __________ _________

160 0.0125 __________ __________ _________

320 0.00625 __________ __________

4

Hint: Recall that Matlab has a special index, end, that always refers to the last index. Thus,
y(end) is a short way to write y(numel(y)) when y is either a row vector or a column vector.

(d) You know the error is O(hp) for some p. There is a simple way to estimate the value of p by
successively halving h. If the error were exactly Chp, then by solving twice, once using h and the
second time using h/2 and taking the ratio of the errors, you would get

error(h)

error(h/2)
=

Chp

C(h/2)p
= 2p.

Since the error is only O(hp), the ratio is only approximately 2p.

Based on the ratios in the table, estimate the order of accuracy of the method, i.e., estimate the
exponent p in the error estimate Chp, where h is the step size. p is an integer in this case.

4 The Euler Halfstep (RK2) Method

The “Euler halfstep” or “RK2” method is a variation of Euler’s method. It is the second-simplest of a family
of methods called “Runge-Kutta” methods. As part of each step of the method, an auxiliary solution, one
that we don’t really care about, is computed halfway, using Euler’s method:

xa = xk + h/2

ya = yk + 0.5hfode(xk, yk) (2)

The derivative function is evaluated at this point, and used to take a full step from the original point:

xk+1 = xk + h;

yk+1 = yk + hfode(xa, ya) (3)

Although this method uses Euler’s method, it ends up having a higher order of convergence. Loosely
speaking, the initial half-step provides additional information: an estimate of the derivative in the middle of
the next step. This estimate is presumably a better estimate of the overall derivative than the value at the
left end point. The per-step error is O(h3) and, since there are O(1/h) steps to reach the end of the range,
O(h2) overall. Keep in mind that we do not regard the auxiliary points as being part of the solution. We
throw them away, and make no claim about their accuracy. It is only the whole-step points that we want.

In the following exercise we compare the results of RK2 with Euler.

Exercise 2:

(a) Write a Matlab function m-file named rk2.m that implements the Euler halfstep (RK2) method
sketched above in Equations (2) and (3). Keep the same calling parameters and results as for
forward euler.m above. Keeping these the same will make it easy to compare different methods.
The following model for the file is based on the forward euler.m file with the addition of the
variables xa and ya representing the auxiliary variables xa and ya in Equation (2). Add com-
ments to this outline, including explanations of all the variables in the signature line, and fill in
expressions where ??? have been left.

function [x, y] = rk2 (f_ode, xRange, yInitial, numSteps)

% [x, y] = rk2 (f_ode, xRange, yInitial, numSteps)

% comments including the signature, meanings of variables,

% math methods, your name and the date

x(1,1) = xRange(1);

h = (xRange(2) - xRange(1)) / numSteps;

5

y(:,1) = yInitial;

for k = 1 : numSteps

xa = ??? ;

ya = ??? ;

x(1,k+1) = x(1,k) + h;

y(:,k+1) = y(:,k) + h * f_ode(???);

end

(b) Use this file to compute the numerical solution of the model ODE for the exponential, expm ode.m,
from Exercise 1, from x = 0.0 to x = 2.0, and with the same initial value as in Exercise 1, but
using Euler’s halfstep method, RK2, with stepsizes below. For each case, record the value of the
numerical solution at x = 2.0; the error, that is, the difference between the numerical solution
and the true solution at the end point x=2 (y=-2*exp(-2)-3); and, the ratios of the error for
each value of numSteps divided by the error for the succeeding value of numSteps. Use at least 4
significant digits when you record values.

RK2

numSteps Stepsize RK2 Error Ratio

10 0.2 -3.274896063 4.2255e-3 __________

20 0.1 __________ __________ __________

40 0.05 __________ __________ __________

80 0.025 __________ __________ __________

160 0.0125 __________ __________ __________

320 0.00625 __________ __________

(c) Based on the ratios in the table, estimate the order of accuracy of the method, i.e., estimate the
exponent p in the error estimate Chp. p is an integer in this case.

(d) Compare errors from Euler’s method (Exercise 1) and Euler’s halfstep method for this problem.
You should clearly see that Euler’s halfstep method (RK2) converges much faster than Euler’s
method.

Euler

numSteps Stepsize Error RK2 Error

10 0.2 __________ __________

20 0.1 __________ __________

40 0.05 __________ __________

80 0.025 __________ __________

160 0.0125 __________ __________

320 0.00625 __________ __________

(e) Based on the above table, roughly how many steps does Euler require to achieve the accuracy
that RK2 has for numSteps=10?

(f) You have already found the the error for Euler’s method is approximately CEh
pE and the error for

RK2 is approximately CRK2h
pRK2 . Based on one or both of these estimates, roughly how many

steps would Euler require to achieve the accuracy that RK2 has for numSteps=320? Explain your
reasoning.

(g) Check that the accuracy obtained using Euler’s method with your estimated number of steps is
comparable to the accuracy that RK2 has for numSteps=320.

Be sure to include a copy of your rk2.m file when you send me your summary.

6

5 Runge-Kutta Methods

The idea in Euler’s halfstep method is to “sample the water” between where we are and where we are going.
This gives us a much better idea of what f is doing, and where our new value of y ought to be. Euler’s
method (“RK1”) and Euler’s halfstep method (“RK2”) are the junior members of a family of ODE solving
methods known as “Runge-Kutta” methods.

To develop a higher order Runge-Kutta method, we sample the derivative function f at even more
“auxiliary points” between our last computed solution and the next one. These points are not considered
part of the solution curve; they are just a computational aid. The formulas tend to get complicated, but let
me describe the next one, at least.

The third order Runge Kutta method “RK3,” given x, y and a stepsize h, computes two intermediate
points:

xa = xk + .5h

ya = yk + .5hfode(xk, yk) (4)

xb = xk + h

yb = yk + h(2fode(xa, ya)− fode(xk, yk))

and then estimates the solution as:

xk+1 = xk + h

yk+1 = yk + h(fode(xk, yk) + 4.0fode(xa, ya) + fode(xb, yb))/6.0 (5)

The global accuracy of this method is O(h3), and so we say it has “order” 3. Higher order Runge-Kutta
methods have been computed, with those of order 4 and 5 the most popular.

Exercise 3:

(a) Write a Matlab function m-file called rk3.m with the signature

function [x, y] = rk3 (f_ode, xRange, yInitial, numSteps)

% comments including the signature, meanings of variables,

% math methods, your name and the date

that implements the above algorithm. You can use rk2.m as a model.

(b) Repeat the numerical experiment in Exercise 2 (using expm ode) and fill in the following table.
Use the first line of the table to confirm that you have written the code correctly.

RK3

numSteps Stepsize RK3 Error Ratio

10 0.2 -3.27045877 2.1179e-04 __________

20 0.1 __________ __________ __________

40 0.05 __________ __________ __________

80 0.025 __________ __________ __________

160 0.0125 __________ __________ __________

320 0.00625 __________ __________

(c) Based on the ratios in the table, estimate the order of accuracy of the method, i.e., estimate the
exponent p in the error estimate Chp. p is an integer in this case.

(d) Compare errors from the RK2 method (Exercise 2) and the RK3 method for this problem. You
should clearly see that RK3 converges much faster than RK2.

7

numSteps Stepsize RK2 Error RK3 Error

10 0.2 __________ __________

20 0.1 __________ __________

40 0.05 __________ __________

80 0.025 __________ __________

160 0.0125 __________ __________

320 0.00625 __________ __________

(e) Based on the above table, roughly how many steps does RK2 require to achieve the accuracy that
RK3 has for numSteps=10?

(f) You have already found the the error for RK2 is approximately CRK2h
pRK2 and the error for

RK3 is approximately CRK3h
pRK3 . Based on one or both of these estimates, roughly how many

steps would RK2 require to achieve the accuracy that RK3 has for numSteps=320? Explain your
reasoning.

(g) Check that the accuracy obtained using RK2 with your estimated number of steps is comparable
to the accuracy that RK3 has for numSteps=320.

Exercise 4: You have not tested your code for systems of equations yet. In this exercise you will do
so by solving the “system”

dy1
dx

= −y1 − 3x

dy2
dx

= −y2 − 3x. (6)

You can see that this “system” is really (1) twice, so you can check y1 and y2 against each other and
against your earlier work.

(a) It turns out that the file expm ode.m will return a vector if it is given a vector for y. To see this
fact in action, the following command:

fValue = expm_ode(1.0,[5;6])

Please include the value of fValue in your summary file. If fValue is not a column vector of
length 2, you have a mistake somewhere. Fix it before continuing. (Hint: First make sure your
vector [5;6] has a semicolon in it and is a column vector.)

(b) Solve the system (6) using rk3 and expm ode on the interval [0,2] starting from the initial value
vector [5;6], with 40 steps, Call the solution ysystem. What is ysystem(:,end)?

(c) Solving the system (6) amounts to solving (1) twice, once with initial value y(0)=5, and once
more with initial value y(0)=6. Solve the scalar IVP (1) twice using rk3 and expm ode on the
interval [0,2] using 40 steps, once with initial value 5 and once with initial value 6. Call the
solutions y1 and y2. What are y1(end) and y2(end)? If these values are different from those of
ysystem(:,end), you have a mistake somewhere. Fix your mistake before continuing.
Debugging hint: Check if y1(1) and ysystem(1,1) or y2(1) and ysystem(2,1) also disagree.
Use format long so you can see all decimal places. One or both of these probably disagree. Using
the debugger, look at xa, ya, xb, yb, x(2) and y(:,2) and compare them with the respective
results from expm ode. The earliest difference you see comes from an incorrect line of code.

(d) Use the following code to compare the solutions for all x values.

norm(ysystem(1,:)-y1)/norm(y1) % should be roundoff or zero

norm(ysystem(2,:)-y2)/norm(y2) % should be roundoff or zero

8

Exercise 5:

The equation describing the motion of a pendulum can be described by the single dependent variable θ
representing the angle the pendulum makes with the vertical. The coefficients of the equation depend
on the length of the pendulum, the mass of the bob, and the gravitational constant. Assuming a
coefficient value of 3, the equation is

d2θ

dx2
+ 3 sin θ = 0

and one possible set of initial conditions is

θ(x0) = 1

dθ

dx
(x0) = 0

This second order equation can be written as a system

dy

dx
=

(
y2

−3 sin y1

)
y(0) =

(
1
0

)
.

(Recall that this transformation is accomplished by the change of variables y1 = θ and y2 = dθ/dx.)

(a) Write a function m-file named pendulum ode.m with signature

function fValue = pendulum_ode(x,y)

% fValue = pendulum_ode(x,y)

% comments including meanings of variables,

% math methods, your name and the date

Be sure to put comments after the signature line and wherever else they are needed. Be sure that
you return a column vector.

(b) Compare the solutions using the first order Euler method, and the third order RK3 method, using
1000 steps for each method, over the interval 0 to 25, with initial condition y=[1;0]. Fill in the
following table, where n is the value of the subscript for x(n)=6.25, etc., within roundoff.

x n Euler RK3

0.00 1 1.00 0.00 1.00 0.00

6.25 ___ __________ __________ __________ __________

12.50 ___ __________ __________ __________ __________

18.75 ___ __________ __________ __________ __________

25.00 ___ __________ __________ __________ __________

Hint: You may want to use the Matlab find function. Use “help find” or the help menu for
details.

(c) Note that conservation of energy guarantees that θ should stay between -1 and 1. Generate plots
of θ vs. x for the forward Euler and Runge-Kutta-3 solutions. Can you see anything in the plot
of the Euler’s method solution that might indicate that it is wrong, aside from conservation of
energy? You do not have to send me a copy of the plot.

(d) Solve the ODE using Euler’s method again, but use 10,000 steps instead of 1000. Plot both θ
from the refined Euler solution and θ from the original RK3 solution on the same plot and include
it with your summary. Your plots should illustrate the fact that refining the mesh helps Euler,
but it is still inaccurate compared with RK3. Please include this plot with your summary.

Message: Euler’s method is not very accurate, even on nice problems. Our solution curve from Euler’s
method looks smooth, but it’s fundamentally flawed! You must not accept a solution just because your
formulæ seem to be correctly copied and the solution “looks nice.”

9

6 Stability

You have seen a considerable amount of theory about stability of methods for ODEs, and you will see more
in the future. Explicit methods generally are conditionally stable, and require that the step size be smaller
than some critical value in order to converge. It is interesting to see what happens when this stability limit
is approached and exceeded. In the following exercise you will drive Euler’s method and Runge-Kutta third-
order methods unstable using the expm ode function from before. You should observe very similar behavior
of the two methods. This behavior, in fact, is similar to that of most conditionally stable methods.

Exercise 6: Each part of this exercise results in a plot. Please include each of the plots with your
summary.

(a) Use forward euler to solve the ODE using expm ode, over the interval [0,20], starting from y=20

and using numSteps=40. This solution is well within the stable regime. Plot this case. What is
the the step size?

(b) Now solve the same IVP using numSteps=30, 20, 15, 12 and 10. The consequence of decreasing
the numbers of intervals is to increase the step size. Plot these several solutions on the same plot.
You should observe increasing “plus-minus” oscillations in the solutions. What are the step sizes
of each of these cases?

(c) Same, but using numSteps=8. This solution “explodes” in a “plus-minus” fashion. Plot this case.
What is the step size of this case?

(d) Use rk3 to solve the ODE using expm ode, over the interval [0,20], starting from y=20 and using
numSteps=20, 10, 9 and 8 steps. Plot these on the same plot. The first of these is stable. What
are the step sizes of these four cases?

(e) Same, but with numSteps=7. This solution “explodes” in a “plus-minus” fashion. Plot it. What
is the step size of this case?

The message you should get from the previous exercise is that you can observe poor solution behavior
when you are near the stability boundary for any method, no matter what the theoretical accuracy is. The
“poor behavior” appears as a “plus-minus” oscillation that can shrink, grow, or remain of constant amplitude
(unlikely, but possible). It can be tempting to accept solutions with small “plus-minus” oscillations that die
out, but it is dangerous, especially in nonlinear problems, where the oscillations can cause the solution to
move to a nearby curve with different initial conditions that has very different qualitative behavior from the
desired solution.

7 Adams-Bashforth Methods

Like Runge-Kutta methods, Adams-Bashforth methods want to estimate the behavior of the solution curve,
but instead of evaluating the derivative function at new points close to the next solution value, they look
at the derivative at old solution values and use interpolation ideas, along with the current solution and
derivative, to estimate the new solution. This way they don’t compute solutions at auxiliary points and then
throw the auxiliary values away. The savings can result in increased efficiency.

Looked at in this way, the forward Euler method is the first order Adams-Bashforth method, using no
old points at all, just the current solution and derivative. The second order method, which we’ll call “AB2,”
adds the derivative at the previous point into the interpolation mix. We might write the formula this way:

yk+1 = yk + h(3fode(xk, yk)− fode(xk−1, yk−1))/2

The AB2 method requires derivative values at two previous points, but we only have one when starting
out. If we simply used an Euler step, we would pick up a relatively large error on the first step, which would

10

pollute all subsequent results. In order to get a reasonable starting value, we should use the RK2 method,
whose per-step error is order O(h3), the same as the AB2 method.

The following is a complete version of Matlab code for the Adams-Bashforth second-order method.

function [x, y] = ab2 (f_ode, xRange, yInitial, numSteps)

% [x, y] = ab2 (f_ode, xRange, yInitial, numSteps) uses

% Adams-Bashforth second-order method to solve a system

% of first-order ODEs dy/dx=f_ode(x,y).

% f = name of an m-file with signature

% fValue = f_ode(x,y)

% to compute the right side of the ODE as a column vector

%

% xRange = [x1,x2] where the solution is sought on x1<=x<=x2

% yInitial = column vector of initial values for y at x1

% numSteps = number of equally-sized steps to take from x1 to x2

% x = row vector of values of x

% y = matrix whose k-th row is the approximate solution at x(k).

x(1) = xRange(1);

h = (xRange(2) - xRange(1)) / numSteps;

y(:,1) = yInitial;

k = 1;

fValue = f_ode(x(k), y(:,k));

xhalf = x(k) + 0.5 * h;

yhalf = y(:,k) + 0.5 * h * fValue;

fValuehalf = f_ode(xhalf, yhalf);

x(1,k+1) = x(1,k) + h;

y(:,k+1) = y(:,k) + h * fValuehalf;

for k = 2 : numSteps

fValueold=fValue;

fValue = f_ode(x(k), y(:,k));

x(1,k+1) = x(1,k) + h;

y(:,k+1) = y(:,k) + h * (3 * fValue - fValueold) / 2;

end

Exercise 7:

(a) Copy the code to a file called ab2.m.

(b) Take a minute to look over this code and see if you can understand what is happening. Insert the
following two comment lines into the code in the correct locations:

% The Adams-Bashforth algorithm starts here

% The Runge-Kutta algorithm starts here

Be sure to include a copy of the commented code in your summary.

(c) The temporary variables fValue and fValueold have been introduced here but were not needed
in the Euler, RK2 or RK3 methods. Explain, in a few sentences, their role in AB2.

(d) If numSteps is 100, then exactly how many times will we call the derivative function f ode?

11

(e) Use ab2 to compute the numerical solution of the ODE for the exponential (expm ode) from x

= 0.0 to x = 2.0, starting at y=1 with step sizes of 0.2, 0.1, 0.05, 0.025, 0.0125 and 0.00625.
Recall that the exact solution at x=2, is y=-2*exp(-2)-3. For each case, record the value of the
numerical solution at x = 2.0, and the error, and the ratios of the errors. The first line of the
table can be used to verify that your code is operating correctly.

AB2

numSteps Stepsize AB2(x=2) Error(x=2) Ratio

10 0.2 -3.28013993 9.4694e-03 __________

20 0.1 __________ __________ __________

40 0.05 __________ __________ __________

80 0.025 __________ __________ __________

160 0.0125 __________ __________ __________

320 0.00625 __________ __________

(f) Based on the ratios in the table, estimate the order of accuracy of the method, i.e., estimate the
exponent p in the error estimate Chp. p is an integer in this case.

Adams-Bashforth methods try to squeeze information out of old solution points. For problems where the
solution is smooth, these methods can be highly accurate and efficient. Think of efficiency in terms of how
many times we evaluate the derivative function. To compute numSteps new solution points, we only have
to compute roughly numSteps derivative values, no matter what the order of the method (remember that
the method saves derivative values at old points). By contrast, a third order Runge-Kutta method would
take roughly 3*numSteps derivative values. In comparison with the Runge Kutta method, however, the old
solution points are significantly further away from the new solution point, so the data is less reliable and a
little “out of date.” So Adams-Bashforth methods are often unable to handle a solution curve which changes
its behavior over a short interval or has a discontinuity in its derivative. It’s important to be aware of this
tradeoff between efficiency and reliability!

8 Extra Credit: Stability region plots (12 points)

You have seen above that some choices of step size h result in unstable solutions (blow up) and some don’t. It
is important to be able to predict what choices of h will result in unstable solutions. One way to accomplish
this task is to plot the region of stability in the complex plane. An excellent source of further information
about stability regions can be found in Chapter Seven of the book ”Finite Difference Methods for Ordinary
and Partial Differential Equations” by Randall J. LeVeque at
http://www.siam.org/books/ot98/sample/OT98Chapter7.pdf.

When applied to the test ODE dy/dx = λy, all of the common ODE methods result in linear recurrance
relations of the form

yk+n + an−1yk+n−1 + . . .+ a1yk+1 + a0yk = 0 (7)

where k = 0, 1, . . . ,∞, n is some small integer, and the aj are constants depending on hλ. For example, the
explicit Euler method results in the recurrance relation

yk+1 − (1 + hλ))yk = 0.

It is a well-known fact that linear recursions of the form (7) have unique solutions in the form

yk =

n∑
j=1

cjζ
k
j

12

where ζj for j = 1, . . . , n are the distinct roots of the polynomial equation

ζn + an−1ζ
n−1 + . . .+ a1ζ

1 + a0 = 0. (8)

If any of the roots is not simple, this expression must be modified slightly. The coefficients cj are determined
by initial conditions. It must be emphasised that the roots ζ are, in general, complex. For the explicit Euler
method, for example, n = 1 and a0 = −(1 + hλ).

The relationship between (7) and (8) can be seen by assuming that, in the limit of large k, yk+1/yk = ζ.
Clearly, the sequence {yk} is stable (bounded) if and only if |yk+1/yk| ≤ 1. Hence the ODE method

associated with the polynomial (8) is stable if and only if all the roots satisfy |ζ| ≤ 1.
The equation (8) can be solved (numerically if necessary) for µ = hλ in terms of ζ. Then, the so-called

“stability region,” the set {µ : |ζ| ≤ 1} in the complex plane, can be plotted by plotting the curve of those
values of µ with |ζ| = 1. This idea can be turned into the following algorithmic steps.

1. Plug fode = λy into the formula you are investigating to yield (8).

2. Write (8) in terms of µ = hλ and ζ = yk+1/yk

3. For ζ such that |ζ| = 1, solve for µ. This might involve several branches, e.g., when a square root has
been taken.

4. For 0 ≤ θ ≤ 2π, set ζ = eiθ and draw one or more µ(θ) curves. These curves bound the stability region.

5. To identify the interior of the stability region, set ζ = 0.95eiθ and plot the resulting µ(θ) curve(s).

In the following exercise, you will implement this algorithm.

Exercise 8: In the first four parts of this exercise, you will generate the stability region of the explicit
Euler method. In the fifth part you will generate the stability region of the Adams-Bashforth AB2
method. The sixth part asks you to interpret the results in the fifth part. The first five parts are worth
8 extra credit points and the sixth part is worth another 4 points.

(a) For real values of θ, the exponential ζ = eiθ, where i =
√
−1 is the imaginary unit, always satisfies

|ζ| = 1. Using 1000 values of θ between 0 and 2π, construct 1000 points on the unit circle in the
complex plane. Write a Matlab script m-file to plot these points and confirm they lie on the unit
circle. (Recall axis equal can be used to get the correct aspect ratio.) Include this plot with
the summary of your work.

(b) As remarked above, the explicit Euler method applied to the ODE dy/dx = λy yields yk+1− (1+
hλ))yk = 0. Since (hλ) occurs together, denote the product as µ = hλ. Also denote by ζ the
ratio ζ = yk+1/yk. Writing these expressions using pencil and paper, solve this expression for µ
in terms of ζ.

Replace the plot of the unit circle in your Matlab m-file with a plot of the curve µ(ζ) for 1000
points on the unit circle |ζ| = 1. Include this plot in your summary file.

(c) Add the curve µ(0.95ζ) to your plot to indicate which part of the complex plane represents stability
instead of instability. Recall you can use hold on to plot two curves on the same plot, and you
can change the color of the additional curve using the designator ’c’ for cyan or ’r’ for red, etc.

(d) Finally, add lines representing the x-axis and y-axis. Send me this plot with your summary.

(e) Make a copy of the Matlab m-file you just wrote and modify it to display both the stability region
the explicit Euler method and the stability region for the Adams-Bashforth AB2 method given
above as

yk+1 = yk + h(3fode(xk, yk)− fode(xk−1, yk−1))/2

Send me this second m-file and the plot with your summary.

13

(f) (4 additional points) Give examples of odes and values of h that:

(a) Would be stable using both ab2 and explicit Euler;

(b) Would be stable using ab2 but not for explicit Euler; and,

(c) Would be stable using explicit Euler but not ab2.

Explain your reasoning and relate it to the plot in the previous part of this exercise.

Comparing the stability regions for explicit Euler and AB2, you can see that oscillatory solutions
(whose λ values lie close to the imaginary axis) can be stably simulated using much larger time steps
when using AB2 than when using explicit Euler. In contrast, solutions that do not oscillate at all (λ
real) can be stably simulated with explicit Euler using larger time steps than with AB2.

Last change $Date: 2016/12/31 01:40:41 $

14

